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Abstract 44 

Purpose: To examine the effects of reduced CHO but high post-exercise fat availability on 45 

cell signalling and expression of genes with putative roles in regulation of mitochondrial 46 

biogenesis, lipid metabolism and muscle protein synthesis (MPS). Methods: Ten males 47 

completed a twice per day exercise model (3.5 h between sessions) comprising morning high-48 

intensity interval (HIT) (8 x 5-min at 85% VO2peak) and afternoon steady-state (SS) running 49 

(60 min at 70% VO2peak).  In a repeated measures design, runners exercised under different 50 

isoenergetic dietary conditions consisting of high CHO (HCHO: 10 CHO, 2.5 Protein and 0.8 51 

Fat g.kg-1 per whole trial period) or reduced CHO but high fat availability in the post-exercise 52 

recovery periods (HFAT: 2.5 CHO, 2.5 Protein and 3.5 Fat g.kg-1 per whole trial period).  53 

Results: Muscle glycogen was lower (P<0.05) at 3 (251 vs 301 mmol.kg-1dw) and 15 h (182 54 

vs 312 mmol.kg-1dw) post-SS exercise in HFAT compared to HCHO.  AMPK-α2 activity 55 

was not increased post-SS in either condition (P=0.41) though comparable increases (all 56 

P<0.05) in PGC-1α, p53, CS, Tfam, PPAR and ERRα mRNA were observed in HCHO and 57 

HFAT.  In contrast, PDK4 (P=0.003), CD36 (P=0.05) and CPT1 (P=0.03) mRNA were 58 

greater in HFAT in the recovery period from SS exercise compared with HCHO. p70S6K 59 

activity was higher (P=0.08) at 3 h post-SS exercise in HCHO versus HFAT (72.7 ± 51.9 vs 60 

44.7 ± 27 fmol.min-1 mg-1). Conclusion: Post-exercise high fat feeding does not augment 61 

mRNA expression of genes associated with regulatory roles in mitochondrial biogenesis 62 

though it does increase lipid gene expression. However, post-exercise p70S6K1 activity is 63 

reduced under conditions of high fat feeding thus potentially impairing skeletal muscle 64 

remodelling processes.   65 

Keywords: AMPK-α2, PGC-1α, p53, glycogen, mitochondrial biogenesis 66 

 67 
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Introduction 68 

Traditional nutritional strategies for endurance athletes have largely focused on ensuring high 69 

CHO availability before, during and after each training session (2).  However, accumulating 70 

data from our laboratory (7, 29) and others (12, 16, 17, 23, 39) have demonstrated a potent 71 

effect of CHO restriction (the so-called “train-low” paradigm) in augmenting the adaptive 72 

responses inherent to endurance training. Indeed, reduced CHO availability before (33) 73 

during (1) and after (32) training sessions augments the acute cell signalling pathways and 74 

downstream gene expression responses associated with regulating training adaptation. 75 

Accordingly, reduced CHO availability during short-term periods of endurance training 76 

augments markers of mitochondrial biogenesis (16, 39, 29), increases both whole body (39) 77 

and intramuscular lipid metabolism (17) and also improves exercise capacity and 78 

performance (16, 24). In the context of nutrient-gene interactions, it is therefore apparent that 79 

the acute molecular regulation of cell signalling processes provides a theoretical basis for 80 

understanding the molecular mechanisms underpinning chronic training adaptations.  81 

In addition to manipulation of CHO availability, many investigators have also demonstrated a 82 

modulatory role of high fat availability in augmenting components of training adaptation (10. 83 

For example, the acute elevation in circulating free fatty acid (FFA) availability during 84 

exercise regulates key cell signalling kinases and transcription factors that modulate the 85 

expression of genes regulating both lipid and CHO metabolism (31, 40).  Additionally, 5-15 86 

days of high fat feeding increases resting intramuscular triglyceride stores (38), hormone 87 

sensitive lipase (38), carnitine palmitoyltransferase (CPT1) (15), adenosine monophosphate 88 

activated protein kinase (AMPK)-α2 activity (38) and protein content of fatty acid translocase 89 

(FAT/CD36) (11).  Such adaptations undoubtedly contribute to the enhanced rates of lipid 90 

oxidation observed during exercise following “fat adaptation” protocols (10). Taken together, 91 

these data suggest carefully chosen periods of reduced CHO but concomitant high fat 92 
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availability may therefore represent a strategic approach for which to maximise both training-93 

induced skeletal muscle mitochondrial biogenesis and the enhanced capacity to utilise lipid 94 

sources as fuels during exercise. 95 

However, such a feeding strategy is not without potential limitations especially if performed 96 

on consecutive days.  Indeed, reduced CHO availability impairs acute training intensity (17, 97 

