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Abstract

In the present work, we formulate a new method to represent a given Flame Describing Function by analytical expressions.

The underlying idea is motivated by the observation that different types of perturbations in a burner travel with different

speeds and that the arrival of a perturbation at the flame is spread out over time. We develop an analytical model for the

Flame Describing Function, which consists of a superposition of several Gaussians, each characterised by three amplitude-

dependent quantities: central time-lag, peak value and standard deviation. These quantities are treated as fitting param-

eters, and they are deduced from the original Flame Describing Function by using error minimisation and nonlinear

optimisation techniques. The amplitude-dependence of the fitting parameters is also represented analytically (by linear

or quadratic functions). We test our method by using it to make stability predictions for a burner with well-documented

stability behaviour (Noiray’s matrix burner). This is done in the time-domain with a tailored Green’s function approach.

Keywords

Flame transfer function, amplitude-dependence, multiple time-lags, Green’s function, stability analysis

Date received: 31 May 2017; accepted: 30 July 2017

1. Introduction

Power generation systems based on combustion of fuels
to extract energy operate with lean premixed flames in
order to reduce the pollution of the environment by
exhaust gases. However, such systems are susceptible
to thermoacoustic instabilities, which are characterised
by high-amplitude acoustic oscillations caused by the
feedback between oscillations in pressure and heat
release rate. These oscillations lead to excessive vibra-
tion of structural components and, in extreme cases,
major hardware damage.1

The relationship between the heat release rate and
the acoustic field is a crucial element in modelling ther-
moacoustic instabilities. This relationship may be given
in the time-domain or frequency-domain. For example,
the commonly used n�-law2 reads

Q0ðtÞ

�Q
¼ n

u0ðt� �Þ

�u
: ð1Þ

in the time-domain, and

Q̂ð!Þ
�Q
¼ nei!�

ûð!Þ

�u
: ð2Þ

in the frequency-domain, where n is the coupling coef-
ficient and � is the time-lag. We use the following nota-
tion: e�i!t for the time dependence, Q0ðtÞ for the
fluctuation of the heat release rate in the time-
domain, Q̂ð!Þ for its frequency-domain equivalent
(Fourier transform), and �Q for the mean rate of heat
release; the same notation is used for the acoustic vel-
ocity, u (at a chosen reference position upstream of the
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flame). In general, the time-domain expression is given
in terms of a functional F,

Q0ðtÞ

�Q
¼ F

u0ðtÞ

�u

� �
: ð3Þ

and the frequency-domain expression by the flame
transfer function (FTF) denoted by T ð!Þ,

T ð!Þ ¼
Q̂ð!Þ= �Q

ûð!Þ= �u
: ð4Þ

The FTF may depend on the amplitude of the vel-
ocity, in which case it is referred to as ‘flame describing
function’ (FDF).

The FTF or FDF of a given burner can be measured,
and the result is a sequence of complex numbers at
discrete frequencies. For analytical modelling purposes,
it is necessary to convert such data into a continuous
function of frequency. This is typically done by some ad
hoc curve-fitting procedure. Several examples can be
found in the literature: Schuermans3 and Schuermans
et al.4 measured the FTF of a turbulent partially pre-
mixed burner and approximated it by a superposition
of two Gaussian curves. Komarek and Polifke5 mea-
sured the FTF of a perfectly premixed swirl burner (the
‘BRS burner’) and approximated it with three
Gaussians. Each Gaussian was centred around a spe-
cific delay time, which corresponded to the travel of a
specific perturbation quantity, such as swirl number. A
similar approach was used by Bade et al.:6 they
approximated the FTF measured for an annular com-
bustor by a superposition of a low-pass filtered discrete
time-lag term and two distributed time-lag terms.
Subramanian et al.7 approximated the FTF of the
BRS burner by using a superposition of rational func-
tions with fitting parameters. Noiray8 and Noiray et al.9

considered also the amplitude-dependence; they mea-
sured the FDF of a matrix burner and approximated
it with a straightforward interpolation. Ćosić et al.10

measured the FDF of a partially premixed swirl
burner and approximated it in a similar way.

