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Abstract (250 words): 

Breast cancer is the leading cause of cancer-related death in women in Europe and North 

America, and metastasis is the primary cause of fatality in patients with breast cancer. While 

some breast cancers are quite treatable, the triple-negative breast cancers are more metastatic and 

resistant to chemotherapy. There is clearly an urgent need for better treatments for this form of 

the disease. Breast cancer is characterized by genetically complex intra-tumour heterogeneity, 

particularly within the triple-negative clinical subtype. This complicates treatment options, so the 

development of specifically targeted chemotherapy for less treatable forms is critical. 

Dysregulation of pH homeostasis is a common factor in breast tumour cells. This occurs in 

concert with a metabolic switch to aerobic glycolysis that occurs at the onset of oncogenic 

transformation. The Na+/H+ exchanger isoform 1 (NHE1) is the major pH regulatory protein 

involved in the increased proton extrusion of breast cancer cells. Its increased activity results in 

intracellular alkalinisation and extracellular acidification that drives cancer progression. The 

acidification of the extracellular tumour microenvironment also contributes to the development 

of chemotherapy resistance. In this review, we outline the role of H+ as a carcinogenic signal and 

the role and regulation of NHE1 as a trigger for metastasis. We review recent evidence 

supporting the use of pharmacological inhibitors of NHE1 as a viable treatment option for triple-

negative breast cancer. 
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1. Introduction 

 

Breast cancer is the most commonly diagnosed cancer among women (1) and is the leading 

cause of cancer-related death in women in Europe and North America (2,3). It will affect 

approximately 1 in 9 women in their lifetime. In breast cancer, it is the resulting metastasis that 

is the primary cause of fatality (4,5), with about 50% of all patients showing evidence of 

metastasis at first presentation (6). Not all breast cancers are alike. Some are quite treatable and 

some are much less so. Triple-negative (TN) breast cancers (negative for estrogen, progesterone, 

and HER2 (ERBB2) receptors) are the most problematic, tending to be more metastatic and 

resistant to chemotherapy. While triple-negative breast cancer represents only 10-20% of breast 

cancers (7), this is still a large number of women. Only a minority of women with metastatic 

triple-negative breast cancer survive past 5 years, even with aggressive chemotherapy (8-10). 

Despite advances in early detection and innovations in precision surgery aimed to conserve 

normal breast tissue, treatment strategies for patients with invasive breast cancer usually involve 

radiation and/or chemotherapy to curb the potential spread of malignant cells to sites beyond the 

breast. However, in both broad range and targeted chemotherapy regimens, the inherent 

heterogeneity of breast tumours presents a major challenge to treatment, so much so that breast 

cancer is categorized as multiple diseases based on subtype differentiation as opposed to one 

single disease (11). The development of targeted chemotherapies where the complication of 

intra-tumour heterogeneity can be negated as an impediment to successful treatment is therefore 

an attractive and worthwhile prospect. Tumours are complex entities that include genetically and 

metabolically aberrant cancer cells, genetically stable stromal cells, and infiltrating immune 

cells. They are functionally dependent on the acidic, hypoxic, and poorly perfused serum-
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deprived microenvironment that surrounds them for cancer progression to occur (12,13). 

Pharmacological targeting of this tumour microenvironment therefore represents an avenue for a 

putative widespread treatment strategy heretofore unexplored in great depth. pH homeostasis in 

cancer cells and, consequently, in the tumour microenvironment, is regulated by multiple pH 

regulatory proteins, chief of which is the Na+/H+ exchanger NHE1. NHE1 becomes activated by 

intracellular acidification in normal cells (14) but this process becomes dysregulated during 

oncogenic transformation (15). In cancer cells, elevated NHE1 activity results in increased H+ 

extrusion that leads to cellular alkalinisation and the establishment of the acidic extracellular 

tumour microenvironment (13). Over the past decade, experts in the field of pH regulation and 

homeostasis in tumour cells have realized the potential of targeting the tumour 

microenvironment pH as an anti-cancer therapy (16-19). In this review, we present evidence to 

highlight the role of H+ ions as a key carcinogenic signal, regulating both intracellular pH of 

tumour cells and the extracellular pH of the tumour microenvironment. Several NHE1 inhibitors 

that curb H+ extrusion and Na+ uptake, and consequently re-establish acid-base balance in the 

tumour microenvironment, have been assessed for their efficacy in treatment in cancer models. 