39) and five days of high fat feeding reduces pyruvate dehydrogenase (PDH) activity (35), 98 

thus potentially leading to a de-training effect, reduced capacity to oxidise CHO and 99 

ultimately, impaired competition performance (17, 39).  Moreover, although many endurance 100 

training-induced skeletal muscle adaptations are regulated at a transcriptional level, the 101 

turnover of myofibrillar (i.e. contractile) proteins are largely regulated through the 102 

translational machinery and the mechanistic target of rapamycin complex (mTOR) and 103 

ribosomal protein S6 kinase 1 (p70S6K) signalling axis (28).  In this regard, recent data 104 

suggests high circulating FFA availability impairs muscle protein synthesis despite the intake 105 

of high quality protein, albeit examined via lipid and heparin fusion and euglycemic 106 

hyperinsulemic clamp conditions (36).   107 

With this in mind, the aim of the present study was to examine the effects of reduced CHO 108 

but high post-exercise fat availability on the activation of key cell signalling kinases and 109 

expression of genes with putative roles in the regulation of mitochondrial biogenesis, lipid 110 

metabolism and muscle protein synthesis.  In accordance with the original train-low 111 

investigations (16, 17, 29, 39), we employed a twice per day exercise model whereby trained 112 

male runners completed a morning high-intensity interval training session followed by an 113 

afternoon training session consisting of steady-state running.  Runners completed the exercise 114 

protocols under two different dietary conditions (both energy and protein matched) consisting 115 

of high CHO availability (HCHO) in the recovery period after both training sessions (i.e. best 116 

practice nutrition) or alternatively, reduced CHO but high fat availability in the post-exercise 117 
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recovery periods (HFAT).  We specifically hypothesised that our high fat feeding protocol 118 

would enhance cell signalling and the expression of those genes with putative roles in the 119 

regulation of mitochondrial biogenesis and lipid metabolism but would also impair the 120 

activity of muscle protein synthesis related signalling. 121 

 122 

Methods 123 

Subjects: Ten trained male runners volunteered to participate in the study (mean ± SD: age, 124 

24 ± 1.5 years; body mass, 75.9 ± 6 kg; height, 177.3 ± 7.2 cm; VO2peak, 60 ± 3.6 ml·kg-125 

1·min-1). All subjects gave written informed consent prior to participation after all 126 

experimental procedures and potential risks had been fully explained. None of the subjects 127 

had any history of musculoskeletal or neurological disease, nor were they under any 128 

pharmacological treatment over the course of the testing period. Subjects were instructed to 129 

refrain from any strenuous physical activity, alcohol and caffeine consumption in the 48h 130 

prior to each experimental trial. The study was approved by the ethics committee of 131 

Liverpool John Moores University.  132 

Design: In a repeated measures, randomised, cross-over design separated by 7 days, subjects 133 

completed a twice per day exercise model under two different dietary conditions (both energy 134 

and protein matched) consisting of high CHO availability (HCHO) in the recovery period 135 

after both training sessions (i.e. best practice nutrition) or alternatively, reduced CHO but 136 

high fat availability in the post-exercise recovery periods (HFAT).  The twice per day 137 

exercise model comprised a morning (9-10 am) high-intensity interval (HIT) training session 138 

(8 x 5-min at 85% VO2peak) followed by an afternoon (130-230 pm) training session 139 

consisting of steady-state (SS) running (60 min at 70% VO2peak).  To promote training 140 

compliance during the HIT protocol in both the HCHO and HFAT trials, subjects adhered to 141 
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a standardised high CHO breakfast prior to this session. However, during the 3.5 h recovery 142 

between the HIT and SS session and in the recovery period upon completion of the SS 143 

exercise protocol until the subsequent morning, subjects adhered to either a HCHO or HFAT 144 

feeding protocol. Muscle biopsies were obtained from the vastus lateralis muscle immediately 145 

pre-HIT, immediately post-SS and at 3 h and 15 h post-SS. An overview of the experimental 146 

design and nutritional protocols are shown in Figure 1. 147 

Preliminary testing: At least 7-10 days prior to the first main experimental trial, subjects 148 

performed a maximal incremental running test to volitional fatigue on a motorised treadmill 149 

(h/p/Cosmos, Nussdorf-Traunstein, Germany) in order to determine maximal oxygen uptake. 150 

Following a 10 minute warm up at a self-selected treadmill speed the maximal incremental 151 

test commenced, beginning with a 2-min stage at a treadmill speed of 10km/h. Running speed 152 

was then increased by 2km/h every 2-min until a speed of 16km/h was reached, after which 153 

the treadmill inclined by 2% every 2-min until volitional exhaustion. VO2peak was defined as 154 

the highest VO2 value obtained during any 10-s period and was stated as being achieved by 155 

two of the following criteria: 1) heart rate was within 10 beats.min-1 (bpm) of age-predicted 156 

maximum, 2) respiratory exchange ratio > 1.1, and 3) plateau of oxygen consumption despite 157 

increased workload.  On their second visit to the laboratory (approx. 3 days later), subjects 158 

completed a running economy test in order to determine their individual running speeds for 159 

subsequent experimental trials.  Following a warm up, the test began with a 5-min stage at a 160 

treadmill speed of 8km/h with 1% incline and speed was then increased by 1km/h every 5-161 

mins thereafter .  The test was stopped when >90% of the previously determined VO2peak was 162 

reached. These measurements were recorded via breath-by-breath gas measurements obtained 163 

continuously throughout both tests using a CPX Ultima series online gas analysis system 164 

