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Hopf-Galois module structure of tame Cp × Cp

extensions

par Paul J. Truman

Résumé. Soient p un nombre premier impair, K un corps de nom-
bres contenant une racine primitive p-ième de l’unité, et L une
extension galoisienne de K de groupe de Galois group isomorphe
à Cp × Cp. Nous étudions en détail les structures locale et glob-
ale de l’anneau des entiers OL en tant que module sur son ordre
associé AH dans chacune des algèbres de Hopf H induisant une
structure de Hopf-Galois non classique sur l’extension, complétant
le cas p = 2 considéré dans [12]. Pour une telle algèbre de Hopf
H, nous montrons que OL est localement libre sur AH , calculons
des générateurs locaux, et déterminons des conditions nécessaires
et sufficiantes pour que OL soit libre sur AH .

Abstract. Let p be an odd prime number, K a number field
containing a primitive pth root of unity, and L a Galois extension
of K with Galois group isomorphic to Cp×Cp. We study in detail
the local and global structure of the ring of integers OL as a
module over its associated order AH in each of the Hopf algebras
H giving nonclassical Hopf-Galois structures on the extension,
complementing the p = 2 case considered in [12]. For each Hopf
algebra giving a nonclassical Hopf-Galois structure on L/K we
show that OL is locally free over its associated order AH in H,
compute local generators, and determine necessary and sufficient
conditions for OL to be free over AH .

1. Introduction

This paper is a sequel to [12], in which we studied the nonclassical Hopf-
Galois module structure of rings of algebraic integers in tamely ramified
biquadratic extensions of number fields, and to [11], in which we studied
a larger class of tamely ramified extensions. In the introductions to those
papers, we described how the use of nonclassical Hopf-Galois structures
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has proven to be a fruitful generalization of the classical Galois module
theory of algebraic integers, and posed questions about the applications of
these techniques to tamely ramified extensions in particular. Since in this
paper we are concerned with extensions of number fields, we summarize
the classical theory briefly in this context; a thorough survey can be found
in [10]. If L/K is a finite Galois extension of number fields with Galois
group G then classically one studies the structure of OL as a module over
the integral group ring OK [G] or, more generally, over the associated order

AK[G] = {α ∈ K[G] | α · x ∈ OL for all x ∈ OL}.
Noether’s theorem asserts that OL is locally free over OK [G] (and therefore
AK[G] = OK [G]) if and only if L/K is at most tamely ramified. [7, Theo-
rem 3]. In this case, therefore, OL defines a class in the locally free class
group Cl (OK [G]), and Fröhlich’s Hom Description of this group allows us
to compute this class and determine the global structure of OL over OK [G],
at least up to stable isomorphism. In the case that K = Q, the Hilbert-
Speiser theorem [8] asserts that OL is free over Z[G] if G is abelian, and in
general Taylor’s proof of Fröhlich’s conjecture [9] identifies the obstruction
to freeness of OL over Z[G] in terms of analytic invariants.

Hopf-Galois theory generalises the classical situation described above (see
[5] for a survey). If L/K is a finite separable extension of fields, we say that
a K-Hopf algebra H gives a Hopf-Galois structure on L/K (or that L/K
is an H-Galois extension) if L is an H-module algebra and additionally the
obvious K-linear map

L⊗K H → EndK(L)

is an isomorphism of K-vector spaces (see [5, Definition 2.7]). A finite
Galois extension of fields L/K admits at least one Hopf-Galois structure,
with Hopf algebra K[G], and we call this the classical structure. We call
any other Hopf-Galois structures admitted by the extension nonclassical.
If L/K is an extension of local or global fields then within a Hopf alge-
bra H giving a Hopf-Galois structure on the extension L/K we define the
associated order of OL as follows:

AH = {h ∈ H | h · x ∈ OL for all x ∈ OL},
and study the structure of OL as an AH -module. This approach has proven
fruitful in the study of wildly ramified extensions (see [3], for example),
but in [11] we considered tamely ramified extensions and investigated the
following natural generalization of Noether’s theorem: If L/K is a finite
separable extension of number fields which is at most tamely ramified and
H is a Hopf algebra giving a Hopf-Galois structure on the extension, is OL

locally free over AH , its associated order in H? We proved the following
partial result:
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Theorem 1.1. Let L/K be a finite extension of number fields which is H-
Galois for some commutative Hopf algebra H, and suppose that no prime
lying above a prime number dividing [L : K] is ramified in L/K (i.e. the
extension is domestic). Then OL is a locally free AH -module.

Proof. See [11, Theorem 5.9]. �

As a particular case of this, we have:

Corollary 1.2. Let L/K be a finite extension of number fields which is
H-Galois for some commutative Hopf algebra H, and suppose that L/K
has prime-power degree. Then OL is a locally free AH -module.

In [12], we studied in detail the local and global Hopf-Galois module
structure of tamely ramified Galois extensions of number fields L/K with
group G ∼= C2 × C2. We used Corollary (1.2) to show that OL is locally
free over its associated order AH in any Hopf algebra H giving a Hopf-
Galois structure on the extension, and determined necessary and sufficient
conditions for OL to be free over AH . In the present paper we perform a
similar analysis of tamely ramified Galois extensions of number fields L/K
with group G ∼= Cp×Cp for an odd prime number p, under the assumption

that K contains a primitive pth root of unity. In section 2, we characterise
these extensions and determine explicit integral bases of OL,p for each prime
p of OK . In section 3 we quote results of Byott, who enumerated and
described all the Hopf-Galois structures admitted by such an extension,
and give the Wedderburn decompositions of the Hopf algebras. In section
4 we calculate, for each prime p of OK , an explicit OK,p-basis of AH,p and
an explicit generator of OL,p over AH,p. Finally, in section 5 We use the
detailed local information from section 4 to describe the locally free class
group Cl (AH) using a weak version of Fröhlich’s Hom-Description ([6, §49])
and derive necessary and sufficient conditions for OL to be free over AH .

2. Tame Cp × Cp Extensions

Let p be an odd prime number, and let K be a number field containing
a primitive pth root of unity ζ. A Galois extension L of K with group
isomorphic to Cp×Cp has the form L = K(α, β), where αp = a and βp = b
are coset representatives of linearly independent elements of the Fp-vector
space K×/(K×)p. In this section we establish congruence conditions on a
and b which are equivalent to the extension L/K being tamely ramified,
and for each prime p of OK we calculate an explicit integral basis of the
completed ring of integers OL,p over OK,p. Many of the results in this
section are straightforward generalizations of the corresponding results in
section 2 of [12], so we omit the details of the proofs. In particular here, as
there, when we take completions with respect to an absolute value arising
from a prime p of OK , we shall often tacitly be working not with local fields
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or discrete valuation rings but with finite products of these objects, and so
should regard our elements as tuples.