The FTF or FDF of a given burner can also be deter-
mined by numerical simulations. Some flame models are
based on the idea that the time it takes a fuel particle to
travel from the nozzle to the point of combustion differs
slightly from particle to particle, and this can be
described in terms of a histogram or distribution.
Polifke et al.11 simulated a burner with an elliptical
premix nozzle by steady-state CFD and used
Lagrangian particle tracking to determine a histogram
of arrival times. This turned out to be similar to a
Gaussian curve and was approximated accordingly.
Flohr et al.12,13 performed a similar simulation for a
dump combustor; they found a distribution of time-

lags, which was reminiscent of a superposition of two
Gaussian distributions, centred around two peak values.
Similar simulations were performed by Schuermans3

and Schuermans et al.4 for their premixed swirl burner;
again, two Gaussian distributions were obtained. These
were found to be associated with the travel times of two
different physical phenomena: fluctuations in turbulence
intensity and fluctuations in fuel concentration.

More recently, flame models have been obtained
with accurate, but computationally demanding,
unsteady CFD simulations. These generate the time
histories for heat release rate and velocity; by applica-
tion of the Wiener–Hopf inversion, the FTF is then
determined. An example is the work by Tay-Wo-
Chong et al.14 who calculated the FTF of the BRS
burner in this way (using LES). This work was
extended into the nonlinear domain by Iurashev
et al.,15 who performed simulations with four different
forcing amplitudes.

Stability predictions for a particular combustion
system can be made by combining a model for the
unsteady acoustic field in the combustor with a model
for its FTF. If additional amplitude information is
available in the form of an FDF, predictions can also
be obtained for limit cycle amplitudes. Linear stability
predictions were made, for example, by Heckl16 and
Tay-Wo-Chong et al.;14 Tay-Wo-Chong et al.14 found
that small errors in the FTF can make such predictions
quite inaccurate.

Nonlinear stability predictionswere obtained by some
of the authors quoted above: Noiray; Noiray8; Noiray et
al.9 treated the length L of the plenum chamber as a con-
tinuously variable control parameter and produced a
‘stability map’ in the L–A plane (A is the amplitude of
the velocity perturbation). These maps gave not only the
linear stability behaviour, but also revealed limit cycle
amplitudes and hysteresis behaviour. Palies et al.17 stu-
died a premixed swirl combustor with the length of the
combustion chamber as control parameter and obtained
similar stability maps. Ćosić et al.10 predicted limit cycle
amplitudes for their burner, and these were in good
agreement with experimental results.

Li and Morgans18 made nonlinear stability predic-
tions for a horizontal Rijke tube. They modelled the
heat source analytically by an extended n�-law with
the following features: single time-lag; no time-lag dis-
tribution; saturation amplitude imposed on the heat
release rate; cut-off frequency imposed on the FTF to
capture its low-pass filter behaviour. They used a wave
based approach to model the acoustic field.

The current paper builds on the work by Heckl,16,19

who developed a simple time-lag law for Noiray’s
matrix flame.8,9 This law included a time-delayed vel-
ocity term, uðt� �Þ, and an instantaneous velocity term,
u(t), each with its own coupling coefficient, but zero
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standard deviation. The amplitude-dependence was in
the time-lag and in the coupling coefficients, and it was
represented by simple functions. This model captured
some relevant features of the FTF (excess gain, near-
constant phase), but not the low-pass behaviour.
Nevertheless, the model gave good stability predictions
(using a tailored Green’s function approach), which
were in line with Noiray’s stability map. Bigongiari
and Heckl20 also used the same heat release rate law
for a Rijke tube and obtained its stability behaviour
using tailored Green’s function.

The aim of our paper is to introduce a generic
FDF in analytical form, representing both the fre-
quency-dependence and the amplitude-dependence
analytically. The underlying idea is that the unit
impulse response (UIR), which is effectively a time-
lag histogram, is a superposition of distributions,
each characterised by a mean time-lag, standard devi-
ation and peak value. This idea is motivated by the
following observations:

(i) Different types of perturbations (e.g. perturbation of
swirl number, perturbation of fuel concentration,
vortices, perturbation of turbulence intensity)
travel with different speeds.

(ii) The arrival of a perturbation at the flame is spread
out over time.

We assume the individual distributions to be
Gaussian, with central time-lags �1, �2, . . . and standard
deviations r1, r2,. . .; they are also described by general-
ised coupling coefficients n1, n2,. . .. These quantities will
be treated as fitting parameters, which are amplitude-
dependent and chosen to fit a given FDF; their ampli-
tude-dependence will be described by simple functions
(linear or quadratic).

Our representation of the FDF is very general and
can be adapted to model any of the flames mentioned in
the literature survey above. We expect that it can be
applied to many more flames, given that the rationale
behind it is motivated by the transport phenomena typ-
ically observed in combustion systems. Since its basic
idea is rooted in the time-domain, our method also
provides the time-domain representation of the heat
release law in analytical form. This is very useful for
performing time-domain simulations with a minimum
of numerical effort.