We summarize recent progress and discuss options for tumour-targeted drug delivery.  

 

 

2. Breast tumour heterogeneity: A hindrance to targeted therapy 

 

Breast cancer is widely characterized as being of three major subtypes based on the 

expression of estrogen and/or progesterone receptors (ER+, PR+), an amplification of human 

epidermal growth factor receptor-2 (HER2++) expression, or the absence of all of these receptors 
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(triple-negative breast cancer, TNBC) (20). This taxonomy is based on histotyping; further 

classification by gene expression profiling reveals five intrinsic clinical subtypes: luminal A, 

luminal B, HER2-amplification, basal-like, and normal-like (21,22). The luminal subtypes are 

hormone receptor-positive, while the basal-like subtype primarily exhibits a triple-negative 

profile (20); the normal-like subtype is now known to have been identified from a mixed sample 

of breast carcinoma and normal breast cells (22,23). Determination of treatment strategies 

depends on these characterizations: endocrine therapy targeted to hormone receptor-positive 

subtypes, and anti-HER2 targeted therapy (e.g. trastuzumab) for the HER2++ subtype; these 

targeted therapies generally translate into improved treatment outcomes. Treating triple-negative 

basal-like breast cancer is complicated by the inability to target hormone or HER2 receptors. 

Nonspecific cytotoxic chemotherapy therefore remains the cornerstone of treatment strategies for 

these patients and, while outcomes can initially be favourable, overall prognoses and patient 

survival rates are poor (23-25), and the development of chemotherapy resistance is problematic 

(11). 

 

Amongst invasive breast cancers, the incidence of triple-negative breast cancer (TNBC) 

ranges from 15-20% (25). TNBC Triple-negative breast cancer (TNBC) is the most clinically 

aggressive of all the subtypes, with high recurrence rates in the early years post-treatment, and an 

increased tendency towards distant metastasis, higher grades, and large tumours with a greater 

infiltration of lymphocytes (23,26). TNBC also occurs at higher frequencies in younger patients, 

those carrying the BRCA1 mutation, and those of African-American and Hispanic origin 

(23,27,28). In recent years, gene expression profiling revealed further complications to therapy 

options by identifying six distinct subtypes of TNBC tumours: 1, a highly proliferative basal-like 
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subtype with an increased expression of cell cycle and DNA damage response genes (BL1); 2, a 

second basal-like subtype with elevated expression of growth factor receptors and myoepithelial 

markers (BL2); 3, an immunomodulatory (IM) subtype typified by an upregulation in genes 

involved in immune processes and associated signalling pathways; 4, the mesenchymal (M) and 

5, mesenchymal stem-like (MSL) subtypes characterized by an enrichment of Rho-mediated cell 

motility pathways, and enhanced cell differentiation pathways and interactions with extracellular 

matrix receptors; and 6, a luminal androgen receptor (LAR)-expressing subtype that, while being 

ER-negative, has gene ontologies highly enriched in hormonal regulation and androgen receptor 

signal pathways (8). While this more detailed TNBC taxonomy may lend itself to increased 

avenues in the search for targeted therapies, the incredible level of potential genetic 

heterogeneity within a single TNBC breast tumour (intra-tumour heterogeneity) can significantly 

limit the efficacy of current cytotoxic chemotherapies. In some cases, this could be because 

certain drugs are ineffective against a particular tumour cell subtype, enabling cell survival and 

the potential for metastasis. Once metastasis does occur, surgery and radiotherapy are no longer 

feasible options. Thus, a chemotherapeutic strategy that is less cytotoxic than routinely used 

chemotherapy agents but is still effective enough to target tumour cells irrespective of their gene 

profiles would be a major step forward in the battle against triple-negative breast cancer. 

 

 

3. H+ ions as a carcinogenic signal 

 

In their seminal review, Hanahan and Weinberg (29) identified the unifying hallmarks of 

all cancers as their ability for: sustained proliferation, clonogenic replication, upregulation of 
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tumour suppressor genes, resisting apoptosis, inducing angiogenesis, and initiating invasion and 

metastasis. Since then, the development of novel chemotherapies has aligned with targeting the 

molecular mechanisms underpinning many of the above traits. A decade later, the same authors 

updated the list adding that some, if not all, cancers were also defined by their ability to evade 

immune destruction and their capacity for reprogramming cellular metabolism to promote 

neoplastic proliferation (30). This reprogramming involves a switch in glucose metabolism from 

the oxidative phosphorylation that occurs in normal cells to aerobic glycolysis in cancer cells, as 

was first observed by Otto Warburg (31,32). Initially, it was thought that the hypoxic conditions 

within growing tumours limited the more energy efficient oxidative phosphorylation in favour of 

glycolysis, but this energy inefficient metabolic pathway still persists in cancer cells even when 

oxygen is present (33). Indeed, the switch to aerobic glycolysis in leukemic and lung tumour 

cells occurs despite exposure to oxygen in the bloodstream and lungs respectively (34-37). 