Proposition 2.1. The extension K(α, β)/K is tamely ramified if and only
if a and b can be chosen to satisfy a ≡ b ≡ 1 (mod (ζ − 1)pOK).

Proof. This is very similar to the proof of [12, Proposition 2.1]. The exten-
sion L/K is tamely ramified if and only if both the subextensions K(α)/K
and K(β)/K are tamely ramified, so it suffices to consider the subextension
K(α)/K. By [5, (24.2)] this is tamely ramified if and only if we can choose
α such that αp ≡ 1 (mod (ζ − 1)pOK,p) for each prime p lying above p. By

adjusting by the pth power of an integral element and using the Chinese
Remainder Theorem, we arrive at the criterion in the proposition. �

Definition 2.2. For x ∈ K× and p a prime of OK , define rp(x) by

rp(x) =

⌊
vp (x)

p

⌋
= max

{
n ∈ Z | n ≤ vp (x)

p

}
.

Proposition 2.3. Let p be a prime of OK which does not lie above p, and
let πp be a uniformiser of OK,p. Then the following is an OK,p basis of OL,p.{

αiβj

π
rp(aibj)
p

∣∣∣∣∣ 0 ≤ i, j ≤ p− 1

}
Proof. This is a straightforward generalization of the proof of [12, Propo-
sition 2.3]. �

Definition 2.4. For each prime p of OK which lies above p, we shall write
ep = vp (p). Often, if there is no danger of confusion, we shall surpress the
subcript and simply write e. This is divisible by p− 1, and we shall write
e′ = e/(p− 1). We note that e′ = vp (ζ − 1).

Proposition 2.5. Let p be a prime of OK which lies above p, and let πp
be a uniformiser of OK,p. Then the following is an OK,p-basis of OK(α),p:

(
α− 1

πe
′

p

)i ∣∣∣∣∣∣ 0 ≤ i ≤ p− 1

 ,

and the following is an OK,p-basis of OL,p:
(
α− 1

πe
′

p

)i(
β − 1

πe
′

p

)j ∣∣∣∣∣∣ 0 ≤ i, j ≤ p− 1

 .

Proof. This is a straightforward generalization of the proof of [12, Propo-
sition 2.4]. The stated OK,p-basis of OK(α),p is computed in [5, (24.4)],
and a similar argument applies to OK(β),p. Noting that the subextensions
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K(α)/K and K(β)/K are arithmetically disjoint at p yields the description
of OL,p in the proposition. �

3. Hopf-Galois Structures On Tame Cp × Cp Extensions

A theorem of Greither and Pareigis allows for the enumeration of all
Hopf-Galois structures admitted by any finite separable extension of fields,
and a gives a characterisation of the associated Hopf algebras. We state it
here in a weakened form applicable to finite Galois extensions L/K with
Galois group G. Let Perm(G) be group of permutations of G, and let
λ : G → Perm(G) be the left regular embedding. Call a subgroup N of
Perm(G) regular if |N | = |G| and N acts transitively on G. Then we have:

Theorem 3.1 (Greither and Pareigis). There is a bijection between reg-
ular subgroups N of Perm(G) normalised by λ(G) and Hopf-Galois struc-
tures on L/K. If N is such a subgroup, then G acts on the group algebra
L[N ] by acting simultaneously on the coefficients as the Galois group and
on the group elements by conjugation via the embedding λ. The Hopf al-
gebra giving the Hopf-Galois structure corresponding to the subgroup N
is

H = L[N ]G = {z ∈ L[N ] | gz = z for all g ∈ G} .
Such a Hopf algebra then acts on the extension L/K as follows:

(1)

(∑
n∈N

cnn

)
· x =

∑
n∈N

cn(n−1(1G))x.

Proof. See [5, Theorem 6.8]. �

In [2] and [4], Byott enumerated all the Hopf-Galois structure admitted
by a Galois extension L/K with group G ∼= Cp × Cp and, under the as-
sumption that ζ ∈ K, described the corresponding Hopf algebras. These
are all commutative and, since in our case K has characteristic zero, they
are therefore separable (see [13, (11.4)]). This implies that each contains
a unique maximal OK-order. In this section we express each of the Hopf
algebras giving nonclassical Hopf-Galois structures on L/K as a product
of fields, and hence describe the unique maximal order in each of them.
Finally, we derive formulae for the action of each Hopf algebra on the ex-
tension L/K.

Theorem 3.2 (Byott). Let L/K be a Galois extension of fields with group
G ∼= Cp × Cp. Let T ≤ G have order p, let d ∈ {0, 1, . . . , p − 1}, and fix
σ, τ ∈ G satisfying:

T = 〈τ〉, σp = 1, G = 〈σ, τ〉.
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There are well defined elements ρ, η ∈ Perm(G) determined by:

ρ(σkτ l) = σkτ l−1

η(σkτ l) = σk−1τ l+(k−1)d for k, l ∈ Z.

We have ρη = ηρ and ρp = ηp = 1. Now set N = NT,d = 〈ρ, η〉. Then
N ∼= G. Futhermore, N is regular on G and is normalised by λ(G), and
so N gives rise to a Hopf-Galois structure on L/K, with Hopf Algebra
H = HT,d = L[NT,d]

G. If d = 0 then N = λ(G), giving the classical
structure regardless of the choice of T. If d 6= 0 then the p − 1 possible
choices of d, together with the p + 1 possible choices of T , yield p2 − 1
distinct groups N , each giving rise to a nonclassical structure on L/K.
These are all the Hopf-Galois structures on L/K.

Proof. For the enumeration of Hopf-Galois structures, see [2, Corollary to
Theorem 1, part (iii) (corrected)]. For the determination of the permuta-
tions η and ρ, see [4, Theorem 2.5]. �

Since the choice d = 0 gives the classical Hopf-Galois structure on L/K
regardless of the choice of subgroup T , we shall henceforth assume that
d 6= 0, so as to consider only nonclassical structures. Beyond this, we
will not specify a choice of either T or d, and will therefore work with an
arbitrary Hopf algebra H = HT,d giving a nonclassical structure on the
extension. Next we seek a more explicit description of the Hopf algebra.
Since ζ ∈ K, the group algebra K[ρ] has a basis of mutually orthogonal
idempotents:

es =
1

p

p−1∑
k=0

ζ−ksρk for 0 ≤ s ≤ p− 1,

satisfying

ρes = ζses.

The subfield LT of L is cyclic of degree p over K. Fix v ∈
(
LT
)×

satisfying

σ(v) = ζ−dv,

and set

av =

p−1∑
s=0

vses ∈ LT [ρ].

Then we have:

Proposition 3.3 (Byott). With the above notation, for d 6= 0, we have
H = K[ρ, avη].

Proof. See [4, Lemma 2.10]. �
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Proposition 3.4. With the above notation we have, for d 6= 0 and any
choice of T , the following isomorphism of K-algebras.

H ∼= Kp ×K(v)p−1.