(Medgraphics, Minnesota, US). The test-retest reliability of this system in our laboratory 165 

when quantified using 95% limits of agreement is 0.29 ± 2.4 ml.kg-1 min-1  (data were 166 
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compiled from comparison of the oxygen uptake during the HIT protocols in the HCHO and 167 

HFAT trials undertaken in the present study). Heart rate (Polar, Kempele, Finland) was also 168 

recorded continuously during exercise.   169 

Experimental protocols: 170 

HIT protocol: In the 24-h preceding each main experimental trial, subjects consumed a 171 

standardised high CHO diet in accordance with typical nutritional recommendations (8 g.kg-1 172 

CHO, 2 g.kg-1 protein, and 1 g.kg-1 fat). On the morning of each experimental trial, subjects 173 

reported to the laboratory at ~7 am where they were given a standardised high-CHO breakfast 174 

(2 g.kg-1 CHO, 0.3 g.kg-1 protein, and 0.1 g.kg-1 fat). At 2-h post-prandial, a venous blood 175 

sample was then collected from an antecubital vein in the anterior crease of the forearm and a 176 

muscle biopsy sample taken from the vastus lateralis muscle.  Subjects were then fitted with a 177 

heart rate monitor and nude body mass (SECA, Hamburg, Germany) was recorded before 178 

commencing the high intensity interval running (HIT) protocol which lasted ~1-h.     The HIT 179 

protocol consisted of 8 x 5-min bouts running at a velocity corresponding to 85% VO2peak 180 

interspersed with 1-min of recovery at walking pace.  The intermittent protocol started and 181 

finished with a 10-min warm up and cool down at a velocity corresponding to 50% VO2peak, 182 

and a further venous blood sample was obtained immediately upon completion of the 183 

protocol. Water was given ad libitum throughout the duration of exercise with the pattern of 184 

intake recorded and replicated for the subsequent experimental trial. Heart rate was measured 185 

continuously during exercise (Polar, Kempele, Finland) and ratings of perceived exertion 186 

(RPE, 9) were obtained upon completion of each HIT bout.  In order to determine substrate 187 

utilisation during exercise (20), expired gas was collected via a mouthpiece connected to an 188 

online gas analysis system (CPX Ultima, Medgraphics, Minnesota, US) for the final 2-mins 189 

of each 5-min interval.   190 
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SS protocol:  During the 3.5 h recovery period between the HIT and SS protocols, subjects 191 

consumed either the HCHO (2.5 g.kg-1 CHO, 1 g.kg-1 Protein, 0.3 g.kg-1 Fat) or HFAT (0 192 

g.kg-1 CHO, 1 g.kg-1 Protein, 1 g.kg-1 Fat) feeding protocols (the pattern and frequency of 193 

feeding is shown in Figure 1).  Following the recovery period, another venous blood sample 194 

was obtained immediately prior to commencing the afternoon SS exercise protocol. After a 5-195 

min warm up at a self-selected treadmill speed, subjects subsequently commenced the 60-min 196 

steady state running (SS) protocol at a velocity corresponding to 70% VO2peak.  During 197 

exercise, subjects also consumed 60 g.h-1 of CHO (SiS GO Istonic Gels, Science in Sport, 198 

Blackburn, UK) in HCHO whereas no form of energy was consumed in the HFAT trial. 199 

Water was given ad libitum throughout the duration of exercise with the pattern of intake 200 

recorded and replicated for the subsequent experimental trial. Expired gases were also 201 

collected for 5-mins at 15-min intervals throughout the exercise trial (CPX Ultima, 202 

Medgraphics, Minnesota, US) and substrate utilisation again determined according to 203 

Jeukendrup and Wallis (20). Heart rate was measured continuously during exercise (Polar, 204 

Kempele, Finland) and ratings of perceived exertion (RPE, 9) were obtained every 15 205 

minutes during exercise. Upon completion of the SS protocol until sleep, subjects consumed 206 

either the HCHO (3.6 g.kg-1 CHO, 1.5 g.kg-1 Protein, 0.4 g.kg-1 Fat) or HFAT (0.2 g.kg-1 207 

CHO, 1.5 g.kg-1 Protein, 2.3 g.kg-1 Fat) feeding protocols where the pattern and frequency of 208 

feeding is shown in Figure 1. Vastus lateralis muscle biopsies and venous blood samples 209 

were also collected immediately post- and at 3 h and 15 h post completion (i.e. ~8 am and in 210 

a fasted state) of the SS exercise protocol.  The total energy intake across the whole trial 211 

period (i.e 7 am – 9 pm) in HCHO was: ~10 g.kg-1 CHO, ~2.5 g.kg-1 Protein and ~0.8 g.kg-1 212 