Commonly, though, hypoxic conditions can activate hypoxia-inducible factors 1 and 2 alpha 

(HIF-1α/2α) transcription factors that can independently upregulate glycolysis (30,38). 

Numerous other allosteric factors can also influence glycolysis: hormones, oncogenes, oxygen, 

temperature, by-products of metabolism, and ions [reviewed in (39)]. Of these, H+ ion 

concentration (and, as a consequence, pH) is arguably the most significant, whereby elevated H+ 

extrusion results in an alkaline intracellular pH that drives aerobic glycolysis, while increased H+ 

uptake gives rise to a more acidic intracellular pH that drives oxidative phosphorylation (39,40). 

However, despite evidence supporting the fact that NHE1-mediated intracellular alkalinisation is 

an early event in oncogenic transformation (15,41,42), the idea that the metabolic switch to 

aerobic glycolysis in cancer cells is primarily due to perturbed H+ extrusion resulting in 

intracellular alkalinisation, is still controversial. 
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4. NHE1: The major cellular regulator of pH homeostasis 

 

There are ten known isoforms of the SLC9A solute carrier family of ion transporters 

encoding the mammalian Na+/H+ exchangers (NHEs), including the ubiquitously expressed 

NHE1 (SLC9A1) (43). NHE1 is a plasma membrane-bound glycoprotein comprised of 815 

amino acids (44). The precise crystal structure of the full-length NHE1 protein has not yet been 

resolved but topology models and cysteine accessibility experiments (45-47) reveal a 

hydrophobic transmembrane NH2-terminal domain of 12 transmembrane segments (amino acids 

1-500) through which ion exchange occurs. This is followed by a hydrophilic COOH-terminal 

cytosolic domain (amino acids 501-815). The cytosolic domain regulates ion flux and its actions 

are modified by phosphorylation and the binding of intracellular proteins and lipids (44,48). 

ATP-binding to NHE1 is necessary for its activation, but NHE1 does not require the energetic 

input from ATP hydrolysis for transport. Proton (H+) extrusion uses the energy from the 

inwardly directed sodium (Na+) gradient (49). Intracellular H+ ions are extruded in a 1:1 

electroneutral exchange for extracellular Na+. Ion exchange is dependent on the transmembrane 

concentration gradients for both Na+ and H+ and the directionality of ion exchange is reversible. 

When a more alkaline intracellular pH is reached, a “proton-sensor” site results in cessation of 

the NHE1 activity. NHE1 activity therefore serves the important function of preventing 

intracellular acidosis due to an accumulation of excess intracellular H+, a process that has 

immense relevance in cancer cells. NHE1 is also the major route for Na+ uptake into cells and its 
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activity, when coupled with the uptake of Cl− and water, therefore also controls cell volume and 

shape (50).  

 

In addition to intracellular protons, NHE1 can be activated by external factors like 

hormones and growth factors. The activation of several classes of cell surface receptors (e.g. 

receptor tyrosine kinases, G protein-coupled receptors, and integrins) can modify the activity the 

exchanger.  They shift the response to intracellular protons so the protein is more active at more 

alkaline intracellular pH. Receptor-mediated intracellular signal kinases can either directly or 

indirectly activate NHE1 via phosphorylation of specific amino acids in its C-terminal domain. 

NHE1 can also be activated by the binding of intracellular signal proteins and lipids to the C-

terminal regulatory domain (43,48,51). While the transmembrane domain of NHEs are highly 

conserved across the different isoforms, the cytosolic domain exhibits considerable variability. 

Deleting the C-terminal tail of the protein does not block ion exchange but does affect proton-

sensing and activation of the protein (52). Many of NHE1’s interactions with its lipid and protein 

binding partners tend to be on the C-terminal domain proximal to the membrane, while the distal 

end of the tail, spanned by amino acids 636 to 815, is where the majority of phosphorylation sites 

are located (48).  