Proof. The following set is a basis of H:

ω = {es(avη)t | 0 ≤ s, t ≤ p− 1}.

Clearly we have

(es(avη)t)(es′(avη)t
′
) = 0

whenever s 6= s′. By examining elements of the form e0(avη)t, we find that

e0H ∼= K[η],

and by forming orthogonal idempotents within K[η] we have K[η] ∼= Kp.
The orthogonal idempotents in K[η] correspond in e0H to the elements

1

p

p−1∑
k=0

ζkdte0(avη)k.

Now considering elements of the form es(avη)t for s 6= 0, we calculate

(es(avη))p = vpses,

so we see that esH ∼= K(vs) ∼= K(v). Thus we have

H ∼= Kp ×K(v)p−1.

�

Definition 3.5. For r = 0, . . . , p−1, we shall adopt the following notation
for the idempotents defined in the proof of Proposition (3.4):

Er =
1

p

p−1∑
k=0

ζkdre0(avη)k.

Using the notation introduced in Definition (3.5), we can exhibit an
explicit K-algebra isomorphism Φ : Kp ×K(v)p−1 → H:

Definition 3.6. Given an element

(z0, . . . , zp−1, y1, . . . , yp−1) ∈ Kp ×K(v)p−1,

write ys =
∑p−1

t=0 ws,tv
st with ws,t ∈ K for s = 1, . . . , p−1 and t = 0, . . . , p−

1. Let Φ : Kp ×K(v)p−1 → H be the map defined by

Φ(z0, . . . , zp−1, y1, . . . , yp−1) =

p−1∑
r=0

zrEr +

p−1∑
s=1

p−1∑
t=0

ws,tes(avη)t.
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A consequence of the description of H given in Proposition (3.4) is that
we can identify the unique maximal OK-order in H. Here, and subse-
quently, whenever p is a prime of OK we write πp for a uniformiser of
Kp.

Corollary 3.7. We have the following description of the unique maximal
OK-order MH in H.

MH
∼= Op

K ×Op−1
K(v).

It is possible to choose the element v such that in the notation of Propo-
sition (2.1) we have v = αiβj for some nonnegative integers i, j, and we
shall always assume that we have done so. Choosing v in this way we have
V = vp ≡ 1 (mod (ζ − 1)pOL), which allows us to use Propositions (2.3)
and (2.5) to describe locally the unique maximal OK-order MH .

Corollary 3.8. If p is a prime of OK which does not lie above p, then an
OK,p basis of MH,p is:

{Er | 0 ≤ r ≤ p− 1} ∪

{
es(avη)t

π
rp(V st)
p

∣∣∣∣∣ 1 ≤ s ≤ p− 1,
0 ≤ t ≤ p− 1

}
.

Corollary 3.9. If p is a prime of OK which lies above p, then an OK,p-basis
of OK(vs),p is {(

vs − 1

πe
′

p

)t ∣∣∣∣∣ 0 ≤ t ≤ p− 1

}
,

which implies that an OK,p-basis of MH,p is

{Er | 0 ≤ r ≤ p− 1} ∪

{(
es(avη)− es

πe
′

p

)t ∣∣∣∣∣ 1 ≤ s ≤ p− 1,
0 ≤ t ≤ p− 1

}
.

In addition to the notation established in the previous sections, we now

write S for the subgroup 〈σ〉 of G, and fix an element x ∈
(
LS
)×

satisfying
τ(x) = ζx. Once again, it is possible to choose the element x such that in
the notation of Proposition (2.1) we have x = αiβj for some nonnegative
integers i, j, which implies that X = xp ≡ 1 (mod (ζ − 1)pOL). Then
L = K(x, v), so to determine the action of the Hopf algebra H on L/K, we
need only consider the action of each K-basis element of H on an arbitrary
product xivj . Recall that the action of H on L is given by equation (1).
We calculate:

ρrηt(σkτ l) = 1G if and only if k = t and l = r − dt(t− 1)/2,

and so

(2) (ρrηt)−1(1G) = σtτ r−(dt(t−1))/2
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Proposition 3.10. For s = 0, . . . , p− 1 we have

es · (xivj) =

{
xivj if s = i

0 otherwise

Proof. Each es ∈ H, so we use equation (2) to calculate es(x
ivj).

es · (xivj) =
1

p

p−1∑
k=0

ζ−ksρk · (xivj)

=
1

p

p−1∑
k=0

ζ−ksτk(xivj)

=
1

p

p−1∑
k=0

ζ−ksζkixivj

=
xivj

p

p−1∑
k=0

ζk(i−s)

=

{
xivj if s = i

0 otherwise.

�

Proposition 3.11. For t = 0, . . . , p− 1 we have

(avη)t · (xivj) = ζ−dtjζ−dit(t−1)/2xivj+it.

Proof. First we observe that

(avη)t =

(
p−1∑
s=0

vsesη

)t

=

p−1∑
s=0

vstesη
t
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since the es are orthogonal idempotents. Now each (avη)t ∈ H, so we use
equation (2) to calculate (avη)t · (xivj).

(avη)t · (xivj) =

p−1∑
s=0

vstesη
t · (xivj)

=
1

p

p−1∑
s=0

p−1∑
k=0

vstζ−ksρkηt · (xivj)

=
1

p

p−1∑
s=0

p−1∑
k=0

vstζ−ksσtτk−dt(t−1)/2(xivj)

=
1

p

p−1∑
s=0

p−1∑
k=0

vstζ−ksζ−dtjζki−dit(t−1)/2xivj

=
ζ−dtjζ−dit(t−1)/2xivj

p

p−1∑
s=0

p−1∑
k=0

ζk(i−s)vst

= ζ−dtjζ−dit(t−1)/2xivj+it.

�

Combining Propositions (3.10) and (3.11) yields:

Corollary 3.12. For s = 0, . . . , p− 1 and t = 0, . . . , p− 1, we have

es(avη)t · (xivj) =

{
ζ−dtjζ−dit(t−1)/2xivj+it if i = s

0 otherwise.

Proposition 3.13. For r = 0, . . . , p− 1, we have

Er · (xivj) =

{
vr if i = 0, j = r
0 otherwise

Proof. Recall from Definition (3.5) that

Er =
1

p

p−1∑
k=0

ζkdre0(avη)k,
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so it is clear from Corollary (3.12) that Er · (xivj) = 0 unless i = 0. In this
case we have

Er · (vj) =
1

p

p−1∑
k=0

ζkdre0(avη)k · (vj)

=
1

p

p−1∑
k=0

ζkdrζ−kdjvj

=
vj

p

p−1∑
k=0

ζkd(j−r)

=

{
vr if j = r
0 otherwise.