The mathematical formulation of our method is
explained in section 2, followed by a case study in sec-
tion 3. We use Noiray’s matrix burner8,9 as the case
study example. The matrix burner and its measured
FDF are described in section 3.1. The UIR of the
matrix flame is given in section 3.2, and is converted
into an analytical FDF in section 3.3. The tailored
Green’s function for the matrix burner can be

calculated analytically, and the results are given in sec-
tion 3.4. It forms the basis of the stability analysis,
which is given in section 3.5. Stability predictions are
made and discussed in section 3.6. The paper concludes
with a summary and suggestions for further work in
section 4.

2. Gaussian time-lag distributions

We consider the burner set-up shown in Figure 1. A
flame of finite extent is located downstream of a nozzle;
the exit plane of the nozzle is taken as reference pos-
ition. Flow perturbations leaving the exit plane reach
the flame front at different time instances and therefore
there is a distribution of time-lags causing delayed heat
release rate fluctuations. This suggests the following
generalised law for the heat release rate in the time
domain

Q0ðtÞ

�Q
¼

Z 1
0

hð�Þ
u0ðt� �Þ

�u
d�: ð5Þ

h is a generalised coupling coefficient and depends on
the time-lag �. Moreover, it is identical with the UIR of
the flame, as has been shown in Gopinathan et al.21

The dynamic behaviour of many flames is charac-
terised by two or more prominent time-lags, and by a
distribution of the heat release rate around these time-
lags. Let us assume a generic heat release rate law with
k prominent time-lags �1, �2,. . ., �k, and with a
Gaussian distribution D centred around each of them,

Q0ðtÞ

�Q
¼ n1

Z 1
0

u0ðt� �Þ

�u
Dð� � �1Þd�

þ n2

Z 1
0

u0ðt� �Þ

�u
Dð� � �2Þd� þ � � �

þ nk

Z 1
0

u0ðt� �Þ

�u
Dð� � �kÞd�;

ð6Þ

Rod

Exit plane

Acoustic

excitation

τ1

τ2

Flame

Figure 1. Schematic of a flame showing distribution of

time-lags.
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where D is given by

Dð� � �jÞ ¼
1

�j
ffiffiffiffiffiffi
2�
p eð�ð���jÞ

2=2�2j Þ, j ¼ 1, 2, . . . , k ð7Þ

Equation (6) contains 3k parameters, �1, �2,. . .,
�k, n1, n2,. . ., nk, and r1, r2,. . ., rk, which are trea-
ted as fitting parameters and assumed to be ampli-
tude-dependent. We presume that the distributions
are close to zero for negative �; then we can
extend the integration range in equation (6) from
ð0, 1Þ to ð�1, þ1Þ and apply the Fourier trans-
form. This leads to the FDF (for details, see
Appendix 1).

T kð!,AÞ ¼
Q̂ð!,AÞ= �Q

ûð!,AÞ= �u

¼ n1ðAÞe
�!2�1ðAÞ

2=2ei!�1ðAÞ

þ n2ðAÞe
�!2�2ðAÞ

2=2ei!�2ðAÞ þ � � �

þ nkðAÞe
�!2�kðAÞ

2=2ei!�kðAÞ:

ð8Þ

The unknown fitting parameters in this representa-
tion are determined by minimising the difference
between the original FDF, T ð!,AÞ, and the expression
for T kð!,AÞ given in equation (8). We do this by using
the optimisation routine lsqnonlin in MATLAB�, with
the error defined by the vector

�k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
<½T ð!,AÞ � T kð!,AÞ�
�� ��q

,

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
=½T ð!,AÞ � T kð!,AÞ�
�� ��q �

:

ð9Þ

The vector ek contains the real part and imaginary
part of the difference; it has 2N components, where N is
the number of data points along the x-axis. We also
impose the additional constraint that jT kð!,AÞj ¼ 1 at
x¼ 0, which gives

Xk
j¼1

nj ¼ 1: ð10Þ

The error minimisation procedure is repeated for
each amplitude A for which data are available. The
analytical representation of any known FDF can be
obtained using this procedure if the complex values of
the FDF are known for a sufficient number of fre-
quency points at specific amplitudes.