 

Several different serine/threonine kinases can activate NHE1 by phosphorylation, in 

addition to the exchanger’s activation by its intracellular binding partners  (extensively reviewed 

in (48,51,53). Examples of kinase-mediated activators of NHE1 include: extracellular signal 

regulated kinases ERK1/2 which are important in the activation of NHE1 in response to 

intracellular acidosis, and for which NHE1 serves as a signal scaffold (54,55); AKT (protein 
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kinase B) which activates NHE1 in response to insulin and platelet-derived growth factor in 

fibroblasts (56), but inhibits NHE1 activity in cardiomyocytes (57); -Raf which phosphorylates 

NHE1 at amino acid threonine 653 (58); and p90 ribosomal S6 kinase (p90RSK) which 

phosphorylates NHE1 at serine 703, activating the exchanger in response to serum (59). Adaptor 

protein 14-3-3 binds NHE1 at the phosphorylated serine 703 residue and prevents its 

dephosphorylation (60).  

 

NHE1 activity can also be regulated by its interactions with calcium-binding proteins like 

calmodulin and calcineurin homologous protein CHP 1 and 2, and tescalcin (CHP3). A key 

regulator of NHE1 activity is autoinhibition via a high affinity calmodulin-binding domain in the 

region between amino acids aspartic acid 626 to threonine 653 of the NHE1 cytosolic tail. The 

Ca2+-binding protein calmodulin binds to NHE1 at a high (or a secondary low) affinity binding 

site. Ca2+-calmodulin binding is thought to release an autoinhibitory interaction with the proton 

modifier site of the transmembrane domain (61). The CHP isoforms increase NHE1 localization 

at the plasma membrane and bind to a juxtamembrane region of NHE1’s cytosolic tail. This 

increases activity by stabilizing more protein at the cell surface (62).  

 

NHE1 has also been shown to bind to carbonic anhydrase II, which is involved in acid-

base regulation (33). In addition, NHE1 is tethered to the actin cytoskeleton by binding to ezrin-

radixin-moesin (ERM) proteins, an association that aids in the maintenance of cell shape (63). 

 

Though this review primarily focuses on NHE1, we acknowledge that there are other key 

regulators of pH homeostasis in tumour cells (some of which are discussed in greater detail 
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elsewhere in this edition), including: vacuolar-type proton pump ATPases (V-ATPases), 

monocarboxylate cotransporters (MCTs), carbonic anhydrases (CAs), and sodium-bicarbonate 

cotransporters (NBCs) (33). The first three classes of transporters are involved in H+ extrusion 

(64), but all have been implicated in cancer progression (65). These H+ transporters interact with 

NHE1 in cancer cells and contribute to H+ signalling; however, we present evidence that, in 

triple-negative breast cancer, particularly of the basal-like clinical subtype, it is the manipulation 

of NHE1 activity that shows the most promise in terms of therapeutic gain. Additionally, earlier 

evidence has shown that NHE1 plays a more critical role in pH regulation in breast cancer cells 

compared with other cell types. In most breast cancer types, NHE1 may be more critical under 

conditions associated with tumours, such as with larger acid loads (66,67). 

 

 

5. Beyond “housekeeping”: NHE1’s definitive role in triple-negative breast cancer 

 

A role for NHE1 in cancer was first reported almost thirty years ago by Pouysségur’s 

group who observed that NHE1-deficient hamster lung fibroblasts formed fewer xenograft 

tumours in athymic nude mice in comparison to cells expressing the wild-type exchanger (68). 

The first firm evidence that dysregulation of pH homeostasis may be a unique feature of tumours 

came from the observation that the extracellular pH around malignant breast tumour cells from 

pleural effusions acidified their culture media up to 200-fold more than normal mammary cells 

(69). In general, cancer cells have been shown to have a reversed pH gradient with an 

intracellular pH (pHi) ranging from 7.2 to 7.7 and an extracellular pH (pHe) ranging from 6.2 to 

6.8. This compares with normal cells that have a pHi ranging from 6.9 to 7.1 and a pHe between 
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7.2 and 7.4 (13,70). In NIH3T3 murine fibroblasts and human keratinocytes, this kind of early 

cytoplasmic alkalinisation, as a result of E7 oncogene-induced transformation, was found to be a 

direct result of an increase in NHE1 activity. The intracellular alkalinisation was a precursor to 

the metabolic reprogramming of glucose metabolism to aerobic glycolysis (the so-called 