�

4. Local Freeness

We retain the notation of the previous sections: p is an odd prime num-
ber, K is a number field containing a primitive pth root of unity ζ, and L
is a tamely ramified Galois extension of K with group G ∼= Cp×Cp. Addi-
tionally, H is a Hopf algebra giving a nonclassical Hopf-Galois structure on
the extension. This is determined by a choice of subgroup T of G having
degree p and a choice of integer d ∈ {1, . . . , p − 1}. We have not made a
particular choice of either T or d, so as to work with an arbitrary Hopf
algebra giving a Hopf-Galois structure on the extension. To describe the
extension relative to this Hopf algebra, we have written G = 〈σ, τ〉, where

τ generates T , and have fixed an element v ∈
(
LT
)×

satisfying σ(v) = ζ−dv

and an element x ∈
(
LS
)×

satisfying τ(x) = ζx.

In this section we establish that OL is locally free over its associated order
AH in H, and for each prime p of OK we find an explicit OK,p-basis of the
completed associated order AH,p and a generator of OL as an AH,p-module.
In the final section, we shall use this detailed local information to establish
necessary and sufficient conditions for OL to be (globally) free over AH .

Proposition 4.1. The associated order AH is the OK-order OL[N ]G and
OL is locally free over AH .

Proof. Since L/K is a tame extension of number fields, [L : K] = p2, and
H is commutative, we may apply [11, Theorem 5.10]. More precisely, if p
lies above p then p must be unramified in L, so OL,p[N ]G is a Hopf order in
Hp ([11, Proposition 5.3]) and coincides with AH,p ([11, Proposition 5.4]).

Now ([5, (12.7)]) implies that OL,p is a free OL,p[N ]G-module. If p does not
lie above p then the characteristic of the residue field OK/p does not divide
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[L : K], so OL,p[N ]G is the unique maximal order in Hp ([11, Proposition

5.6]) and OL,p is a free OL,p[N ]G-module. Since OL,p is free over OL,p[N ]G

for each prime p of OK we must have AH,p = OL,p[N ]G for each p, and

therefore AH = OL[N ]G. �

Proposition 4.2. Let p be a prime of OK which does not lie above p.
Then an OK-basis of AH,p is given by:

{Er | 0 ≤ r ≤ p− 1} ∪

{
es(avη)t

π
rp(V st)
p

∣∣∣∣∣ 1 ≤ s ≤ p− 1,
0 ≤ t ≤ p− 1

}
.

Proof. Since p does not lie above p we have AH,p = OL,p[N ]G = MH,p, the
unique maximal order in Hp, and we computed an OK,p-basis of this in
Proposition (3.8). �

Proposition 4.3. Let p be a prime of OK which lies above p. For 0 ≤ i ≤
p− 1 and 1 ≤ t ≤ p− 1 define

ωi,t =

p−1∑
k=0

σk

(
vt − 1

πe
′

p

)i
σk
ηt.

Then an OK,p-basis for AH,p = OL,p[N ]G is given by

{ρk | 0 ≤ k ≤ p− 1} ∪
{
ωi,t

∣∣∣∣ 0 ≤ i ≤ p− 1,
1 ≤ t ≤ p− 1

}
.

Proof. We follow the method of [1, Lemma 2.1]. Firstly, we find the orbits of
G in N . Recall from Proposition (3.2) that N = 〈ρ, η〉, and from Theorem
(3.1) that G acts on N by conjugation via the embedding λ. We calculate
gρ = ρ for all g ∈ G and τη = η,ση = ρdη. The orbits of G in N are therefore

{ρk} for 0 ≤ k ≤ p− 1,

which each have length 1, and

{ρkηt | 0 ≤ k ≤ p− 1} for 1 ≤ t ≤ p− 1,

which each have length p. Each of the elements forming an orbit of length 1
is an OK,p-basis element of OL,p[N ]G. For each of the p−1 orbits of length
p, we construct p basis elements as follows: for t = 1, . . . , p− 1 choose ηt as
a representative of the orbit containing it, and note that the corresponding
stabilizer is T = 〈τ〉. Using Proposition (2.5), an integral basis of LTp /Kp

is given by 
(
vt − 1

πe
′

p

)i ∣∣∣∣∣∣ 0 ≤ i ≤ p− 1

 ,
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and so, for each i = 0, . . . , p − 1, the following is an OK,p-basis element of

OL,p[N ]G:

ωi,t =

p−1∑
k=0

σk

(
vt − 1

πe
′

p

)i
σk
ηt.

�

Finally, we find explicit generators of OL,p as an AH,p = OL,p[N ]G-
module for each prime p of OK . In the case that p does not lie above
p, we first make the following definition:

Definition 4.4. Let p be a prime of OK which does not lie above p. Define
0 ≤ jp ≤ p− 1 as follows:

• If vp (X) ≡ 0 (mod p) or vp (V ) ≡ 0 (mod p) then let jp = 0.
• Otherwise, let jp be the unique integer in the range 1, . . . , p− 1 such

that vp
(
XV jp

)
≡ 0 (mod p).

We note that jp 6= 0 if and only if (vp (X) , p) = (vp (V ) , p) = 1, that
is, if and only if p is ramified in both of the subextensions K(x)/K and
K(v)/K. Using this definition, we have:

Proposition 4.5. Let p be a prime of OK which does not lie above p.
Then the following element γp is a generator for OL,p as an AH,p-module:

γp =

p−1∑
j=0

vj

π
rp(V j)
p

+

p−1∑
s=1

xsvsjp

π
rp(XsV sjp )
p

.

Proof. It is easy to see from Proposition (2.3) that γp ∈ OL,p. Since OL,p

and AH,p are both free OK,p-modules of rank p2, it suffices to show that the
images of γp under the OK,p-basis elements of AH,p form an OK,p-basis of
OL,p. Recall the OK,p-basis of AH,p from Proposition (4.2), and note that

we have OL,p =
⊕p−1

s=0 esOL,p. For each r = 0, . . . , p− 1, we have by (3.13)
that

Er · γp =
vr

π
rp(V r)
p

,

giving an OK,p-basis of e0OL,p. For s 6= 0 and t = 0, . . . , p− 1, we have by
(3.12) that

es(avη)t

π
rp(V st)
p

· γp =
es(avη)t

π
rp(V st)
p

· xsvsjp

π
rp(XsV sjp )
p

∼ vst

π
rp(V st)
p

xsvsjp

π
rp(XsV sjp )
p

=
xsvsjp+st

π
rp(XsV sjp+st)
p

,
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where y ∼ y′ denotes that y′ = uy for some u ∈ O×K,p. The final equality
above holds since by the choice of jp we have

rp(X
sV sjp) + rp(V

st) = rp(X
sV sjp+st).

Therefore for each s 6= 0, the elements

es(avη)t

π
rp(V st)
p

· γp for 0 ≤ t ≤ p− 1

are an OK,p-basis of esOL,p. Together with the basis of e0OL,p, we have an
OK,p-basis of OL,p. �

If p is a prime lying above p, then by [11, Proposition 5.3] AH,p =

OL,p[N ]G is a Hopf order in Hp and by a straightforward generalization
of [12, Proposition 4.3] it is a local ring, so we may use the method of
Childs and Hurley to identify a generator of OL,p as an AH,p-module (see
[5, (14.7)]).