3. Case study: Noiray’s matrix burner

3.1 Description of the matrix burner

The matrix burner used in Noiray’s work (Figure 2)
consists of a circular tube with a piston (variable pos-
ition) at one end and a perforated plate at the other
end. The perforated plate acts as the flame holder for a
2D array (matrix) of small flames. The tube is essen-
tially a quarter-wave resonator, with one rigid end and
one nearly open end. The acoustic field in the tube
extends slightly beyond the downstream end and
reaches the flames, making thermoacoustic interaction
possible.

Noiray et al.9 measured the FDF by exciting a har-
monic sound field in the tube with a loudspeaker. The
excitation frequencies were in the range [0, 1200Hz],
and 5 excitation amplitudes were used: A= �u ¼ 0:13,
0.23, 0.40, 0.48, 0.54. The velocity fluctuations were
measured by Laser Doppler Velocimetry at the base
of the flame (i.e. the reference position for their FDF
was the same as the flame position). The ensuing fluc-
tuations of the rate of heat released by the matrix flame
(global heat release) were measured by chemilumines-
cence, using a photomultiplier tube equipped with OH*
filter. The measured results are shown by the markers in
Figure 3 for the gain (jFTFj, left) and the phase (ffFTF,
right).

The gain (jFTFj) shows a low pass filter behaviour
and reaches values in excess of 1 at low frequencies. The
maximum value decreases with increasing excitation
amplitude, and the position of the maximum shifts to
lower frequencies. The phase (ffFTF) curve is approxi-
mately linear at low frequencies, with a slope that
increases with increasing excitation amplitude.

3.2 UIR of the matrix flame

In a first step towards obtaining an analytical expres-
sion for the measured results in Figure 3, we determine

tube
L

matrix flame

perforated plate

rigid piston

(position variable)

Figure 2. Schematic of Noiray’s matrix burner.
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the corresponding UIR. The UIR is the response of the
flame (in terms of the heat release rate) triggered by a
normalised velocity impulse. Its general definition is
given by equation (5). For realistic flames (i.e. flames
that satisfy causality), the UIR is zero for negative �-
values (causality) and again for �-values beyond some
maximum (finite duration of response). We take this
maximum value to be equal to the slope of the phase
curve at low frequencies and denote it by �ff. Then equa-
tion (5) becomes (after a substitution for the integration
variable � with t� �

Q0ðtÞ

�Q
¼

Z tff

0

hð�Þ
u0ðt� �Þ

�u
d�: ð11Þ

We calculated the UIR of the matrix burner flame by
the inverse z-transform of the FTF as described in
Polifke.22 To calculate the inverse z-transform, the
time interval ½0, �ff� is discretised into 150 equally
spaced points (this number of points was chosen
because it gives a smooth UIR vs time-lag curve). The
results are shown in Figure 4 for the five amplitude
values A= �u ¼ 0:13, 0.23, 0.40, 0.48, 0.54. We observe
that there are two prominent time-lags in the UIR for
all values of A= �u. For example, at A= �u ¼ 0:13, there is
one near �1 ¼ 0:001s, where the UIR has a maximum,
and one near �2 ¼ 0:002s, where the UIR has a

(negative) minimum. There are some further maxima
and minima at larger time-lags, but they are minor.
We therefore conclude that the FDF can be approxi-
mated with a distribution around two central time-lags
�1 and �2. As A= �u increases, both �1 and �2 increase, the
peak value of the maximum decreases, and the min-
imum value around �2 becomes less negative.

3.3 Analytical description of the matrix flame

We now proceed to represent the FDF shown in
Figure 3 by the analytical expression in equation (8)
with only two terms included in the expression for the
FDF,

T 2ð!,AÞ ¼ n1ðAÞe
�!2�1ðAÞ

2=2ei!�1ðAÞ

þ n2ðAÞe
�!2�2ðAÞ

2=2ei!�2ðAÞ: ð12Þ

The unknown fitting parameters n1, n2, �1, �2, r1 and
r2 are determined as described in section 2. This is done
individually for each of the five available amplitude
values A= �u ¼ 0:13, 0.23, 0.40, 0.48, 0.54. The results
are shown by the markers in Figure 5.

All fitting parameters vary with amplitude. n1 and r2

seem to decrease with increasing amplitude, while n2
and r1 seem to increase; all have considerable scatter.
The results for �1 and �2 clearly increase with ampli-
tude, and this increase appears to be faster than linear.
We model this amplitude-dependence analytically by
linear functions for n1, n2, r1 and r2, and by quadratic
functions for �1 and �2. These functions are shown by
the dashed curves in Figure 5 and are listed in Table 1.
The coefficients in these functions were obtained by
linear least squares estimation.