Fat,  and in HFAT was: ~2.5 g.kg-1 CHO, ~2.5 g.kg-1 Protein and ~3.5 g.kg-1 Fat, where both 213 

trials were matched for total energy intake.  214 
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Blood sampling and analysis: Venous blood samples were collected into vacutainers 215 

containing EDTA or lithium heparin and stored on ice until centrifugation at 1500g for 15-216 

mins at 4ºC.  Following centrifugation, aliquots of plasma were stored in a freezer at -80ºC 217 

for subsequent analysis.  Samples were later analysed for plasma glucose, lactate, non-218 

esterified fatty acids (NEFA), glycerol, and β-hydroxybutyrate using commercially available 219 

enzymatic spectrophotometric assays (RX Daytona Analyser, Randox, Co. Antrim, UK) as 220 

per the manufacturers’ instructions.       221 

Muscle biopsies: Muscle biopsy samples (~50 mg) were obtained from the lateral portion of 222 

the vastus lateralis muscle using a Bard Monopty Disposable Core Biopsy Instrument 12 223 

gauge x 10 cm length, (Bard Biopsy Systems, Tempe, AZ, USA).  Samples were obtained 224 

from separate incision sites 2-3 cm apart under local anaesthesia (0.5% Marcaine) and 225 

immediately frozen in liquid nitrogen and stored at -80ºC for later analysis.     226 

Analysis of muscle glycogen: Muscle glycogen concentration was determined according to 227 

the methods described by van Loon et al (37). Approximately 3-5 mg of freeze dried muscle 228 

was powdered and all visible blood and connective tissue removed.  The freeze dried sample 229 

was then hydrolysed by incubation in 500 µl of 1M HCl for 3 hours at 100◦C.  After cooling 230 

to room temperature for ~20-min, samples were neutralized by the addition of 250µl 0.12 231 

mol.L-1 Tris/2.1 mol.L-1 KOH saturated with KCl.  Following centrifugation at 1500 RCF for 232 

10-mins at 4ºC, 200 µl of the supernatant was analysed in duplicate for glucose concentration 233 

according to the hexokinase method using a commercially available kit (GLUC-HK, Randox 234 

Laboratories, Antrim, UK). Glycogen concentration is expressed as mmol.kg-1 dry weight 235 

and intra-assay coefficients of variation were <5%.  236 

RNA isolation and analysis: Muscle biopsy samples (~20 mg) were homogenized in 1ml 237 

TRIzol reagent (Thermo Fisher Scientific, UK) and total RNA isolated according to 238 
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manufacturer’s guidelines. Concentrations and purity of RNA were assessed by UV 239 

spectroscopy at ODs of 260 and 280 nm using a Nanodrop 3000 (Fisher, Rosklide, 240 

Denmark). 70 ng RNA was then used for each PCR reaction.  Samples were ran in duplicate.  241 

 242 

Primers: Identification of primer sequences was enabled by Gene 243 

(NCBI, http://www.ncbi.nlm.nih.gov.gene) and primers designed using Primer-BLAST 244 

(NCBI, http://www.ncbi.nlm.nih.gov/tools/primer-blast). Specificity was ensured using 245 

sequence homology searches so the primers only matched the experimental gene with no 246 

unintended targets identified for primer sequences.  In order to prevent amplification of 247 

gDNA, primers were ideally designed to yield products spanning exon-exon boundaries. 3 or 248 

more GC bases in the last 5 bases at the 3 end, and secondary structure interactions (hairpins, 249 

self-dimer and cross dimer) within the primers were avoided so there would be no non-250 

specific amplification. All primers were between 16 and 25bp, and amplified a product 251 

between 141 – 244bp.  All primers were purchased from Sigma (Suffolk, UK) and sequences 252 

for each gene are shown in parentheses: peroxisome proliferator-activated γ receptor 253 

coactivator (PGC-1) (fwd: TGCTAAACGACTCCGAGAA, rev: 254 

TGCAAAGTTCCCTCTCTGCT), tumour suppressor protein (p53) (fwd: 255 

ACCTATGGAAACTACTTCCTGAAA, rev: CTGGCATTCTGGGAGCTTCA), mitochondrial 256 

transcription factor A (Tfam) (fwd: TGGCAAGTTGTCCAAAGAAACCTGT, rev: 257 

GTTCCCTCCAACGCTGGGCA), citrate synthase (CS) (fwd: CCTGCCTAATGACCCCATGTT, 258 

rev: CATAATACTGGAGCAGCACCCC), estrogen related receptor (ERR)-α (fwd: 259 

TGCCAATTCAGACTCTGTGC, rev: CCAGCTTCACCCCATAGAAA), peroxisome proliferator-260 

activated receptor (PPAR) (fwd: ATGGAGCAGCCACAGGAGGAAGCC, rev: 261 

GCATGAGGCCCCGTCACAGC), pyruvate dehydrogenase kinase, isozyme 4 (PDK4) (fwd:  262 

TGGTCCAAGATGCCTTTGAGT, rev: GTTGCCCGCATTGCATTCTT),  Glucose transporter type 263 

http://www.ncbi.nlm.nih.gov.gene/
http://www.ncbi.nlm.nih.gov/tools/primer-blast
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4 (GLUT4) (fwd: TCTCCAACTGGACGAGCAAC,  rev: CAGCAGGAGGACCGCAAATA)   264 

carnitine palmitoyltransferase (CPT1) (fwd: GACAATACCTCGGAGCCTCA, rev: 265 

AATAGGCCTGACGACACCTG), fatty acid translocase (FAT/CD36) (fwd: 266 

AGGACTTTCCTGCAGAATACCA, rev: ACAAGCTCTGGTTCTTATTCACA), and GAPDH 267 

(fwd: AAGACCTTGGGCTGGGACTG, rev: TGGCTCGGCTGGCGAC). 268 

Reverse transcriptase quantitative Real-Time Polymerase Chain Reaction (rt-qRT-PCR): 269 

rt-qRT-PCR amplifications were performed using a QuantiFastTM SYBR® Green RT-PCR 270 

one step kit on a Rotogene 3000Q (Qiagen, Crawley, UK) supported by Rotogene software 271 