Proposition 4.6. Let p be a prime of OK which lies above p. Then a
generator for OL,p as an AH,p-module is:

γp =
1

p2

p−1∑
i=0

p−1∑
j=0

xivj .

Proof. We observe that the trace element

θ =
∑
n∈N

n

is a left integral of AH,p (see [5, §3]). Therefore by [5, (14.7)] γp is a
generator of OL,p as an AH,p-module if and only if γp ∈ OL,p and θ ·γp = 1.
To show that γp ∈ OL,p, it is sufficient to show that(

1

p

p−1∑
i=0

xi

)
∈ OL,p.

Recalling the OK,p-basis of OL,p given in Proposition (2.5), the element(
x− 1

πe
′

p

)p−1

∼ 1

p

p−1∑
i=0

(
p− 1

i

)
(−1)ixi

lies in OL,p. (Recall that y ∼ y′ denotes that y′ = uy for some u ∈ O×K,p.)
But for i = 0, . . . , p− 1 we have(

p− 1

i

)
≡ (−1)i (mod p),
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so
p−1∑
i=0

(
p− 1

i

)
(−1)ixi ≡

p−1∑
i=0

xi (mod pOL,p),

and so (
1

p

p−1∑
i=0

xi

)
∈ OL,p.

Therefore γp ∈ OL,p. It is straightforward to verify that

θ · γp = TrLp/Kp
(γp) = 1.

�

5. Conditions for Global Freeness

In this section, we determine necessary and sufficient conditions for OL

to be free over AH . We have shown in section 4 that OL is locally free
over AH , and so it defines a class in the locally free class group Cl (AH).
Since H is a commutative Hopf algebra, AH has the locally free cancellation
property (see [6, (§51)]), and so OL is a free AH module if and only if it
has trivial class in Cl (AH). Furthermore, again since H is commutative,
we have an isomorphism

Cl (AH) ∼=
J(H)

H×U(AH)
,

where J(H) is the group of idèles of H, H× is the subgroup of principal
idèles, and U(AH) is the group of unit idèles. (This is a weak form of
Fröhlich’s Hom Description, see [6, (§49)].) The class of OL in Cl (AH) cor-
responds under this isomorphism to the class of an idèle (hp)p determined
as follows: let Γ be a fixed generator of L over H, and for each prime p of
OK let hp ∈ Hp be an element such that hp · Γ is a generator of OL,p as an
AH,p-module. In this section we use the detailed local information we com-
puted in section 4 first to “sandwich” the locally free class group between
products of ray class groups whose conductors are ideals divisible only by
primes lying above p, and then to compute the idèle hp, and hence give
necessary and sufficient conditions for OL to have trivial class in Cl (AH).

We begin by studying the group of units of AH,p = OL,p[N ]G for each
prime p of OK :

Proposition 5.1. Let p be a prime of OK . If p does not lie above p then

A×H,p = M×H,p
∼= (O×K,p)

p × (O×K(v),p)
p−1.

If p lies above p then

A×H,p = {z ∈ AH,p | ε(z) ∈ O×K,p}.
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Proof. If p does not lie above p then by [11, Proposition 5.6] AH,p is the
unique maximal order in Hp, and Corollary (3.8) yields the stated descrip-
tion of the units. If p lies above p then AH,p = OL,p[N ]G is a local ring

whose unique maximal ideal is (pOL,p[N ] + ker ε)G (a straightforward gen-
eralization of [12, Proposition 4.3]), and so an element z ∈ AH,p is a unit if

and only if ε(z) ∈ O×K,p. �

Proposition 5.2. Let p be a prime of OK lying above p. Let z ∈ MH,p

and write

z =

p−1∑
r=0

arEr +

p−1∑
s=1

p−1∑
t=0

as,t

(
es(avη)− es

πe
′

p

)t
es

with ar, as,t ∈ OK,p for r, t = 0, . . . , p − 1 and s = 1, . . . , p − 1. Then

z ∈ A×H,p if and only if

(i)

p−1∑
s=i

p−1∑
t=j

(
s

i

)(
t

j

)
(−1)t−jπ−te

′
p as,t ≡ 0 (mod pπ−ie

′
p OK,p)

for 1 ≤ i, j ≤ p− 1,

(ii)

p−1∑
r=0

ζjdrar + p

p−1∑
s=1

p−1∑
t=j

(
t

j

)
(−1)t−jπ−te

′
p as,t ≡ 0 (mod p2OK,p)

for 0 ≤ j ≤ p− 1,

(iii)

p−1∑
r=0

ar + p

p−1∑
s=1

p−1∑
t=0

ζ−ks(−1)tπ−te
′

p as,t ≡ 0 (mod p2OK,p)

for 0 ≤ k ≤ p− 1,
(iv) a0 ∈ O×K,p.

Proof. We rewrite z in terms of the basis elements of AH,p given in Propo-
sition (4.3), noting that for each 1 ≤ t ≤ p − 1 and 0 ≤ s ≤ p − 1 we
have

es(avη)t =
1

p

s∑
i=0

(
s

i

)
πie
′

p ωi,t.

By Proposition (5.1), we then have that z ∈ A×H,p if and only if the coeffi-

cients of these basis elements lie in OK,p and ε(z) ∈ O×K,p. The details of
the proof are lengthy but routine. �

Proposition (5.2) is analogous to [12, Proposition 5.1]. Owing to dif-
ferences in notation, condition (iii) of Proposition (5.2) corresponds to the
union of conditions (iii) and (iv) of [12, Proposition 5.1]. Note also that the
j = 0 case of the congruences in part (ii) of Proposition (5.2) is identical
to the k = 0 case of the congruences in condition (iii).
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We now seek necessary and sufficient conditions for z ∈ A×H,p in terms
of higher unit groups of OK,p and OK(v),p.

Definition 5.3. Define an isomorphism

Θ : (K×)p × (K(v)×)(p−1) ∼= H×

by composing the automorphism of (K×)p × (K(v)×)(p−1) defined by

(z0, z1, . . . , zp−1, y1, . . . yp−1) 7→ (z0, z0z1, . . . , z0zp−1, z0y1, . . . , z0yp−1)

with the explicit isomorphism Φ : Kp×K(v)(p−1) → H defined in Definition
(3.6). Thus given an element (z0, . . . , zp−1, y1, . . . , yp−1) ∈ Kp ×K(v)p−1,

we write ys =
∑p−1

t=0 ws,tv
st with ws,t ∈ K for s = 1, . . . , p − 1 and t =

0, . . . , p− 1, and then we have

Θ(z0, . . . , zp−1, y1, . . . , yp−1) = z0Er

p−1∑
r=1

z0zrEr +

p−1∑
s=1

p−1∑
t=0

z0ws,tes(avη)t.