Altogether, the combination of equation (12) and
the functions in Table 1 provides a fully analytical rep-
resentation for the FDF in Figure 3. This also provides
an extrapolation to frequency and amplitude values for
which experimental data are not available. Plots of the
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A/ ū = 0 .13 Exp †
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A/ ū = 0 .13 MTL
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Figure 3. Gain (left) and phase (right) vs frequency for the FDF of Noiray’s matrix flame. Markers: experimental values from Noiray

et al.9 Dashed curves: analytical approximation based on equation (12) using the expressions given in Table 1.

FDF: Flame Describing Function.
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Figure 4. Impulse response of the matrix flame.
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analytical expressions (equation (12) and Table 1) have
been added to Figure 3 in the form of dashed curves. A
comparison with the experimental results (markers in
Figure 3) shows that the analytical representation is
very accurate.

Manipulating the expression for the T 2ð!,AÞ in
equation (12), we can write the gain and phase as (der-
ivations not given in this paper),

T 2ð!,AÞ
�� ��
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1e

�!2�2
1

2 þ n2e
�!2�2

2
2 þ 2n1n2e

�!2 ð�2
1
þ�2

2
Þ

2 cos!ð�2 � �1Þ

r
;

ð13Þ

argðT 2ð!,AÞÞ ¼
n1 sin!�1 þ e

�!2 ð�2
1
��2

2
Þ

2 n2 sin!�2

n1 cos!�1 þ e
�!2 ð�2

1
��2

2
Þ

2 n2 cos!�2

; ð14Þ

Valuable interpretations can be obtained from these
equations for the gain and phase of T 2ð!,AÞ. Equation
(13) shows that the gain depends on the time-lag differ-
ence �1 � �2, but not on the time-lags individually. Of
the three terms under the square-root, only the third
term is oscillatory; cos!ð�2 � �1Þ is periodic along the
x-axis and has a maximum at the frequency value
!max ¼ 2�=ð�2 � �1Þ, and hence the gain attains a

maximum there. Figure 3 shows that xmax moves to
lower x-values as A= �u increases, and we can therefore
conclude that �2 � �1 must increase with increasing
A= �u. This is also the case for the analytical representa-
tion, as can be seen in Figure 5(b). Equation (14) shows
that the phase of the FTF depends on the difference
�21 � �

2
2, but not on r1 or r2 individually. If sin!�

and cos!� in equation (14) are approximated to
Oð!Þ, the phase becomes !ðn1�1 þ n2�2Þ=ðn1 þ n2Þ, i.e.
the phase curve starts with a slope which is given by
a ‘weighted time-lag’.

3.4 Analytical model for the burner configuration in
terms of its tailored Green’s function

In order to model set-up in Figure 2 analytically, we
make the following assumptions:

1. The sound field is purely 1D, not only inside the
tube, but also beyond its downstream end. The
wave transmitted beyond this end is of course 3D,
but we ignore this and instead assume that the tube
has a semi-infinite continuation, which keeps the
transmitted wave 1D. There are forward and back-
ward travelling acoustic waves inside the tube
(shown in Figure 6 by aþ and a�) and just a forward
travelling wave (shown by cþ) in the semi-infinite
continuation section.

2. We model the downstream end as a combined inter-
face (see Figure 6) consisting of a perforated plate at
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(a) (b) (c)

A/ ū

n
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0 0.5 1 1.5 2
0

0.5

1

1.5
× 10− 3
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2

Figure 5. Amplitude-dependence of the fitting parameters n1, n2 (part (a)), s1, s2 (part (b)) and r1,r2 (part (c)). Markers: results for

individual amplitudes. Dashed curves: approximation (and extrapolation) by the analytical functions in Table 1.

Table 1. Analytical approximation of the amplitude-depen-

dence of the fitting parameters.

Parameter Dependence on A=�u

n1 �1:185� 10�1ðA=�uÞ þ 1:99

n2 1:185� 10�1ðA=�uÞ � 0:99

s1 2:28� 10�3ðA=�uÞ2 � 4:74� 10�05ðA=�uÞ

þ8:7� 10�4

s2 4:35� 10�3ðA=�uÞ2 þ 6:79� 10�05ðA=�uÞ

þ1:12� 10�3

r1 5:86� 10�4ðA=�uÞ þ 2:36� 10�4

r2 �4:63� 10�4ðA=�uÞ þ 9:3� 10�4

Figure 6. The modelled configuration, showing the acoustic

waves and reflection and transmission coefficients.
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x¼L, and an open end at x ¼ Lþ�; each interface
has a given reflection and transmission coefficient;
the distance � between them is very small, �! 0.

