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Abstract

Elastic sandwich-type structures with high-contrast material and geometrical properties have numerous applications in modern

engineering, including, in particular, laminated glass, photovoltaic panels, precipitator plates in gas filters, etc. Multi-parametric

modelling of such structures assumes taking into consideration various types of contrast in stiffness, density and thickness. The

present contribution is concerned with analysis of low-frequency dispersion of elastic waves in case of an antisymmetric motion

of a three-layered symmetric plate, modelling laminated glass. The conditions on material and geometrical parameters, leading

to the lowest non-zero thickness shear resonance frequency tending to zero, are formulated. In this case the dispersion relation

possesses two low-frequency modes instead of a single fundamental low-frequency mode, which is typical for a homogeneous

plate. A two-mode uniform asymptotic approximation is constructed, along with local approximations for the fundamental mode

and the first shear harmonic.
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1. Introduction

Laminated glass is a sandwich-type structure consisting of two stiff glass layers separated by a soft PVB polymeric

interlayer. It is widely used in automotive industry for manufacturing of windscreens as well as in civil engineering

for architectural glazing. An important feature of laminated glass is a high contrast in mechanical properties of the

layers. The elastic modulus of the interlayer is in several orders of magnitude lower than that of the skin glass layers,

see e.g. [1]. In this case various engineering plate theories cannot be readily exploited, see discussions in [1], [2], [3].

Geometry of laminated glass also exhibits a considerable contrast, since the interlayer is much thinner than the outer

layers. The presence of contrast, as shown in [4], [5], and [6] for inhomogeneous strings, rods, and sandwich plates,

respectively, may result in a small first shear resonance frequency. Thus, the fundamental mode and first harmonic

may both appear over the low-frequency band. This motivates derivation of two-mode approximations of the exact

dispersion relation, see e.g. [7].

Below we extend the approach in [6] to laminated glass. First, we determine the range of material and geometric

parameters enabling the lowest shear thickness resonance to be small. Then, we construct uniform two-mode low-
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frequency approximation for antisymmetric dispersion relation, valid both for the fundamental mode and for the

first harmonic. The local one-mode approximations are also presented for these two modes. Numerical illustrations

demonstrate the efficiency of the proposed approach.

2. Governing equations

Consider a symmetric three-layered elastic plate of infinite lateral extent with core and skin layers of thickness 2hc

and hs, respectively, see Figure 1. For the sake of simplicity, we employ the plane strain assumption.

x2

x10

Fig. 1: A symmetric three-layered plate

The equations of motion for the core and skin layers are given by

σ
q

i j, j
= ρqü

q

i
, i = 1, 2, q = c, s (1)

where q = c and q = s for the core and skin layers, respectively; summation over the repeated indices is assumed.

Hereinafter σ
q

i j
are stresses, ui are displacements, ρq are volume mass densities.

The constitutive relations for a linearly isotropic elastic material are given by

σ
q

i j
= λqε

q

kk
δi j + 2µqε

q

i j
, (2)

with

ε
q

i j
=

1

2
(u

q

i, j
+ u

q

j,i
), q = c, s, (3)

where ε
q

i j
are strains, and λq and µq are the Lamé parameters.

The traction free boundary conditions

σs
12 = σ

s
22 = 0 (4)

are imposed along the faces x2 = ±(hc + hs), together with the continuity conditions

σc
12 = σ

s
12, σ

c
22 = σ

s
22, uc

1 = us
1, uc

2 = us
2 (5)

along the interfaces x2 = ±hc.

Let us define the dimensionless frequencyΩ and wave number K as

Ω =
ωhc

c2c

, K = khc, (6)

and introduce the dimensionless parameters

h =
hs

hc

, ε =
µc

µs

, r =
ρc

ρs

, (7)
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expressing the contrast in thickness, stiffness, and density of the core and skin layers.

In this case the dispersion relation for antisymmetric modes of the plate may be derived through a standard proce-

dure, see e.g. [7]. The result is presented in Appendix A.