We shall also write Θ for the induced isomorphism

(K×p )p × (K(v)×p )(p−1) ∼= H×p ,

where p a prime of OK , and the isomorphism

J(K)p × J(K(v))(p−1) ∼= J(H).

Proposition 5.4. Let p be a prime of OK lying above p. Then

Θ
(
O×K,p × (1 + p2OK,p)

(p−1) × (1 + p2OK(v),p)
(p−1)

)
⊆ A×H,p.

Proof. The image under Θ of an element of

O×K,p × (1 + p2OK,p)
(p−1) × (1 + p2OK(v),p)

(p−1)

has the form

z =

p−1∑
r=0

arEr +

p−1∑
s=1

p−1∑
t=0

as,t

(
es(avη)− es

πe
′

p

)t
es

with ar, as,t ∈ OK,p for r, t = 0, . . . , p− 1 and s = 1, . . . , p− 1, and

(a) a0 ∈ O×K,p.

(b) ar ≡ a0 (mod p2OK,p) for 1 ≤ r ≤ p− 1.
(c) as,0 ≡ a0 (mod p2OK,p) for 1 ≤ s ≤ p− 1.
(d) as,t ≡ 0 (mod p2OK,p) for 1 ≤ s, t ≤ p− 1.
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We show that z satisfies the conditions of Proposition (5.2).

By (d) we have π−te
′

p as,t ≡ 0 (mod pOK,p) for 1 ≤ s, t ≤ p− 1. So

p−1∑
s=i

p−1∑
t=j

(
s

i

)(
t

j

)
(−1)t−jπ−te

′
p as,t ≡ 0 (mod pOK,p),

which is sufficient to ensure that condition (i) of Proposition (5.2) holds.

By (b) and (d) we have, for 1 ≤ j ≤ p− 1, that

p−1∑
r=0

ζjdrar + p

p−1∑
s=1

p−1∑
j=1

(
t

j

)
(−1)t−jπ−te

′
p as,t

≡
p−1∑
r=0

ζjdra0 (mod p2OK,p)

≡ a0

p−1∑
r=0

ζjdr (mod p2OK,p)

≡ 0 (mod p2OK,p),

so condition (ii) of Proposition (5.2) holds.

For 0 ≤ k ≤ p− 1 we have by (b),(c) and (d) that

p−1∑
r=0

ar + p

p−1∑
s=1

p−1∑
t=0

ζ−ks(−1)tπ−te
′

p as,t

≡
p−1∑
r=0

a0 + p

p−1∑
s=1

ζ−ksas,0 (mod p2OK,p)

≡ pa0 + p

p−1∑
s=1

ζ−ksa0 (mod p2OK,p)

≡ pa0

p−1∑
s=0

ζ−ks (mod p2OK,p)

≡ 0 (mod p2OK,p),

so condition (iii) of Proposition (5.2) holds.

Condition (iv) of Proposition (5.2) holds by (a). �
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Proposition 5.5. Let p be a prime of OK lying above p. Then

Θ−1(A×H,p) ⊆ O×K,p × (1 + (ζ − 1)OK,p)
(p−1) ×

(
1 + (ζ − 1)OK(v),p

)(p−1)
.

Proof. Let

z =

p−1∑
r=0

arEr +

p−1∑
s=1

p−1∑
t=0

as,t

(
es(avη)− es

πe
′

p

)t
es ∈MH,p

with ar, as,t ∈ OK,p for r, t = 0, . . . , p− 1 and s = 1, . . . , p− 1, and suppose

that z ∈
(
OL,p[N ]G

)×
. Then the ar and as,t satisfy the conditions of

Proposition (5.2) and, in particular, a0 ∈ O×K,p. We shall show that this
implies

Θ−1(z) ∈ O×K,p × (1 + (ζ − 1)OK,p)
(p−1) ×

(
1 + (ζ − 1)OK(v),p

)(p−1)
.

It is sufficient to prove that

(a) ar ≡ a0 (mod (ζ − 1)OK,p) for 0 ≤ r ≤ p− 1.
(b) as,0 ≡ a0 (mod (ζ − 1)OK,p) for 1 ≤ s ≤ p− 1.
(c) as,t ≡ 0 (mod (ζ − 1)OK,p) for 1 ≤ s, t ≤ p− 1.

For each s = 1, . . . , p− 1 and j = 0, . . . , p− 1, define

As,j =

p−1∑
t=j

(
t

j

)
(−1)t−jπ−te

′
p as,t.

Using this notation, condition (i) of Proposition (5.2) becomes

p−1∑
s=i

(
s

i

)
As,j ≡ 0 (mod pπ−ie

′
p OK,p) for 1 ≤ i, j ≤ p− 1.

If we consider the case i = p− 1 then this becomes

Ap−1,j ∈ OK,p for 1 ≤ j ≤ p− 1,

and if we further specialize to the case j = p− 1 then we have

π
−(p−1)e′

p ap−1,p−1 ∈ OK,p,

which is equivalent to

ap−1,p−1 ≡ 0 (mod pOK,p).

Now by considering decreasing values of j in turn we obtain

ap−1,t ≡ 0 (mod πte
′

p OK,p) for 1 ≤ t ≤ p− 1.

Finally, considering decreasing values of i in a similar way yields

as,t ≡ 0 (mod πte
′

p OK,p) for 1 ≤ s, t ≤ p− 1,
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which is sufficient to establish (c). In fact, we have shown that π−te
′

p as,t ∈
OK,p for 1 ≤ t ≤ p− 1.

Next we establish (a). Summing the congruences in part (ii) of Proposition
(5.2) over j with appropriate coefficients we have, for each 0 ≤ r′ ≤ p− 1,

p−1∑
j=0

ζ−jdr
′

(
p−1∑
r=0

ζjdrar + p

p−1∑
s=1

As,j

)
≡ 0 (mod p2OK,p)

⇒
p−1∑
r=0

p−1∑
j=0

ζjd(r−r′)ar + p

p−1∑
s=1

p−1∑
j=0

ζ−jdr
′
As,j ≡ 0 (mod p2OK,p)

⇒ ar′ +

p−1∑
s=1

p−1∑
j=0

ζ−jdr
′
As,j ≡ 0 (mod pOK,p).

To simplify the double summation, note that for each s = 1, . . . , p − 1 we
have

p−1∑
j=0

ζ−jdr
′
As,j =

p−1∑
j=0

ζ−jdr
′
p−1∑
t=j

(
t

j

)
(−1)t−jπ−te

′
p as,t

=

p−1∑
t=0

t∑
j=0

(
t

j

)
ζ−jdr

′
(−1)t−jπ−te

′
p as,t

=

p−1∑
t=0

(ζ−dr
′ − 1)tπ−te

′
p as,t

≡ as,0 (mod (ζ − 1)OK,p),

since we showed above that π−te
′

p as,t ∈ OK,p for 1 ≤ s, t ≤ p− 1. Therefore
we have

ar′ +

p−1∑
s=1

as,0 ≡ 0 (mod (ζ − 1)OK,p)

for any r′ = 0, . . . , p− 1, which implies that all of the ar′ are congruent to
a0 modulo (ζ − 1)OK,p, as claimed in (a).