(Hercules, CA, USA). The following rt-qTR-PCR cycling parameters were used: hold 50°C 272 

for 10 min (reverse transcription/cDNA synthesis), initial denaturation and transcriptase 273 

inactivation at 95°C for 5 min, followed by PCR steps: 40 cycles of denaturation at 95°C for 274 

10s, and annealing/extension at 60°C for 30s. Upon completion, dissociation/melting curve 275 

analysis were performed to reveal and exclude non-specific amplification or primer-dimer 276 

issues (all melt analysis presented single reproducible peaks for each target gene suggesting 277 

amplification of a single product). Changes in mRNA content were calculated using the 278 

comparative Ct (
ΔΔCt) equation (34) where relative gene expression was calculated as 2-279 

ΔΔct and where represents the threshold cycle. GAPDH was used as a reference gene and did 280 

not change significantly between groups or time points studied (Ct = 24.2±1), therefore a 281 

pooled reference gene Ct was used in the relative gene expression equation above.  282 

Furthermore, to enable calculation of expression values immediately post and 3-h post 283 

exercise, the calibrator condition in the delta delta Ct equation was assigned to the pre-284 

exercise condition.        285 

[γ-32P] ATP Kinase Assay: Approximately 10-20 mg of muscle tissue was used for the 286 

measurement of p70S6K1 and AMPKα2 activity as previously described (27). 287 
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Statistical analysis: All data were analysed using Statistical Package for the Social Scientist 288 

(SPSS version 21, IBM, USA). Metabolic responses (i.e. blood metabolites, muscle glycogen, 289 

kinase activity, mRNA data), physiological and perceptual responses (i.e. HR, RPE, and 290 

oxidation rates) were analysed using a two-way repeated-measures general linear model, 291 

where the within factors were time and condition (HCHO vs HFAT). Post hoc LSD tests 292 

were used where significant main effects and interactions were observed in order to locate 293 

specific differences between time points and conditions. All data in text, figures and tables 294 

are presented as mean ± SD, with P values ≤0.05 indicating statistical significance.  295 

 296 

Results 297 

Physiological responses and substrate utilisation during exercise.   298 

Comparisons of subjects’ heart rate, RPE and substrate oxidation during the HIT and SS 299 

protocols are displayed in Table 1 and 2, respectively.  Heart rate, RPE and lipid oxidation 300 

(all P<0.01) all displayed progressive increases during both HIT (see Table 1) and SS 301 

exercise (see Table 2) whereas CHO oxidation displayed a progressive decrease (P<0.01) 302 

during both exercise protocols. In accordance with identical pre-exercise feeding in HIT, no 303 

significant differences were apparent in any of the aforementioned variables between HCHO 304 

and HFAT (P=0.06, 0.19, 0.52 and 0.56, respectively). In contrast, however, during the SS 305 

exercise protocol CHO oxidation was significantly greater in HCHO compared to HFAT 306 

(P<0.001) whereas fat oxidation was significantly greater during HFAT compared to HCHO 307 

(P < 0.001). 308 

 309 

Plasma metabolite responses: Plasma glucose, lactate, NEFA, glycerol and β-310 

hydroxybutyrate all displayed significant changes (all P<0.01) over the sampling period (see 311 
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Table 3).  However, in accordance with the provision of post-exercise CHO feeding in the 312 

HCHO trial, plasma glucose was significantly higher compared with HFAT (P<0.01) whereas 313 

post-exercise high fat feeding in HFAT induced significantly greater plasma NEFA, glycerol 314 

and β-OHB (all P<0.01) in HFAT compared with the HCHO trial. 315 

Muscle glycogen and exercise induced cell signalling:  Exercise induced significant 316 

decreases (P<0.01) in muscle glycogen immediately post-SS though no differences were 317 

apparent between HCHO and HFAT at this time-point (see Figure 2A). However, in 318 

accordance with the provision of CHO after the SS exercise protocol in HCHO, muscle 319 

glycogen re-synthesis was observed such that significant differences between HCHO and 320 

HFAT (P=0.01) were observed at 3 h and 15 h post-SS exercise.  Neither exercise (P =0.407) 321 

nor dietary condition (P = 0.124) affected AMPK-α2 activity at any time-point studied (see 322 

Figure 2B).  In contrast, p70S6K1 activity was significantly increased 3 h post-SS exercise 323 

(30-mins post-feeding) (P<0.01), although this increase was supressed (P=0.08) in HFAT 324 