“Warburg Effect”) that is often observed in cancer cells (15). The concept of metabolic 

reprogramming as a reflection of upregulated glycolysis and hypoxia-induced transcription has 

been widely acknowledged for years, but the idea that dysregulated pH homeostasis and 

perturbed H+ dynamics may also play key roles in cancer progression has been largely 

overlooked. Only of late is this pH-centric paradigm of cancer progression gaining both weight 

and momentum. Consider how NHE1 becomes activated by external factors in normal cells 

versus in cancer cells: in normal cells, growth factors and hormones in serum activate NHE1, 

whereas it was shown that, in hormone receptor-positive MCF-7 breast cancer cells, it is serum 

deprivation (and thus, hormone and growth factor deprivation) that activates NHE1 (71,72). This 

is not due to changes in Na+ kinetics or NHE1 expression, but is due to an alkaline shift in the 

pHi activation curve (72). In highly invasive triple-negative basal-like MDA-MB-231 breast 

cancer cells, there is a similar pattern of NHE1 activation by serum deprivation (53). NHE1 

activation in low serum in MCF-7 and MDA-MB-231 cells is initiated through a sequential 

RhoA/p160ROCK/p38MAPK signal cascade gated by protein kinase A (PKA)-mediated 

phosphorylation of RhoA (73). Serum deprivation in both these cell types resulted in a 

redistribution of NHE1, RhoA, and phospho-RhoA to the leading edges of cells, priming the 

cells for directed migration (73). NHE1 was also found in the invadopodia of invasive MDA-

MB-231 cells where it co-localizes with phosphorylated cortactin, an invadopodial marker (74). 

NHE1 activity acidifies the peri-invadopodial space, establishing the optimal pH for the 
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proteolytic activity of serine proteases and matrix metalloproteinases that aid in the digestion of 

extracellular matrix at the leading edge of invading cells (75,76). NHE1-mediated H+ extrusion 

therefore facilitates every step of metastasis from the primary tumour. This includes: directed 

migration to exit the tumour; the subsequent dissociation of cells from the extracellular matrix; 

cell-matrix interactions with integrins, selectins, and cadherins, that are important in focal 

adhesion at the leading edge; and focal digestion of the extracellular matrix. This culminates in 

intravasation of invading tumour cells into the bloodstream (77). 

 

Various studies have examined the importance of NHE1 and other pH regulatory proteins 

in breast cancer cells. In one study, 3-D spheroids of MCF-7 and MDA-MB-231 breast cancer 

cells were cultured in extracellular matrix to mimic conditions in the tumour microenvironment 

and to assess how spheroid growth affects the spatial distribution of acid-extruding transporters 

involved in pH regulation (78). They examined NHE1, the Na+/HCO3
− cotransporter NBCn1, 

and the lactate/H+ co-transporters of the monocarboxylate cotransporter family, MCT1 and 

MCT4. In luminal A MCF-7 spheroids, NHE1 and MCT4 were evenly distributed while MCT1 

expression increased at the spheroid core. NBCn1 was highly expressed in the periphery. Triple-

negative MDA-MB-231 spheroids showed a similar distribution except for MCT1, which these 

cells do not express. Stable but partial knockdown of MCT1 (↓75%) and NBCn1 (↓80%) 

decreased MCF-7 spheroid growth, but only a complete knockout of NHE1 had a similar effect. 

In contrast, in triple-negative MDA-MB-231 cells, both transient and stable knockdown of 

NHE1 (↓85%), and complete knockout of NHE1 by CRISPR/Cas9 significantly reduced 

spheroid growth (78). The work demonstrated that there are distinct expression and localization 

patterns of acid-extruding transporters that are cell specific. Our own studies have shown that, 
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when NHE1 is knocked out from highly invasive MDA-MB-231 cells, there are marked 

decreases in migration and invasion through the extracellular matrix in comparison with cells 

containing wild-type NHE1. Additionally, when NHE1 knockout cells were injected into 

athymic nude mice, xenograft tumour growth was almost completely abolished (71).  

