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ABSTRACT
Background: : Statistical validity and model complexity are both
important concepts to enhanced understanding and correctness
assessment of computational models. However, information about
these are often missing from publications applying machine learn-
ing.
Aim:The aim of this study is to show the importance of providing
details that can indicate statistical validity and complexity of mod-
els in publications in the context of citation screening automation
using machine learning techniques.
Method: We built 15 Support Vector Machine (SVM) models each
developed using word2vec (average word) features — and data for
15 review topics from the Text REtrieval Conference (TREC) 2004
dataset.
Results: The word2vec features were found to be sufficiently lin-
early separable by the SVM and consequently we used the linear
kernels. In 11 of the 15 models, the negative (majority) class used
over 80% of its training data as support vectors (SVs) and approxi-
mately 45% of the positive training data.
Conclusions: In this context, exploring the SVs revealed that the
models are overly complex against ideal expectations of not more
than 2%-5% (and preferably much less) of the training vectors.
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•General and reference→Experimentation; Empirical studies;
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1 INTRODUCTION
Empirical software engineering is currently witnessing an increased
number of studies reporting models from computational research
based on machine learning algorithms. A particular example is
the use of text mining to automate the Citation Screening (CS)
phase of the Systematic Review (SR) process. Systematic review is
a rigorous review approach used in software engineering [22] and
other disciplines (particularly medicine and education). CS is the
process of deciding which of the papers found in the search phase
of a SR are relevant and hence should be included in a review and
which are not.

There is an on-going campaign on the need for reporting basic
information in publications based on computation to ensure that
independent researchers will be able to reproduce the results of
these studies. The same cannot be said about the statistical validity
and complexity of such models. Information that can indicate the
statistical validity and complexity of models is rarely reported in
studies.

In this study, we explore the need for the explicit provision of
statistical validity and complexity details of proposed models in
computational studies. In general, a machine learning based model
should not be assumed to be statistically valid and/or robust without
assessing its complexity — even if such a model is reported to have
high performance according to the measures used.

We conduct this study in the context of the automation of CS
in SRs using text mining techniques. We build multiple support
vector machines (SVMs) using average word-to-vector (word2vec)
features, for binary classification of citations (i.e. to automate the
inclusion/exclusion of papers). According to Olorisade et al. [29],
SVM based models have been proposed in 31% of the studies on
the automation of CS in SRs between 2006 — 2014; making it the
most used algorithm in the field. Thus, the choice of the SVM
algorithm for this study. The datasets are those used for 15 re-
views from the Text Retrieval and Evaluation Conference (TREC)
2004 datasets [13]. The datasets are part of the Drug Evaluation
Review Program (DERP) reports made available through the col-
laboration between the Cochrane Centre and the Evidence based
Practice Centres of the Agency for Healthcare Research and Quality
(AHRQ) [13].

Various measures have been proposed in the context of model
complexity, each adopting different information criterion statistics.
Some of the early ones are: Akaike Information Criterion (AIC)
and the Bayesian Information Criterion (BIC); recently Minimum
Description Length (MDL) and Occam’s razor from information
theory have become popular. In general, statistical validity requires
tight constraints on a model in terms of variation of parameters,
less constraint and more possible variation of parameter values
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implies lower validity of the model [16]. This implies that models
with higher statistical validity are more likely to be replicated with
small variation in their parameters.

Computational (model) complexity in the context of machine
learning can be simply viewed in terms of resources — the num-
ber of required examples, elementary components of a hypothesis
etc. In general, a model aims to achieve the best possible data de-
scription performance (e.g. classification in the context of making
inclusion/exclusion decisions as part of an SR), however at the same
time its complexity should be kept as low as possible. Often, in the
case of multi-component models, it is difficult to establish confi-
dence intervals for the model predictions due to the complicated
and non-trivial joint effects of the multiple components. However,
in such cases the model complexity combined with the model’s
data description performance provide a proxy for the estimation of
the model’s statistical validity. In general, following the Occam’s
razor principle, if two models have comparable data description
performance, the least complex is assumed to be statistically more
valid [15]. Thus, assessing model complexity for multi-component
models is critical for the estimation of the statistical validity of the
model. Information regarding statistical validity and complexity
is generally missing from computational studies in the context of
machine learning applications for text classification in SRs.