(see Figure 2C). Furthermore, p70S6K1 activity was significantly reduced at 15 h post-SS 325 

exercise when participants were fasted compared with pre-HIT when they were high CHO 326 

and protein fed (P<0.01). 327 

Gene expression: Exercise increased the expression of PGC-1α (P<0.001), p53 (P=0.032), 328 

CS (P=0.05), Tfam (P=0.05), PPAR (P<0.01) and ERRα (P=0.01) however, there were no 329 

differences (all P>0.05) between HFAT and HCHO trials (see Figure 3A-F).  In contrast, the 330 

exercise-induced increase (P=0.001) in PDK4 mRNA was greater in HFAT versus HCHO 331 

(P=0.003). Similarly, mRNA expression of CD36 (P=0.05) and CPT1 (P=0.02) was 332 

significantly greater in HFAT in recovery from the SS exercise protocol (see Figure 3). In 333 

contrast, neither exercise (P=0.12) nor diet (P=0.31) significantly affected GLUT expression 334 

(see Figure 3). 335 
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Discussion 336 

The aim of the present study was to examine the effects of reduced CHO but high post-337 

exercise fat availability on the activation of key cell signalling kinases and expression of 338 

genes with putative roles in the regulation of mitochondrial biogenesis, lipid metabolism and 339 

muscle protein synthesis.  When compared with high CHO availability, we observed that 340 

post-exercise high fat feeding had no modulatory affect on AMPK-α2 activity or the 341 

expression of those regulatory genes associated with mitochondrial biogenesis.  Furthermore, 342 

although post-exercise high fat feeding augmented the expression of genes involved in lipid 343 

transport (i.e. FAT/CD36) and oxidation (i.e. CPT1), we also observed suppression of 344 

p70S6K1 activity despite sufficient post-exercise protein intake.  This latter finding suggests 345 

that post-exercise high fat feeding may impair the regulation of muscle protein synthesis and 346 

skeletal muscle remodelling processes, thereby potentially causing maladaptive responses for 347 

training adaptation if performed long-term.  348 

In accordance with the original train-low investigations examining cycling or knee extensor 349 

exercise (16, 17, 29, 39), we also employed a twice per day protocol, albeit consisting of 350 

morning HIT and afternoon SS running exercise protocol.  This model is practically relevant 351 

given that many elite endurance athletes (including runners) train multiple times per day with 352 

limited recovery time between training sessions (14).  Given that reduced CHO availability 353 

impairs high-intensity training capacity (17, 39), we also chose to schedule the HIT session in 354 

the morning period after a standardised high CHO breakfast.  As expected, no differences in 355 

cardiovascular strain, ratings of perceived exertion, substrate utilisation and plasma 356 

metabolite responses were observed between the HCHO and HFAT trials during the HIT 357 

session (see Table 1 and 3).  Following completion of the HIT protocol, subjects then adhered 358 

to a HCHO or HFAT feeding protocol in the 3.5 h prior to commencing the afternoon SS 359 

exercise. Given that exogenous CHO feeding during exercise reduces oxidative adaptations 360 
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even in the presence of reduced pre-exercise muscle glycogen (29), we also chose to feed 361 

exogenous CHO (at a rate of 60 g/h) during the afternoon SS protocol during the HCHO trial.  362 

Although we did not directly quantify muscle glycogen immediately prior to SS exercise, 363 

plasma metabolite and substrate utilisation during SS exercise were clearly suggestive of 364 

differences in both endogenous and exogenous CHO availability between the HCHO and 365 

HFAT trials.  Indeed, plasma NEFA, glycerol, β-OHB and whole body lipid oxidation were 366 

all greater during SS exercise undertaken in the HFAT trial compared with the HCHO trial 367 

(see Table 2 and 3).  On the basis of comparable muscle glycogen data post-SS exercise (see 368 

Figure 2A) and greater whole body CHO oxidation during the HCHO trial (see Table 2), we 369 

also suggest that exercise-induced muscle glycogen utilisation was greater during the SS 370 

exercise protocol when completed in the HCHO conditions (7).    371 

Perhaps surprisingly, we observed that our SS exercise protocol did not increase AMPK-α2 372 

activity in either the HCHO or HFAT trial. However, there are likely a number of 373 

physiologically valid reasons to explain the apparent lack of AMPK mediated signalling.  374 

Indeed, exercise-induced AMPK activation is known to be intensity dependent where >70% 375 

VO2max is likely required to induce metabolic perturbations sufficient to mediate a signalling 376 

response (13).  Furthermore, the AMPK response to exercise is attenuated with exercise 377 

training (8), an effect that is especially relevant for the present investigation given the trained 378 

status of our chosen population and the low plasma lactate observed (approximately 2 379 

mmol.L-1) during SS exercise.  Reduced absolute muscle fibre recruitment from the vastus 380 

lateralis, when compared with other lower extremity muscles recruited during walking and 381 

running (19), or when exercising at similar relative intensities during cycling (4) and where 382 

AMPK activation is typically reported (22) could also contribute, in part, to the lack of 383 