3. Asymptotic approach

Similarly to [5] we derive the conditions on material and geometrical parameters providing the lowest shear cut-off

frequency being small, see also [6]

r ≪ h≪ ε−1, (8)

with the lowest eigenvalue given at leading order by

Ωsh ≈

(

r

h

)1/2

≪ 1. (9)

For the global long-wave low-frequency regime, characterised by polynomial variation of the sought for solution

across the plate thickness we require

K(1 + h)≪ 1, Ω

(

1 + h

(

ε

r

)1/2
)

≪ 1. (10)

Under these assumptions we derive the long-wave low-frequency asymptotic expansions of the transcendental

Rayleigh-Lamb equation (A.1). Expanding the hyperbolic functions in Rayleigh-Lamb equation (A.1) we arrive at

γ1Ω
2 + γ2K4 + γ3K2Ω2 + γ4K6 + γ5Ω

4 + γ6K4Ω2 + γ7K8 + γ8K2Ω4 + γ9K6Ω2 + γ10K10 + ... = 0, (11)

where the coefficients γi are given in [6].

Typical parameters for laminated glass suggest the following relations, see e.g. [1],

h ∼ ε−1/4, r ∼ 1, (12)

with the small parameter ε ≪ 1. In this case the leading order behaviour of the coefficients γi in (11) is given by

γi = Giε
δ, where Gi ∼ 1 and δ is a constant. In addition, the conditions (10) become Ω≪ 1 and K ≪ ε1/4.

The asymptotic results for laminated glass are presented in Table 1. In the first column the asymptotic orders of

the coefficients γi in the expansion (11) at ε ≪ 1 are displayed. In the third and fourth columns the estimates for

each term in (11), expressed in terms of the wave number K, are shown for the fundamental mode and first harmonic,

respectively.

For the fundamental mode, we get a two-term expansion corresponding to the classical Kirchhoff plate bending

theory. It is

ε3/2G1Ω
2 +G2K4 = 0, Ω ≪ ε1/2 (13)

with

G1 = −
h6

0

r3
0

, G2 = −
4

3

h8
0
(κ2

s − 1)

r2
0

,

where h0 = ε
1/4h and r0 = r, implying that K ∼ ε3/8Ω1/2.

Similarly to the derivation in [8] (see also [9]) in the vicinity of the first shear resonant frequency (Ωsh ∼ ε
1/8, see

(9)), we have

ε5/4G1 +G3K2 + εG5Ω
2 = 0, Ωsh ≤ Ω ≪ ε

1/16, (14)

where

G3 =
4h7

0
(κ2

s − 1)

r3
0

, G5 =
h7

0

r4
0

,

resulting in K ∼ ε1/2
(

Ω2 − Ω2
sh

)1/2
.
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Table 1: Asymptotic behaviour at ε ≪ 1, h ∼ ε−1/4, and r ∼ 1

Order of γi Terms

Fundamental mode Harmonic

K ∼ ε3/8Ω1/2 K ∼ ε1/2
(

Ω2 −Ω2
sh

)1/2

Ω ≪ 1 Ωsh ≤ Ω≪ ε
1/16

γ1 ∼ ε
17/4 γ1Ω

2 ε11/4K4 ε13/4(K2 + ε5/4)

γ2 ∼ ε
11/4 γ2K4 ε11/4K4 ε11/4K4

γ3 ∼ ε
3 γ3K2Ω2 ε3/2K6 ε2K2(K2 + ε5/4)

γ4 ∼ ε
3/2 γ4K6 ε3/2K6 ε3/2K6

γ5 ∼ ε
4 γ5Ω

4 εK8 ε2(K2 + ε5/4)2

γ6 ∼ ε
5/2 γ6K4Ω2 εK8 ε3/2K4(K2 + ε5/4)

γ7 ∼ ε γ7K8 εK8 εK8

γ8 ∼ ε
3 γ8Ω

4K2 K10 εK2(K2 + ε5/4)2

γ9 ∼ ε
3/2 γ9K6Ω2 K10 ε1/2K6(K2 + ε5/4)

γ10 ∼ ε
1/2 γ10K10 ε1/2K10 ε1/2K10

Further analysis of entries in Table 1 leads to the two-mode uniform approximation

ε11/4G1Ω
2 + ε5/4G2K4 + ε3/2G3K2Ω2 +G4K6 + ε5/2G5Ω

4 = 0, (15)

where Gi (i = 1, 2, 3, 5) have been introduced above and

G4 =
4

3

h9
0
(κ2

s − 1)2

r2
0

.