Viewing complexity as above, what translates to complexity in
each model differs. In this study, we illustrate with SVM models
where complexity is characterised by the number of support vectors
involved in the SVM classifier and is controlled through its hyper-
parameters — C, gamma and kernel type. In the rest of the paper,
section 2 presents a brief introduction to the Occam’s razor principle
for choosing a less complex model and a review of the studies that
have proposed SVM models in CS automation. The conduct of our
experiment is the subject of section 3. Section 4 presents the results
and discussion, while section 5 discusses some threats to validity.
The conclusions are presented in section 6.

2 BACKGROUND
2.1 Model Complexity
The option of selecting the best model in machine learning is not
usually a straightforward one. The rule of thumb is to select a model
with the least generalization error. According to Nannen, a good
model is the one with low generalization error and low tendency to
overfit [27]. However, given two possible representations or models
of data, Occam’s razor dictates that other things being equal, the
simpler or less complex of the two should be preferred [14, 15].
Though, the understanding of this principle has generated a few
controversies based on different interpretations and drawing of
unsupported conclusions between simplicity and accuracy [15].
Simplicity in this context refers to the representation generated
from a less complex hypothesis [7, 15], which may be easier to
understand, and/or to explain.

There are a number of ways to determine the complexity of a
model, such as minimum description length (MDL) [17, 18] and Kol-
mogorov complexity [8, 23, 32]. The MDL seeks a model that yields
a suitable balance between model accuracy and complexity given
the sample size and data complexity [5]. Kolmogorov complexity is
the length of the shortest program a finite string can be computed

from [17]. Originally used in information theory, it is lately becom-
ing more popular in computational studies. In essence, applied to
computational models it implies the preference for the simplest
hypothesis that represents or approximates the data. In the case of
models with multiple components, the often adopted measure of
complexity is the measure of structural complexity, which is given
by the number of components of the model. This approach is valid
in particular, when each component of the model can be expected
to have the same level of complexity as any other component of
the model.

2.2 Citation Screening
The CS (or study selection) process is a key activity in SR where the
relevant documents are separated from the irrelevant ones. This
phase is one of the most time consuming activity of the SR process.
It is therefore not surprising that it has attracted the most attention
in terms of automating an individual phase of the SR process [25].
Most of the research on automating CS has centered on text mining
techniques. These are explored in the context of developing models
based on machine learning algorithms to ease the task of selecting
the relevant studies from the results of the study search [29].

2.3 SVM Based Citation Screening Studies
In the field of automation of CS, the SVM approach has been widely
used since it was proposed by Aphinyanaphongs and Alferis [2].
Cohen et al. have since published a number of studies based on dif-
ferent TREC and other datasets, which show that the SVMs record
acceptable performances, usually a recall performance of 95% and
over [9–11, 13]; and are used also to track newly published articles
relevant to the same study [12]. Wallace et al. have also published
a series of articles using different datasets, some of which show
the ability of the SVM to separate well non—relevant articles from
relevant ones [31, 33, 34]. They have since proposed a CS system —
ABSTRACKR — using SVM and an active learning algorithm [34].
Other studies that have published SVM based classifiers within the
CS context are [1, 6, 20, 21, 35]. A comprehensive review of these
studies and more is presented in [30].

SVM has been widely used in text mining studies about screening
citations automatically during SR but the studies are devoid of
information about the complexity of the proposed models or about
whether they are statistically better than other possible models.
Though, all of the studies selected their best models through cross
validation. Cross validation is another way to eliminate random
performance and establish a reliable predictive performance of a
model. In cross validation, the whole input is divided into equal
sized subsets, the model will be trained on all but one subset and
tested using the one left out [24]. This process is continued until
each part has been used for testing. The results of the different runs
are then averaged to get the mean performance of the model. We
note that cross-validation by itself does not take into account the
complexity of the model.
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3 METHODS
We ran experiments to show the importance of providing details
that characterise the complexity and statistical validity of compu-
tational models. We developed SVM models with word2vec (us-
ing average word vectors) representations, using the 15 reviews
from [13].

The vector space model represents (embeds) words in a continu-
ous vector space where words closer together are adjudged to share
semantic meaning more than those farther away [4]. Word2vec
is a predictive model for learning word embedding from raw text
by first creating a vocabulary from the training text data and then
learning the vector representation of words incorporating an un-
derstanding of when and how often words are used together in
the representation [26]. The average word2vec incorporates the
average of each word over the given corpus.