 

To determine how NHE1 regulation affects its role in migration and invasion in MDA-

MB-231 cells, we generated a series of mutations to the NHE1 protein via mutation of the 

regulatory cytosolic domain. Phosphorylatable serine 703 was replaced with a non-

phosphorylatable alanine (S703A). This prevents its activation via phosphorylation by p90RSK 

and, subsequently, prevents 14-3-3 binding to the phosphorylated serine residue. Another 

mutation was in the ERK1/2 phosphorylation sites, where serine residues 766, 770, and 771 were 

replaced by alanines (SSSA). A third mutation modified the autoinhibitory (calmodulin-binding) 

region of the exchanger to prevent autoinhibition, thus resulting in a constitutively active 

exchanger (1K3R4E). Here, positively charged lysine 641 (1K) and arginines 643, 645 and 647 

(3R) were replaced by negatively charged glutamic acid (4E) (79). Cells expressing SSSA-NHE1 

were not very different from the 231-wtNHE1 cells, except for having lower rates of migration 

and colony formation. In contrast, the constitutively active 1K3R4E-NHE1 cells exhibited a 

much greater degree of metastatic potential (faster migration, invasion, and increased spheroid 

growth in extracellular matrix) than cells with wild-type NHE1. Clearly, these data indicate a 

reliance on NHE1 and its various intracellular regulators for its functional effects in TNBC cells. 

Of all the mutations to NHE1, though, S703A was the most remarkable. Cells expressing 

S703A-NHE1 exhibited a drastic change in morphology, seemingly reverting from their 

characteristic mesenchymal morphology to a more epithelial-like phenotype. This change was 
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accompanied by a dramatic decrease in metastatic potential, as demonstrated by many 

parameters including: low rates of migration, low invasion through extracellular matrix, poor 

anchorage-dependent clonogenic growth, poor anchorage-independent colony growth in soft-

agar, and reduced 3D-spheroid growth in extracellular matrix. In fact, S703A-NHE1 cells 

behaved much like 231-NHE1ko cells, though the same morphological changes were not 

observed in the NHE1-knockout cells (79). We noted that the observed changes in morphology 

in the S703A-NHE1 cells correlated with a marked downregulation in both the mRNA and 

protein expression of vimentin intermediate filaments. Vimentin is usually upregulated in the 

epithelial-to-mesenchymal transition that occurs in tumour cells (80). In S703A-NHE1 cells, we 

hypothesized that the mutation may have triggered a reverse process of mesenchymal-to-

epithelial transition, resulting in cells that had reduced potential for metastasis. Presently, it is 

unclear why the change in morphology was so drastic. It could be that replacement of serine 703 

with alanine also prevents the binding of 14-3-3 to NHE1. Interestingly, 14-3-3 is also known to 

bind phospho-vimentin, and it is important in the dephosphorylation and disaggregation of 

vimentin (81). We have not yet been able to demonstrate a direct association between NHE1 and 

vimentin, but we have shown that several isoforms of 14-3-3 bind to and co-immunoprecipitate 

with NHE1 (82). Whether and how 14-3-3 links NHE1 to the vimentin intermediate filament 

cytoskeleton remains unclear. 

 

In another study, we used bioinformatics to assess gene profiles of primary patient breast 

tumours using the Cancer Genome Atlas (82). We found that NHE1 mRNA expression in 

primary breast tumours (N=1062) was significantly higher compared to normal associated breast 

tissue (N=113). However, when this database was reanalysed for tumour subtype, luminal A 
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(N=421), luminal B (N=192), and HER2-amplified (N=67) tumours did not show a difference in 

NHE1 mRNA expression compared to normal associated breast tissue (N=23). Intriguingly, 

NHE1 mRNA expression in basal breast tumours (N=141) was significantly lower than in 

normal breast tissue (82). This trend is comparable to the NHE1 protein expression we observed 

in luminal A MCF-7 cells, which expressed higher levels of NHE1 protein, but had lower 

metastatic capacity, compared to basal-like, triple-negative MDA-MB-231 and MDA-MB-468 

cells (71). It should be noted that despite the lower protein expression of NHE1 in both triple-

negative cell types, both were more migratory and invasive than MCF-7 cells. We believe that 

the upregulation of NHE1 activity in these cells, particularly in the low-serum culture conditions 

that mimic the tumour microenvironment, is sufficient for the increased rates of migration and 

invasion. We suggest it is the activity of the protein, and not its amount per se, that is critical. In 

this regard, we found that active (phosphorylated) p90RSK, which regulates NHE1 by 

phosphorylation of serine 703, was positively correlated with NHE1 in some triple-negative 

tumour types (82). Further studies in the area could examine the correlation between NHE1 

regulation and metastatic behaviour.  