AMPK signalling observed here.  Finally, although exercise-induced AMPK activity is also 384 

thought to be regulated, in part, via a glycogen binding domain on β-subunit of the AMPK 385 
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heterotrimer (26), it is possible that our runners did not exceed a potential “muscle glycogen 386 

threshold” that is required to fully activate the AMPK complex during prolonged endurance 387 

exercise (30).  Indeed, previous data from our laboratory also using running exercise 388 

protocols (6,7) have typically only observed AMPK related signalling when post-exercise 389 

whole muscle homogenate glycogen is <200 mmol.kg-1 dw.  Despite previous suggestions 390 

that train-low training sessions should be targeted to SS exercise protocols so as to not 391 

compromise training intensity (5), our data therefore suggest (at least for AMPK mediated 392 

signalling) that perhaps it is the actual completion of a high-intensity stimulus per se 393 

(especially in trained athletes) that is really required to create a metabolic milieu that is 394 

conducive to augmentation of necessary signalling networks.   395 

In contrast to Yeo et al. (38), we also observed no modulatory effect of post-exercise high fat 396 

availability on resting AMPK-α2 activity.  Indeed, these authors observed that 5 days of a fat 397 

loading protocol increased resting AMPK-α2 activity as well as the exercise-induced 398 

phosphorylation of ACCSer221.  Such discrepancies between studies are likely due to the 399 

differences in duration of high fat feeding in that we adopted an acute high fat feeding 400 

protocol (<24 h) whereas the latter authors adopted a 5 day “fat adaptation” protocol that also 401 

increased resting intramuscular triglyceride (IMTG) stores. In this regard, it is noteworthy 402 

that the magnitude of change in resting AMPK-α2 activity was positively correlated with the 403 

elevations in IMTG storage (38).  404 

In contrast to our hypothesis, we also observed comparable 2-3 fold changes between trials in 405 

mRNA expression of those genes with key regulatory roles associated with mitochondrial 406 

biogenesis.  For example, the expression of PGC-1α, p53, Tfam, PPAR and ERRα mRNA 407 

were all elevated with similar magnitude and time-course in recovery from the SS protocol in 408 

both the HCHO and HFAT trials.  Such data conflict with previous observations from our 409 

laboratory (7) and others (32) where post-exercise CHO restriction (i.e. keeping muscle 410 
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glycogen low) augments the expression of many of the aforementioned genes.  However, in 411 

our previous report we simultaneously adopted a CHO but calorie restriction feeding protocol 412 

whereas the present design incorporated a reduced CHO but isocaloric and protein matched 413 

feeding protocol in our HFAT trial.  Given the similarities in metabolic adaptation to both 414 

CHO and calorie restriction, such data raise the question as to whether the enhanced 415 

mitochondrial responses observed when “training low” are due to transient periods of CHO 416 

restriction, calorie restriction or indeed, a combination of both.  This point is especially 417 

relevant from an applied perspective given that many endurance athletes present daily with 418 

transient periods of both CHO and calorie restriction due to multiple training sessions per day 419 

as well as longer term periods of sub-optimal energy availability (14).  420 

In agreement with multiple studies demonstrating a role of both acute elevations in FFA 421 

availability (7, 23) as well as high fat feeding protocols (11), we also observed that post-422 

exercise expression of PDK4, FAT/CD36 and CPT1 mRNA expression were elevated in the 423 

HFAT trial versus the HCHO trial.  However, unlike Arkinstall et al. (4), we did not detect 424 

any suppressive effects of high fat availability on GLUT4 mRNA expression though a longer 425 

and more severe period of CHO restriction utilised by these investigators (i.e. 48 h of 426 

absolute CHO intake <1 g/kg body mass resulting in muscle glycogen levels <150 mmol.kg-1 427 

dw) may explain the discrepancy between studies. Nonetheless, the dietary protocol studied 428 

here clearly alters the expression of genes with potent regulatory roles in substrate utilisation 429 

and if performed long term, may increase the capacity to use lipids as a fuel but induce 430 

suppressive effects on CHO metabolism (through suppression of the PDH complex) thus 431 

potentially limiting high-intensity performance (35). Whilst we did not directly quantify the 432 

signalling mechanisms underpinning these responses (owing to a lack of a muscle tissue), we 433 

suggest both p38MAPK and PPAR mediated signalling are likely involved. Indeed, using a 434 

twice per day exercise model, Cochran et al. (12) also observed enhanced p38MAPK 435 
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phosphorylation during the afternoon exercise protocol (despite similar pre-exercise muscle 436 

glycogen availability) that was associated with the enhanced circulating FFA availability 437 

during the afternoon exercise. Furthermore, pharmacological ablation of circulating FFA 438 

availability during exercise suppresses p38MAPK compared with control conditions (40).  439 

Additionally, FFA mediated signalling can also directly mediate PPAR binding to the CPT1 440 

promoter thereby modulating CPT1 expression (31). 441 

We also examined the effects of post-exercise fat feeding on the regulation of p70S6K 442 

activity, a key signalling kinase associated with regulating MPS.  In relation to the effects of 443 

endurance exercise per se, the majority of studies are typically limited to measures of 444 

phosphorylation status with some studies reporting increases (25) and others, no change.  445 