To help us establish (b), we note first that we may view the congruences in
part (i) of Proposition (5.2) as follows:for 1 ≤ i, j, k ≤ p− 1 we have

(ζ−k − 1)i
p−1∑
s=i

p−1∑
t=j

(
s

i

)(
t

j

)
(−1)t−jπ−te

′
p as,t ≡ 0 (mod pOK,p).
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Summing these congruences over all 1 ≤ i, j ≤ p−1 and rewriting the inner
summations using the binomial theorem gives us

(3)

p−1∑
s=1

p−1∑
t=1

(ζ−sk − 1)(−1)tπ−te
′

p as,t ≡ 0 (mod pOK,p) for 1 ≤ k ≤ p− 1.

Using this, we establish (b). Summing the congruences in part (ii) of Propo-
sition (5.2) gives us

p−1∑
j=1

p−1∑
r=0

ζjdrar + p

p−1∑
s=1

p−1∑
j=1

p−1∑
t=j

(
t

j

)
(−1)t−jπ−te

′
p as,t ≡ 0 (mod p2OK,p),

which reduces to

p−1∑
j=1

p−1∑
r=0

ζjdrar − p
p−1∑
s=1

p−1∑
t=1

(−1)tπ−te
′

p as,t ≡ 0 (mod p2OK,p).

Adding to this one of the congruences from part (iii) of Proposition (5.2)
gives

p−1∑
j=0

p−1∑
r=0

ζjdrar + p

p−1∑
s=1

ζ−ksas,0 + p

p−1∑
s=1

p−1∑
t=1

(ζ−ks − 1)(−1)tπ−te
′

p as,t ≡ 0

(mod p2OK,p)

for each k = 0, . . . , p− 1. If k = 0 then the final term is zero, and if k 6= 0
then it is congruent to 0 modulo p2OK,p by congruence (3). So we have

a0 +

p−1∑
s=1

ζ−ksas,0 ≡ 0 (mod pOK,p) for 0 ≤ k ≤ p− 1,

and so for each k = 0, . . . , p− 1 there exists ck ∈ OK,p such that

a0 +

p−1∑
s=1

ζ−ksas,0 = pck.

We therefore have

a0 =

p−1∑
k=0

ck

and

as,0 =

p−1∑
k=0

ζksck for 1 ≤ s ≤ p− 1,
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and so we have

as,0 − a0 =

p−1∑
k=0

(ζks − 1)ck

≡ 0 (mod (ζ − 1)OK,p) for 1 ≤ s ≤ p− 1.

Thus as,0 ≡ a0 (mod (ζ − 1)OK,p), as claimed in (b). This completes the
proof. �

By combining Propositions (5.4) and (5.5), we can “sandwich” the group
of unit idèles U(AH) between products of groups of unit idèles of fields, and
so “sandwich” the free class group Cl (AH) between products of ray class
groups of fields:

Corollary 5.6. There are injections:

U(OK)× Up2(OK)(p−1) × Up2(OK(v))
(p−1)

��
U(AH)

��
U(OK)× U(ζ−1)(OK)(p−1) × U(ζ−1)(OK(v))

(p−1)

and therefore surjections:

Cl (OK)× Clp2(OK)(p−1) × Clp2(OK(v))
(p−1)

��
Cl (AH)

��
Cl (OK)× Cl(ζ−1)(OK)(p−1) × Cl(ζ−1)(OK(v))

(p−1).

Next we compute an idèle whose class in J(H)/H×U(AH) corresponds
to the class of OL in Cl (AH):

Proposition 5.7. The class of OL in the locally free class group

Cl (AH) ∼=
J(H)

H×U(AH)
,
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corresponds to the class of the idèle (hp)p where:

hp =



p−1∑
r=0

Er +

p−1∑
s=1

p−1∑
t=0

ζstd(t−1)/2v−pqs,tes(avη)t if p | pOK

p−1∑
r=0

π
−rp(V r)
p Er +

p−1∑
s=1

π
−rp(XsV sjp )
p es(avη)jp otherwise.

Here qs,t =
⌊
st
p

⌋
for 0 ≤ s, t ≤ p− 1 and jp is as defined in Definition (4.4).

Proof. Define

Γ =
1

p2

p−1∑
j=0

vj +

p−1∑
s=1

xs

 ∈ L×
Using the formulae in Corollary (3.12) for the action on elements of L of
the elements es(avη)t (s = 1, . . . , p − 1 and t = 0, . . . , p − 1) and those in
Proposition (3.13) for the action of the elements Er (r = 0, . . . , p− 1), we
see that Γ is a generator of L over H. To show that the class of OL in
Cl (AH) corresponds to the class of the idèle (hp)p in J(H)/H×U(AH) we
must show that for each prime p of OK , the element hp · Γ is a generator
of OL,p over AH,p. First suppose that p | pOK . Then

hp · Γ =

p−1∑
r=0

Er · Γ +

p−1∑
s=1

p−1∑
t=0

ζstd(t−1)/2v−pqs,tes(avη)t · Γ

=
1

p2

(
p−1∑
r=0

vr +

p−1∑
s=1

p−1∑
t=0

ζstd(t−1)/2v−pqs,tes(avη)t · xs
)

=
1

p2

(
p−1∑
r=0

vr +

p−1∑
s=1

p−1∑
t=0

ζstd(t−1)/2ζ−std(t−1)/2xsvst−pqs,t

)

=
1

p2

(
p−1∑
r=0

vr +

p−1∑
s=1

p−1∑
t=0

xsvst

)
,

where st denotes the least positive residue of st modulo p. So in this case
hp · Γ coincides with the generator of OL,p over AH,p given in Proposition
(4.6).
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Now suppose that p - pOK . Then

hp · Γ =

p−1∑
r=0

π
−rp(V r)
p Er · Γ +

p−1∑
s=1

π
−rp(XsV sjp )
p es(avη)jp · Γ

=
1

p2

p−1∑
r=0

π
−rp(V r)
p vr +

1

p2

p−1∑
s=1

ζ−sjpd(jp−1)/2π
−rp(XsV sjp )
p xsvsjp

whereas from Proposition (4.5) we have that a generator of OL,p over AH,p
is

γp =

p−1∑
j=0

π
−rp(V j)
p vj +

p−1∑
s=1

π
−rp(XsV sjp )
p xsvsjp .

Comparing these two, we see that

p2

(
p−1∑
r=0

Er +

p−1∑
s=1

ζsjpd(jp−1)/2es

)
(hp · Γ) = γp.