Approximation (15) is uniform in nature since it is valid over the entire low-frequency range Ω ≪ 1 for both fun-

damental mode and first harmonic. Numerical illustration in Figure 2 demonstrates a good agreement between the

asymptotic expansion (15) and the Rayleigh-Lamb dispersion relation (A.1). In this figure the parameters of lami-

nated glass are ε ≈ 0.00002, h = 10, r = 0.428, κc ≈ 0.302, and κs ≈ 0.592, see [1]. In this figure a low-frequency

approximation is valid over a surprisingly broad frequency range. A similar phenomenon was previously observed in

[10] for a homogeneous nearly incompressible plate with fixed faces.
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Fig. 2: The dispersion curves for the uniform two-mode approximation (15) (dashed line) and the Rayleigh-Lamb dispersion

relation (A.1) (solid line) at ε ≈ 0.00002, h = 10, r = 0.428, κc ≈ 0.302, and κs ≈ 0.592

In what follows we need a more precise expansion for the fundamental mode, since the Kirchhoff plate approxi-

mation (13) is not valid at the shear thickness resonance Ωsh ∼ ε
1/8. On taking into account the asymptotic results
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summarized in the third column of Table 1 we arrive at

ε11/4G1Ω
2 + ε5/4G2K4 + ε3/2G3K2Ω2 +G4K6 = 0, Ω ≪ 1. (16)

The latter involves two local limiting behaviours, including (13) and

ε3/2G3Ω
2 +G4K4 = 0, ε1/2 ≪ Ω≪ 1. (17)

In Figure 3 the four-term approximation for the fundamental mode (16) and that, corresponding to Kirchhoff plate

theory (13) are displayed together with exact solution of the dispersion relation (A.1) for the same set of parameters

as in Figure 2. It is clear that the classical theory is hardly applicable in case of a high contrast. At the same time, (16)

is accurate over the whole low-frequency region.
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Fig. 3: The four-term approximation for the fundamental mode (16) (dashed line) together with Kirchhoff approximation (13)

(dotted line) and the Rayleigh-Lamb dispersion relation (A.1) (solid line) for the same set of parameters as in Figure 2

4. Conclusion

A two-mode uniform asymptotic expansion for the antisymmetric dispersion relation incorporating contrast param-

eters of laminated glass is derived. Local approximations for both fundamental and lowest shear modes are studied

including analysis of their validity range. Numerical results demonstrate a good agreement of the derived polynomial

approximations and the transcendental Rayleigh-Lamb dispersion equation. The theory can be further developed,

requiring a non-trivial consideration of edge boundary conditions. The obtained results can also be extended to a vis-

coelastic interlayer embedded into laminated glass. Various boundary conditions, motivated by industrial applications,

e.g. see [3], can also be tackled.

Appendix A. Rayleigh-Lamb dispersion relation for antisymmetric motion

4K2h3αsβsF4

[

F1F2Cβc
S αc
− 2αcβc(ε − 1)F3Cαc

S βc

]

+

hαsβsCαs
Cβs

[

4αcβcK2
(

h4F2
3 + F4

2(ε − 1)2
)

Cαc
S βc
−
(

4K4h4F2
2 + F4

2F2
1

)

S αc
Cβc

]

+

Cβs
S αs
εβs(β

2
s − K2h2)(β2

c − K2)
[

4α2
sβcK2h2S αc

S βc
− F4

2αcCαc
Cβc

]

+

Cαs
S βs
εαs(β

2
s − K2h2)(β2

c − K2)
[

4αcβ
2
s K2h2Cαc

Cβc
− F4

2βcS αc
S βc

]

+

h3S αs
S βs

[(

4α2
sβ

2
s K2F2

1 + K2F4
2F2

2

)

Cβc
S αc
− αcβc

(

16α2
sβ

2
s(ε − 1)2K4 + F4

2F2
3

)

Cαc
S βc

]

= 0,

(A.1)
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where

F1 = 2(ε − 1)K2 − εΩ2, F2 = 2(ε − 1)K2 +
ε(1 − r)

r
Ω2, F3 = 2(ε − 1)K2 +

ε

r
Ω2, F4 = β

2
s + K2h2,

and

α2
c = K2 − κ2

cΩ
2, α2

s = h2

(

K2 −
εκ2

s

r
Ω2

)

, β2
c = K2 −Ω2, βs = h2

(

K2 −
ε

r
Ω2
)

.

In the above Cαq
= cosh(αq), Cβq

= cosh(βq), S αq
= sinh(αq), S βq

= sinh(βq), and κq = c2q/c1q with

c2
1q =

λq + 2µq

ρq

, c2
2q =

µq

ρq

, q = c, s.
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