 

 

6. NHE1 inhibition as a chemotherapy strategy: The challenge of targeted drug delivery 

 

Elevated H+ produced as a result of upregulated aerobic glycolysis in cancer cells needs to 

be extruded in order for cells to survive potential intracellular acidosis. The resultant H+ 

extrusion acidifies the microenvironment around tumours, setting up a perfect milieu for the 

selection and survival of an aggressively metastatic cancer cell phenotype. This is particularly 
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true in the case of triple-negative breast cancer, for which targeted therapies do not exist and, 

where intra-tumour heterogeneity further complicates treatment with cytotoxic chemotherapy. 

Unfortunately, the highly acidic pH of the tumour microenvironment is also a major contributing 

factor in the development of resistance to chemotherapy drugs, most of which are mildly basic 

and therefore neutralized in acid (19). Chemotherapy agents that are weakly basic can also 

become protonated in an acidic environment, preventing their entry into cells to reach their target 

sites (70,83). The ability to modulate microenvironmental pH has the potential to curb the 

development of a metastatic cell phenotype as well as provide a means to avoid the development 

of multi-drug resistance, at least in the case of weakly basic chemotherapy agents. 

Upregulated glycolysis is the most significant common denominator determining the 

tumourigenic phenotype of most cancer cells, but targeting the aberrant H+ dynamics 

underpinning this metabolic shift has rarely been considered a therapeutic option (84). pH 

homeostasis in normal and tumour cells is regulated by a variety of plasma membrane-bound 

transporters and pumps including the: Na+/H+  exchangers, sodium bicarbonate co-transporters, 

anion exchangers, monocarboxylate transporters, carbonic anhydrases, and vacuolar proton 

pump ATPases (V-ATPases) [Reviewed in (33,64)]. While combinatorial approaches targeting 

more than one transporter may be an option, to the best of our knowledge, there is currently no 

evidence to suggest pharmacological inhibition of multiple transporters would have an additive 

anti-cancer effect and this could be an area for further study. NHE1 is the best studied of the 

above transporters in cancer. We focus on NHE1 because its role in cancer – and triple-negative 

breast cancer in particular – has been shown to be significant. This significance seems to occur at 

virtually every step in the metastatic pathway. This includes oncogenic transformation and 

dysregulation of pH homeostasis that leads to neoplastic proliferation, directed migration, 
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invasion through extracellular matrix, colony and spheroid growth in vitro, and xenograft tumour 

growth in vivo. Inhibition of NHE1 activity could potentially moderate intracellular alkalinsation 

and neutralize the acidic extracellular pH of the tumour microenvironmental as a means to slow 

or stop metastasis and cancer progression. This strategy would also impede the development of 

resistance to routinely used chemotherapies since protonation of weak bases would not readily 

occur in a more neutral pH.  

The use of pharmacological inhibitors of NHE1 as anti-cancer therapies was recently 

reviewed (39,85); in summary, they comprise of two main chemical classes: amiloride and its 

derivatives, and benzoyl (acyl) guanidines. Amiloride, a potassium-sparing diuretic, was the 

earliest developed NHE1 inhibitor, and the only drug clinically used in humans. It inhibits NHE1 

activity by binding to its transmembrane domain (18). Sustained use as a diuretic is tolerated 

well. There are occasional reports of it achieving remission when used in patients with cancer 

(39), but because of its of low potency and specificity towards NHE1 it seems unlikely to be a 

first line of treatment. Amiloride’s more potent derivatives include 5-(N-ethyl-N-isopropyl)-

amiloride (EIPA) and 5-(N,N-hexamethylene)-amiloride (HMA). These have strong anti-

proliferative and pro-apoptotic effects in cancer cells in vitro, but they have not been used or 

tested clinically. Cariporide and eniporide, both representative of the benzoyl guanidine class of 

NHE1 inhibitors, are non-amiloride-based drugs to be used in human clinical trials; however, 

these were tested for treatment of ischemia-reperfusion injury in cardiac disease (39). 

Unfortunately, cariporide had cerebrovascular side effects (85) that seem to be related to the high 

dose used and the method of intravenous administration used (86). This however should not 

preclude preclinical and clinical studies in cancer patients and bedside oncology especially with 

different dosing and methods of administration. Other compounds also have promising potential. 
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Some are well absorbed by the gastrointestinal tract and can be given orally such as compound 9t 

(85,87).  