Since both p2 and the second factor lie in A×H,p, we have that hp · Γ is a
generator of OL,p over AH,p. This completes the proof. �

The idèle (hp)p corresponds under the isomorphism

J(H) ∼= J(K)p × J(K(v))(p−1)

to a tuple of idèles, and this tuple in turn corresponds to a tuple of classes
of fractional ideals via the usual map

J(K)p × J(K(v))(p−1) → Cl (OK)p × Cl
(
OK(v)

)(p−1)

In order to use the surjections of class groups of Proposition (5.6) to de-
termine necessary and sufficient conditions for OL to be a free AH -module,
we must identify this tuple of classes of fractional ideals. First we define
some notation:

Definition 5.8. For any y ∈ K, define a fractional ideal of K by

Iy =
∏

p|yOK

prp(y).

For each s = 1, . . . , p− 1 define an element Us ∈ K(v)× by

Us =

p−1∑
t=0

ζstd(t−1)/2V −qs,tvst ∈ K(v)×.
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For each s = 1, . . . , p− 1 define a fractional ideal Js of K(v) by

Js =

I−1
Xs

∏
P-pOK(v)

P−vP(Us)
∏

P|VOK(v)

Pvp(V sjp)−prp(V sjp )−p

 .

Proposition 5.9. Under the composition of maps

J(H) ∼= J(K)p × J(K(v))(p−1) → Cl (OK)p × Cl
(
OK(v)

)(p−1)
,

the idèle (hp)p defined in Proposition (5.7) corresponds to the tuple of
classes of fractional ideals(

OK , I
−1
V , . . . , I−1

V (p−1) , J1, . . . , J(p−1)

)
,

Proof. Under the isomorphism

J(H)→ J(K)p × J(K(v))(p−1)

the idèle (hp)p is mapped to the tuple of idèles

I =

(
(1)p,

(
π
−rp(V )
p

)
p
, . . . ,

(
π
−rp(V (p−1))
p

)
p
, (y1,P)P, . . . , (y(p−1),P)P

)
where for s = 1, . . . , p− 1, the element ys,P ∈ K(v)P is defined by

ys,P =


p−1∑
t=0

ζstd(t−1)/2V −qs,tvst P | pOK(v)

π
−rp(XsV sjp )
p vsjp otherwise.

Now for each s = 1, . . . , p− 1 we define an idèle (y′s,P)P ∈ J(K(v)) by

y′s,P = U−1
s ys,P =

{
1 P | pOK(v)

U−1
s π

−rp(XsV sjp )
p vsjp otherwise.

Then the tuple of idèles

I′ =

(
(1)p,

(
π
−rp(V )
p

)
p
, . . . ,

(
π
−rp(V (p−1))
p

)
p
, (y′1,P)P, . . . , (y

′
(p−1),P)P

)
has the same class in the product Cl (OK)p × Cl

(
OK(v)

)(p−1)
as the tuple

of idèles I. Mapping the tuple of idèles I′ to a tuple of fractional ideals,
we see immediately that the first component is mapped to the trivial ideal,
and that for r = 2, . . . , p, the rth component is mapped to the fractional
ideal

I−1
V r−1 =

∏
p|V

p−rp(V r−1).
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To determine the images of the remaining components we calculate, for

each s 6= 0 and P a prime of OK(v), the valuation vP

(
y′s,P

)
. We have:

vP
(
y′s,P

)
=

{
0 P | pOK(v)

−vP (Us) + vP

(
π
−rp(XsV sjp )
p vsjp

)
otherwise.

We observed after Definition (4.4) that jp 6= 0 only if the prime p of OK

is ramified in the extension K(v)/K. In addition, we now observe that in
this case we have

rp(X
sV sjp) = rp(X

s) + rp(V
sjp) + 1,

and

pvp (V ) = vP (V ) = vP (vp) = pvP (v) .

Using these observations we see that if p is a prime of OK such that jp 6= 0
and P is a prime of OK(v) lying above p then we have

vP

(
π
−rp(XsV sjp )
p vsjp

)
= −vP

(
π
rp(Xs)
p

)
− vP

(
π
rp(V sjp )+1
p

)
+ vP

(
vsjp

)
= −vP

(
π
rp(Xs)
p

)
− prp(V sjp)− p+ vp

(
V sjp

)
.

On the other hand, if p is a prime of OK such that jp = 0 and P is a prime
of OK(v) lying above p then we have

vP

(
π
−rp(XsV sjp )
p vsjp

)
= vP

(
π
−rp(Xs)
p

)
So we see that the idèle (y′s,P)P corresponds to the fractional ideal

Js =

I−1
Xs

∏
P-pOK(v)

P−vP(Us)
∏

P|VOK(v)

Pvp(V sjp)−prp(V sjp )−p

 ,

and so the tuple of idèles I′ corresponds to the tuple of fractional ideals(
OK , I

−1
V , . . . , I−1

V (p−1) , J1, . . . , J(p−1)

)
.

�

Proposition 5.10. A sufficient condition for OL to be free over AH is that
the tuple of fractional ideals(

OK , I
−1
V , . . . , I−1

V (p−1) , J1, . . . , J(p−1)

)
,

has trivial class in the product of ray class groups

Cl (OK)× Clp2(OK)(p−1) × Clp2(OK(v))
(p−1).
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A necessary condition is that the same tuple has trivial class in the product
of ray class groups

Cl (OK)× Cl(ζ−1)(OK)(p−1) × Cl(ζ−1)(OK(v))
(p−1).

Proof. By Proposition (5.7), the class of OL in Cl (AH) corresponds to the
class of the idèle (hp)p in J(H)/H×U(AH), and by Proposition (5.9), this
corresponds to the given tuple of fractional ideals. Recalling the surjections
of Proposition (5.6), the result follows. �

References

[1] Bley, W. and Boltje, R., Lubin-Tate formal groups and module structure over Hopf

orders. J. Theor. Nombres Bordeaux 11 (1999), 269-305.
[2] Byott, N. P., Uniqueness of Hopf-Galois structure for separable field extensions. Commu-

nications in Algebra 24(10) (1996), 3217 - 3228, corrigendum ibid 3705.
[3] Byott, N. P., Galois structure of ideals in wildly ramified abelian p-extensions of a p-

adic field, and some applications. Journal de Theorie des Nombres de Bordeaux 9 (1997),

201-219.
[4] Byott, N. P., Integral Hopf-Galois Structures on Degree p2 Extensions of p−adic Fields.

Journal of Algebra 248 (2002), 334-365.

[5] Childs, L. N., Taming Wild Extensions: Hopf Algebras and local Galois module theory.
American Mathematical Society, (2000).

[6] Curtis, C. W. and Reiner, I., Methods of Representation Theory with Applications to

Finite Groups and Orders (Volume 2). Wiley, (1981).
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