We retrieved our version of the data from the TREC 2004 raw data
from http://skynet.ohsu.edu/trec-gen/data/2004/ after unsuccessful
attempts to get a copy of those used by earlier researchers. For
unknown reasons we could not retrieve exact counts for each of the
reviews as reported in [13]. The missing data was directly retrieved
from the ’pubmed’ database. The studies and the proportion of
negative and positive examples in each study is presented in Table 1.

To generate the word2vec representation, we tokenized the cor-
pus and removed stopwords with the Stanford’s nltk package. We
then trained a word to vectors model with the aid of the Word2Vec
method in the genism package. This model is used to transform the
corpus to ’average word feature’. There was no stemming in the
feature preparations. We reduce the dimensionality of the resulting
sparse vectors using the χ2 method in the sklearn’s model selection
routine to select top features that were found to be significant at
0.05 α level as reported in [13]. The number of total features and top
features retained is shown in Table 2. We split each review corpus
into training and testing datasets in the ratio 70:30 respectively
using the train_test_split method with seed value of 37. The seed
values were chosen randomly for the purpose of the study and to
ensure reproduction. None of the previous studies reported their
seed values. This ratio was changed to 80:20 in order to increase
the training set in corpus where the data size was deemed small —
usually below 1000. Table 4 shows the values used for the individual
review training and testing sets.

Information necessary for the reproducibility of this experiment
is provided below; software environment information is shown in
Table 3.

• Initial dataset shuffle seed: 29
• Train-test split seed: 37, 71, 21, 61, 55
• SVM parameters:

– Gamma: auto
– C: 1, 10, 100, 1000, 10000
– Kernel: Linear
– Model random state: 37, 71, 21, 61, 55
– Sample weight: 1:4
– Class weight: balanced

• Word2Vec model
– Features: as in Table 2.
– minimum word count: 10
– context window: 15

Table 1: Number of Retrieved Documents per Review

Review Retrieved
corpus size

Negative
samples

Positive
samples

ACEinhibitor 2544 2503 41

ADHD 851 831 20

Antihistamines 310 294 16

AtypicalAntipsychotics 1120 748 146

BetaBlockers 2072 1897 42

CalciumChannelBlockers 1218 1118 100

Estrogens 368 288 80

NSAIDs 393 352 41

Opioids 1915 1900 15

OralHypoglycemics 503 367 136

ProtonPumpInhibitors 1333 1282 51

SkeletalMuscleRelaxants 1643 1634 9

Statins 3465 3380 85

Triptans 671 647 24

UrinaryIncontinence 327 287 40

We trained a battery of 15 SVM models with the chosen models
using stratified 5x2 folds cross validation. The dataset is split with
different seed values on each run to ensure randomization. The
recall, precision, accuracy and number of support vectors were
accumulated and averaged.

• Recall is the fraction of correctly classified positive exam-
ples by the total positive examples in the whole corpus
[34].

recall =
tp

tp + f n

• Precision is the ratio of actual positive examples and the
total positive prediction [34].

recall =
tp

tp + f p

• Accuracy is the fraction of the total correct negative and
correct positive prediction by corpus size [34].

recall =
tp + tn

tp + f p + tn + f n

where,
tp →true positive fp →false positive
tn →true negative fn →false negative

In CS for SR, full recall of all relevant studies is the primary target.
Thus, we chose the models with highest recall for the positive class.
The results for the models given for the 15 reviews are shown in
Table 4. The training and testing data sizes presented in the tables
are the average over five runs. Similarly, the performance metrics
— recall, accuracy and precision, are also the mean and standard
deviation values over the five runs. Similarly, the performance
metrics âĂŞ recall, accuracy and precision, are also the mean and



EASE’17, June 2017, Karlskrona, Sweden B.K. Olorisade et al.