3. The upstream end is modelled as rigid wall with a
reflection coefficient of R0 ¼ 1.

4. The mean temperature and speed of sound (denoted
by c) are uniform throughout the semi-infinite tube.

The pressure reflection and transmission coefficient
for individual interfaces (perforated plate and open
end) and the combined interface of the configuration
in Figure 6 have been derived in Heckl.16 RAC and TAC

are the reflection and transmission coefficients at the
combined interface for waves travelling in the forward
direction and RCA and TCA are the reflection and trans-
mission coefficients for waves travelling in the back-
ward direction. The expressions for these reflection
and transmission coefficients are given in Appendix 2.
Interested readers are advised to refer to Heckl16 for
more details.

The Green’s function Gðx, x0, t� t0Þ is the response
observed at position x and time t to a point source at
position x0 firing an impulse at time t0. Its governing
equation is

1

c2
@2G

@t2
�
@2G

@x2
¼ �ðx� x0Þ�ðt� t0Þ: ð15Þ

The tailored Green’s function16,23 is the solution of
equation (15), which satisfies the same conditions at all
boundaries and interfaces as the acoustic field (here
expressed in terms of the velocity potential).
Naturally, this is a superposition of modes,

Gðx,x0, ðt� t0ÞÞ ¼ Hðt� t0Þ<
X1
n¼1

gnðx, x
0Þ e�i!nðt�t

0Þ:

ð16Þ

Hðt� t0Þ denotes the Heaviside function; it guaran-
tees causality. The quantities gn (Green’s function amp-
litude of mode n) and xn (modal frequencies if
thermoacoustic coupling is absent) have been calcu-
lated analytically for the combustion system shown in
Figure 6 (see Heckl16 for details on the derivation); the
results are:

gnðx,x
0Þ ¼ i

ĝðx, x0,!nÞ

2!nFð!nÞ
ð17Þ

with

ĝðx, x0,!Þ ¼
Dðx,!ÞCðx0,!Þ for L5 x5 x0

Cðx,!ÞDðx0,!Þ for x05 x51

�
ð18Þ

and

Cðx,!Þ ¼ �ic eikðx�LÞ; ð19Þ

Dðx,!Þ ¼ Fð!Þ RCAe
ikðx�LÞ þ e�ikðx�LÞ

� 	
þ R0T

2
ACe

ikx;

ð20Þ

Fð!Þ ¼ e�i!Lc � R0RACe
i!Lc: ð21Þ

Fð!Þ is the function appearing in the characteristic
equation Fð!nÞ ¼ 0, which determines the modal fre-
quencies xn of the Green’s function.

3.5 Stability analysis

In our case, the Green’s function is a velocity potential.
The governing equation for the velocity potential in the
presence of unsteady heating is given by

1

c2
@2�

@t2
�
@2�

@x2
¼ B qðx, tÞ; ð22Þ

where B ¼ �ð� � 1Þ=c2 (abbreviation), and � is the spe-
cific heat ratio. The term q(x, t) is the fluctuating part of
the heat release rate per unit mass of air, and for a
compact flame (located at xq), we can put

qðx, tÞ ¼ qðtÞ�ðx� xqÞ: ð23Þ

Following the procedure in Heckl16, we can convert
equation (22) into an integral equation for the velocity
u0ðtÞ at the heat source,

u0ðtÞ ¼ B

Z t

t0¼0

@Gðx, x0, t� t0Þ

@x

���� x ¼ xq
x0 ¼ xq

qðt0Þ dt0: ð24Þ

We note that one has to distinguish between the vel-
ocity at the heat source position (xq) and the velocity at
the FDF reference position (xref). Here, however, we
have the special case where xq � xref (Noiray’s velocity
measurements were taken at the base of the matrix
flame), so we can denote both velocities with the same
symbol u0ðtÞ.