We used HMA and EMD87580 (2-methyl-4,5-di-(methylsulfonyl)-benzoyl-guanidine) in 

combination with paclitaxel to determine whether pharmacological inhibition of NHE1 could 

amplify the anti-cancer effects of paclitaxel. We found that, in triple-negative MDA-MB-231 and 

MDA-MB-468 cells examined in culture, low dose paclitaxel (1 nM) was effective in reducing 

the rates of migration and invasion in the presence of low doses of EMD87580 (10 M) and 

HMA (10 nM). The combination of paclitaxel plus NHE1 inhibitor, was significantly more 

effective than either paclitaxel or NHE1 inhibitors alone (71). This combinatorial approach may 

present a viable avenue for the use of NHE1 inhibitors as co-adjuvants to chemotherapy; 

however, further characterization of this effect is necessary, including in in vivo experiments. 

Though slow, progress on the use of NHE1 inhibitors as either anti-cancer therapeutics or co-

adjuvants to chemotherapy has been steady. We have recently tested a new, more selective and 

potent NHE1 inhibitor, KR-33028, (88) in MDA-MB-231, MDA-MB-468, and Hs578T cells, 

which are representative of multiple TNBC subtypes. It was very effective in reducing rates of 

migration, invasion and clonogenic colony growth, all of which are characteristics that are 

predictive of metastasis in patients, A related approach to decrease NHE1 activity is to affect 

NHE1 regulation. To this end, we tested the effect of p90RSK inhibitor BI-D1870 on TNBC cells. 

BI-D1870 caused significant decreases in rates of migration and invasion through extracellular 

matrix (79).  

7. Perspectives 

 



 20 

In 2015, there were 2.4 million breast cancer cases worldwide, with 0.5 million deaths 

related to the disease (89). Patient fatality is usually due to metastasis or development of 

resistance to chemotherapy. In the case of triple-negative breast cancer, treatment is further 

confounded by intra-tumour heterogeneity and the aggressively metastatic nature of the cancer 

itself. The issue of intra-tumour heterogeneity may be approachable, at least in some cases, by 

using a pH-centric paradigm of cancer progression. Here, it is the acidic microenvironment pH 

that, not only drives the selection of an aggressive, more metastatic cancer cell phenotype, but 

also contributes to the development of chemotherapy resistance. Targeting the pHe of the tumour 

microenvironment and the elevated pHi of solid tumours with pharmacological inhibition of 

NHE1 has incredible potential in theory but lags when it comes to practice. Fig. 1 illustrates a 

summary of an idealized scenario whereby NHE1 inhibition of breast cancer cells causes 

reduced acid extrusion. This results in a less acidic extracellular pH, a more acidic intracellular 

pH and, thus, reduced cell movement, migration, and metastasis of triple-negative breast cancer 

cells. So far, amiloride, which is arguably the least selective and potent of NHE1 inhibitors, is 

the only one used – with very limited success – to treat cancer patients. Perhaps an impediment 

to the successful use of amiloride as an anti-cancer agent is current limitations in drug delivery; 

amiloride is administered orally. Ideally, and particularly in the case of triple-negative breast 

tumours, tumour-targeted drug delivery would be the most effective treatment route. While this 

may not yet be possible in practice, there are multiple new drug delivery systems to consider, 

including nanoparticles, micelles, and extracellular vesicles. In TNBC, the focus is on the 

development of targeted chemotherapies. We instead suggest that a pH-centric treatment 

approach with tumour-targeted drug delivery may be efficacious at least in types of breast cancer 

such as triple-negative breast cancer, where NHE1 appears to play a more critical role. 
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Figure Legend 

 

Fig. 1.  Schematic diagram of hypothetical process whereby NHE1 inhibition reduces metastasis 

in triple-negative breast cancer cells. In an uninhibited cell, the basal elevated NHE1 activity 

increases intracellular pH and decreases extracellular pH. NHE1 tends to become redistributed to 

the leading edge of migrating cells, and to invadopodia of invading cells, creating a localized 

acidic microenvironment at these sites. This facilitates extracellular matrix (ECM) digestion that 

promotes cell movement and metastasis.  Inhibition of NHE1 reverses the intracellular to 

extracellular gradient and reduces these effects, resulting in decreased cell metastasis.  Darker 

shading indicates more alkaline pH.  

 

 