Table 2: Top Selected Features

Review Feature size Selected
top features

ACEinhibitor 5754 210

ADHD 3591 80

Antihistamines 2105 29

AtypicalAntipsychotics 4131 381

BetaBlockers 5567 194

CalciumChannelBlockers 4111 329

Estrogens 2489 233

NSAIDs 2409 242

Opioids 5512 55

OralHypoglycemics 2759 234

ProtonPumpInhibitors 3942 206

SkeletalMuscleRelaxants 5835 11

Statins 7240 467

Triptans 3035 121

UrinaryIncontinence 2315 215

standard deviation values over the five runs. Apart from the usual
recall and precision metrics we also show the mean and standard
deviation of the number of support vectors that each of the models
used in making its classification judgements — this characterises
the complexity of the SVM classifiers.

4 RESULTS AND DISCUSSION
CS automation in SR is one of the software engineering fields where
machine learning based techniques are currently being applied, thus
its choice for this study. We chose to experiment with the linear

Table 3: Software information

S/N Software and pack-
ages Version

1 Python 2.7.12 64bit

2 Ipython 5.1.0

3 Scipy 0.18.1

4 Numpy 1.11.3

5 Sklearn 0.18.1

6 Pandas 0.19.2

7 NLTK 3.2.2

8 Gensim 1.0.1

9 Matplotlib 1.5.3

kernel because it is simpler than the non-linear kernels. We also
experimented with the binary, term frequency (tf), term frequency-
inverse document frequency (tfidf) and word2vec features.

The word2vec features showed better performance with the lin-
ear kernel comparable to what is obtainable with other feature
representations and nonlinear kernels. Following Occam’s princi-
ple, if two models exhibit similar performance, the least complex
should be chosen [14, 15]. Thus, our choice to experiment with the
nonlinear kernel and word2vec features.

Viewing complexity as illustrated in section 1, what translates
to complexity in each model differs. In this study, we illustrate with
SVM models where complexity is characterised by the number of
support vectors involved in the SVM classifier and is controlled
through its hyper-parameters — C, gamma and kernel type

Table 4 shows that the linear kernel SVM models have relatively
high recall performance but the number of support vectors is gen-
erally high, above 80% of the negative examples of the training
dataset in 11 of the studies and 30% to 75% of the positive examples
in all the reviews. In support vector models, the number of support
vectors is indicative of the statistical validity and complexity of the
models. We note that the number of support vectors reduces as
the value of ’C’ increases (i.e. this is the weight of the complexity
penalty in the optimisation of the SVM) in the models.

The statistical theory of the SVM is based on the assumption
that the algorithm uses as few support vectors as possible to make
its decision [28]. This is the underlying reason for the reported
advantage of the SVM algorithm - it is robust to small sample
sizes or situations where the number of features is more than the
number of samples because it needs only a few of the samples as
support vectors [3, 19]. Ideally, we would expect a well optimized
SVM model to use at most between 2%-5% of its total training
data vectors (and preferably much less than 2% in the case of large
volumes of data) as support vectors.

The fact that we find typically many more support vectors in our
SVM classifiers may mean that in our case, the SVM optimisation
is complicated and slow, which eventually leads to an early stop of
the optimisers before achieving any significant optimisation.

Consequently, the statistical validity of these results is likely to
be relatively limited, or in other words the likely error bounds are
large and the likelihood of wrong classifications is also relatively
high.

In the course of this study, we conducted similar experiment for
the term frequency (tf), binary and the term frequency—inverse doc-
ument frequency (tfidf) feature representations as well. However,
we found that the average word vector based SVM classification
lead to better performance results without requiring further pre-
processing of the data and we chose these simpler approaches for
the work presented in this paper. Also, we did not optimize the mod-
els beyond choosing a set of ’C’ values and a set of kernel options
since this was sufficient to explore the issue of statistical validity
and complexity of data models that we address in this paper.

Ordinarily, only one parameter of the machine learning model
is reported in most studies. Here we explore the potential of mod-
els considering several parameters before optimizing the result of
the best. We used average word vector for feature representation
modelled by the linear kernel SVMs for each review topic. Taking
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Table 4: Word2Vec Linear Kernel (W2V-L)