There is a direct physical interpretation of this equa-
tion: the acoustic velocity at observer time t and obser-
ver location xq is given by the sum of velocity responses
to a sequence of impulses produced at previous times t0

at the same location.
If the modes are assumed to be non-interacting, equa-

tion (24) can be converted into an ODE for the velocity
of an individual mode; the mathematical manipulations
can be found in Heckl,16 and the result is

€u0 �2;=ð!nÞ _u
0 þ !nj j

2u0 ¼�B=ð!nG
�
nÞqðtÞþB<ðGnÞ _qðtÞ;

ð25Þ
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where Gn is given by

Gn ¼
@gnðx, x

0Þ

@x

���� x ¼ xq
x0 ¼ xq

¼ �
c

2L
R0T

2
ACe

2i!nxq=c: ð26Þ

Clearly, equation (25) is the equation for a damped
harmonic oscillator, forced by the fluctuating heat
release rate q(t) and its time derivative _qðtÞ. The prob-
lem is closed if we have an analytical expression for q(t)
in terms of u0ðtÞ. This is provided by equation (6), which
is an expression for the global heat release rate Q0ðtÞ
and can be converted into local form,

qðtÞ ¼ 	

�
n1

Z 1
�1

u0ðt� �ÞDð� � �1Þd�

þn2

Z 1
�1

u0ðt� �ÞDð� � �2Þd�

�
; ð27Þ

	 is a constant factor, given by

	 ¼
�Q

�
 �uS
; ð28Þ

and S is the cross-sectional area of the tube.
In order to simplify the subsequent calculations we

assume that u0ðtÞ is harmonic with an unknown fre-
quency �, given by

u0ðtÞ ¼ A cos�t: ð29Þ

The time-lag terms u0ðt� �Þ in equation (27) can be
rewritten and subsequent substitution into equation
(25) gives simply (for details, see Appendix 3)

€u0 þ a1 _u0 þ a0u
0 ¼ 0; ð30Þ

with,

a1¼�2=ð!nÞ�B=ð!nG
�
nÞ	

�
n1

Z 1
0

Dð�� �1Þ
sinð��Þ

�
d�

þn2

Z 1
0

Dð�� �2Þ
sinð��Þ

�
d�

�

�B<ðGnÞ	

�
n1

Z 1
0

Dð�� �1Þcosð��Þd�

þn2

Z 1
0

Dð�� �2Þcosð��Þd�

�
; ð31Þ

and

a0 ¼ !2
n

�� ��þ B=ð!nG
�
nÞ	

�
n1

Z 1
0

Dð� � �1Þ cosð��Þd�

þ n2

Z 1
0

Dð� � �2Þ cosð��Þd�

�

� B<ðGnÞ	

�
n1

Z 1
0

Dð� � �1Þ� sinð��Þd�

þ n2

Z 1
0

Dð� � �2Þ� sinð��Þd�

�
: ð32Þ

Equation (30) is the equation for a damped har-
monic oscillator. a1 is the damping coefficient and
hence an indicator of the stability behaviour: mode n
is stable if a1 	 0 and unstable otherwise. a0 is the
square of the oscillator’s eigenfrequency.

3.6 Stability predictions

We make stability predictions for the matrix burner
with the properties listed in Table 2. Two parameters
were varied to construct stability maps: the tube length
L in the range from 0:1 m to 0:8 m, and the amplitude
A= �u in the range 0–2. We extrapolated the fitting par-
ameters to unphysically high values of A= �u to see
whether we can detect a tendency for higher amplitudes
(rather than to get reliable stability predictions for high
amplitudes). The stability map for mode n¼ 1 is shown
in Figure 7(a). This was determined in the following
way: for each point ðL,A= �uÞ in the map, we calculated
the coefficient a1 from equation (30) (with xn from
equation (21), and Gn from equation (26), both for
mode n¼ 1), and noted the sign of a1. Points with
a1 	 0 (unstable) were marked in grey; points with
a1 5 0 (stable) were marked in white.

The unstable region has the shape of a band emer-
ging from the bottom left corner and agrees qualita-
tively with Noiray’s results8,9 in the region where the
experimental measurements are available. For compari-
son, the border of the instability region found by
Noiray et al.9 is also shown in Figure 7(a) by the
dashed black curve. The quantitative agreement is less

Table 2. Geometry and other parameters of the matrix burner.

Parameter Value

Tube radius, a 0.035 m

Length of the tube, L 0.1–0.8 m (variable)

Thickness of the perforated plate, h 0.003 m

Number of perforations per unit area, N 1:09� 105/m2

Radius of perforations, rp 0.001 m

factor relating local and global

heat release rate, 	
3� 105m2/s2

Distance of flame from

perforated plate, xq � L

0.01 m

Specific heat ratio, � 1.4

Speed of sound, c 345 m/s

8 International Journal of Spray and Combustion Dynamics 0(0)



satisfactory. Our predictions overestimate the size of
the instability region. The stability map given in
Noiray8 and Noiray et al.9 was also obtained by extra-
polating the FDF, however, this was done by setting
the FDF gain to zero outside the measured frequency
range. It is likely that the different extrapolation meth-
ods are responsible for the quantitative discrepancy
between our stability map and that in Noiray8 and
Noiray et al.9