When examined quantitatively using the [γ-32P] ATP kinase assay, our data agree with 446 

previous observations from Apro et al. (3) who also reported no change but yet, conflict with 447 

recent data from our group where we observed an exercise-induced suppression of p70S6K 448 

activity (18). Nonetheless, the exhaustive (a fatiguing cycling HIT protocol) and muscle 449 

glycogen depleting (<100 mmol.kg-1 dw) nature of the latter exercise protocol versus the 450 

moderate-intensity nature of the afternoon SS running protocol studied here, likely explains 451 

the discrepancy between studies.  452 

In relation to the effects of post-exercise feeding, we also provide novel data by 453 

demonstrating that post-exercise high fat feeding was associated with a suppression of 454 

p70S6K activity (albeit P=0.08) at 3 h post-completion of the SS exercise protocol when 455 

compared with the elevated response observed in HCHO  (when using both a mean difference 456 

and standard deviation of differences of 50 fmol.min-1.mg-1, we estimate a sample size of 12-457 

13 would be required to achieve statistical significance with 90% power, as calculated using 458 

Minitab statistical software, version 17).  Although we did not measure circulating insulin 459 

levels in this study, it is of course possible that the suppressed p70S6K response observed 460 
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here may be due to reduced upstream insulin mediated activation of protein kinase B (PKB). 461 

Indeed, we recently observed post-exercise p70S6K activity to be suppressed in conditions of 462 

simultaneous carbohydrate and calorie restriction in a manner associated with reduced insulin 463 

and upstream signalling of PKB (18).  Alternatively, the suppression of p70S6K observed 464 

here may be mediated through direct effects of post-exercise high fat feeding that are 465 

independent of CHO availability, energy availability and insulin. Indeed, Stephens et al. (36) 466 

observed infusion of Intralipid and heparin to elevate circulating FFA concentrations 467 

attenuates MPS in human skeletal muscle in response to ingesting 21g amino acids under 468 

euglycemic hyperinsulemic clamp conditions.  Furthermore, Kimball et al. (21) also reported 469 

that high fat feeding impairs MPS in rat liver in a manner associated with reduced p70S6K 470 

phosphorylation, an effect that may be induced through sestrin 2 and sestrin 3 mediated 471 

impairment of mTORC signalling.  Clearly, further research is required to examine the 472 

effects of high fat feeding on direct measures (and associated regulatory sites) of MPS within 473 

the physiological context of the exercising human. 474 

In summary, we provide novel data by concluding that post-exercise high fat feeding has no 475 

modulatory affect on AMPK-α2 activity or the expression of those genes associated with 476 

regulatory roles in mitochondrial biogenesis.  Furthermore, although post-exercise high fat 477 

feeding augmented the expression of genes involved in lipid transport and oxidation, we also 478 

observed a suppression of p70S6K1 activity despite sufficient post-exercise protein intake.  479 

This latter finding suggests that post-exercise high fat feeding may impair the regulation of 480 

muscle protein synthesis and post-exercise muscle remodelling, thereby potentially causing 481 

maladaptive responses for training adaptation if performed long-term. Future studies should 482 

now examine the functional relevance of the signalling responses observed here, not only in 483 

terms of acute muscle protein synthesis but also the chronic skeletal muscle and performance 484 

adaptations induced by long-term use of this feeding strategy. 485 
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 618 

TABLE 1 – Heart rate, RPE and substrate oxidation responses during the HIT protocol in 619 

both the HCHO and HFAT trials. * denotes significant difference from HIT-1, P<0.05.  620 

 621 

 622 

TABLE 2 – Heart rate, RPE and substrate oxidation during the SS protocol in both the 623 

HCHO and HFAT trials. * denotes significant difference from 15 min, P<0.05. # denotes 624 

significant difference between conditions, P<0.05.   625 

 626 

TABLE 3 – Plasma (A) glucose, (B) lactate, (C) NEFA, (D) glycerol and (E) β-OHB before 627 

and after the HIT and SS exercise protocols. # denotes significant difference from Pre-HIT, 628 

P<0.05. * denotes significant difference between conditions, P<0.05.   629 

 630 
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FIGURE 1 - Overview of the experimental protocol employed in each trial. HIT = 8 x 5mins 631 

running at a workload equal to 85% VO2peak interspersed by 1min recovery. SS = 1-hour 632 

steady state running at a workload equal to 70% VO2peak.  633 

 634 

FIGURE 2 – (A) Skeletal muscle glycogen content, (B) AMPK-α2 and (C) p70S6K1 activity 635 

before HIT exercise and after the SS exercise protocol. # denotes significant difference from 636 

Pre-HIT, P<0.05. * denotes significant difference between conditions, P<0.05.  $ denotes 637 

difference between conditions, P=0.08. 638 

 639 

FIGURE 3 – (A) PGC-1 α, (B) PPAR, (C) p53, (D) Tfam, (E) CS, (F) ERRα, (G) PDK4, (H) 640 

GLUT4, (I) CPT1 and (J) CD36 mRNA before HIT exercise and after the SS exercise 641 

protocol.  # denotes significant difference from Pre-HIT, P<0.05. * denotes significant 642 

difference between conditions, P<0.05.   643 

 644 