Review Train/Test size Mean Performance (5x2 folds CV) Support vectors configuration

neg pos precision recall accuracy neg pos parameters

ACEinhibitor 1252 21 0.07 ± 0.02 0.94 ± 0.04 0.78 ± 0.05 595 ± 88 7 ± 1 linear, 1.0
ADHD 415 10 0.08 ± 0.01 0.93 ± 0.09 0.75 ± 0.01 251 ± 43 4 ± 1 linear, 1.0
Antihistamines 147 8 0.06 ± 0.00 0.90 ± 0.12 0.22 ± 0.06 141 ± 6 4 ± 1 linear, 40.0
AtypicalAntipsychotics 487 73 0.17 ± 0.02 0.92 ± 0.05 0.40 ± 0.09 420 ± 43 25 ± 4 linear, 1000
BetaBlockers 1015 21 0.05 ± 0.01 0.89 ± 0.07 0.63 ± 0.05 675 ± 68 8 ± 2 linear, 1.0
CalciumChannelBlockers 559 50 0.12 ± 0.01 0.92 ± 0.06 0.45 ± 0.07 477 ± 45 20 ± 2 linear, 100
Estrogens 144 40 0.32 ± 0.01 0.92 ± 0.06 0.56 ± 0.03 121 ± 8 12 ± 2 linear, 1000
NSAIDs 176 21 0.15 ± 0.02 1.00 ± 0.00 0.38 ± 0.06 157 ± 5 5 ± 1 linear, 1.0
Opioids 950 8 0.03 ± 0.00 0.81 ± 0.11 0.76 ± 0.05 482 ± 44 4 ± 1 linear, 1.0
OralHypoglycemics 184 68 0.28 ± 0.01 0.98 ± 0.02 0.30 ± 0.02 182 ± 2 33 ± 2 linear, 10000
ProtonPumpInhibitors 641 26 0.06 ± 0.01 0.91 ± 0.07 0.47 ± 0.09 542 ± 56 9 ± 1 linear, 1.0
SkeletalMuscleRelaxants 817 5 0.01 ± 0.01 0.66 ± 0.23 0.53 ± 0.11 610 ± 83 4 ± 0 linear, 1.0
Statins 1690 43 0.05 ± 0.00 0.92 ± 0.04 0.56 ± 0.06 1250 ± 83 14 ± 2 linear, 1.0
Triptans 324 12 0.06 ± 0.00 0.97 ± 0.06 0.44 ± 0.07 286 ± 16 4 ± 1 linear, 1.0
UrinaryIncontinence 143 20 0.20 ± 0.03 0.93 ± 0.07 0.53 ± 0.11 122 ± 15 6 ± 1 linear, 100

statistical validity into account and the principles of model selection
— Occam’s razor, MDL and Kolmogorov complexity — the linear
kernel models should be preferred.

In SVM, the higher the number of support vectors, the more
complex the model is, the higher the possibility of misclassification
error and over-fitting. According to [5], learning in models is a
function of the hypothesis, representation and optimization. There
is hardly any optimization done by the model, when (almost) all
the dataset acts as support vectors in an SVM model. Such models
are almost equivalent of a nearest neighbour classifier using all
available training data. Consequently, the statistical validity of
SVM models, where a large fraction of the training data constitute
support vectors, is comparable to the statistical validity of nearest
neighbour classifiers based on the full training data.

5 VALIDITY THREATS
We present here, only the result of the linear kernel SVM, we have
not considered the result of the nonlinear kernel SVMs in this study.
The performance of the SVMs reported in this study is particular
to the models generated by the datasets used. It should be noted
that the sample sizes used are quite small with considerably imbal-
anced classes. We did not make any extra attempt to improve the
performance of the SVM models beyond the feature types used and
tuning of the parameters. Additional tuning may have changed the
outcome of the study.

6 CONCLUSIONS
In this study, we developed SVM models with linear kernels to
automatically screen citations for inclusion and exclusion in an

SR scenario based on 15 DERP SR dataset to explore complexity
and statistical validity issues surrounding machine learning mod-
els. Apart from reporting the performance — recall, precision and
accuracy — results 5x2 cross validation, we also explore the num-
ber of support vectors for each model. The models show relatively
acceptable recall performance which is the target in SR but the
support vectors are relatively high. This may raise suspicion about
the statistical validity and complexity of the models.

This work has shown that, in addition to performance results,
information that reflects how well a model complies with the prin-
ciples of its underlying theory and complexity are also important
to be provided in study reports. This will give the reader a better
understanding of the model and more grounds for comparability
and improvement. The specific complexity or statistical validity de-
tails differ from model to model, we only illustrate this with SVMs
in this paper.
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