We now investigate the influence of the time-lags and
their amplitude-dependence on the stability behaviour.
In a quarter-wave resonator with a single time-lag � in
the heat release law, the stability behaviour switches
from stable to unstable (or vice versa) as � crosses the
threshold 0:5T, where T ¼ 4L=c is the period of mode 1
(the mode under consideration). With an amplitude-
dependent �, the switch happens when the amplitude
reaches the value where � ¼ 0:5T. If there are two prom-
inent time-lags, �1 and �2, in the heat release law, we
expect that they both influence the stability through
their amplitude-dependence. In order to illustrate this,
we have produced Figures 7(b) and (c). Figure 7(b)
shows contours for the difference ð0:5T� �1Þ and
Figure 7(c) for the difference ð0:5T� �2Þ. The zero-
contours, i.e. the contours 0:5T� �1 ¼ 0 and
0:5T� �2 ¼ 0, have been superimposed on the stability
map in Figure 7(a). We observe that they are very simi-
lar in shape to the boundaries of the unstable region.

4. Conclusions and outlook

In this paper, we presented a systematic method to
approximate a known FDF (obtained elsewhere by
measurement or numerical simulations) by analytical
expressions. After calculation of the corresponding
UIR, it is possible to identify the time-lags that are
prominent in the flame dynamics. We presume that
these correspond to the travelling times of different per-
turbations (e.g. fluctuations in turbulence intensity or

fluctuations in fuel concentration), and that therefore
there are only a few prominent time-lags. The existence
of just a few such prominent time-lags, each sur-
rounded by a decaying distribution, allows us to repre-
sent the UIR as a superposition of Gaussian time-lag
distributions. This representation is Fourier-trans-
formed into the frequency domain and an analytical
expression for the FTF or FDF is obtained; the fre-
quency-dependence of the FTF/FDF is also a super-
position of Gaussians.

We formulate a heat release rate law in the time-
domain and frequency-domain with several fitting
parameters: the prominent time-lags (�1, �2, . . .), the
standard deviations (r1, �2, . . .) characterising the
spread around each time-lag, and generalised coupling
coefficients (n1, n2, . . .). Thus our model has 3k param-
eters for k prominent time-lags.

Each of the fitting parameters is determined by mini-
mising the discrepancy with the original FTF data. Our
model is well-suited to capture the main features of a
typical FTF: a value of 1 at zero frequency, an excess
gain at low frequencies, a decay to zero at high frequen-
cies (low-pass filter), and a phase curve with nearly
constant slope at low frequencies. We also formulate
the amplitude-dependence of the fitting parameters �1,
�2, . . ., r1, �2, . . ., n1, n2, . . . analytically. Altogether, a
full analytical description of a measured FDF is
obtained. These analytical expressions and the tailored
Green’s function can be used to predict the stability
behaviour of the combustion system under
consideration.

We applied this method to a specific laboratory
burner (Noiray’s matrix burner) and determined the
analytical representation of its FDF. This was found
to be very accurate (the percentage error in the gain is
well below 10% for most frequencies and amplitudes).
We subsequently used this analytical FDF to make sta-
bility predictions (based on a Green’s function
approach) and presented them in the form of a stability
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Figure 7. Stability map of a matrix burner using a two time-lag heat release rate law and Green’s function approach. (a) Stability map

(unstable regions are grey; the dashed curve shows the results from Noiray et al.9), (b) Contours of ð0:5T � �1Þ and (c) contours of

ð0:5T � �2Þ.
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map. We obtained good qualitative agreement with
Noiray’s measured stability map. Also, we observed
that the stability map is quite sensitive to the fitting
parameters and the analytical description of their
amplitude-dependence. Additional physical insight
can be used to obtain good accuracy.

The multiple time-lag model is an improvement of
the extended n� model, which is somewhat hypothetical
in that it features a single time-lag term u0ðt� �Þ and an
instantaneous time-lag term u0ðtÞ; it has been used by
Heckl16,19 and Bigongiari and Heckl.20 The multiple
time-lag model has the following advantages:

– It determines the time-lags from the UIR of the
flame and is thus not only physically more sound,
but also closer to the actual data.

– It captures all key features of a typical measured
FDF: a gain of unity at zero frequency, excess
gain at low frequencies, and low-pass filter
behaviour.

– It gives good stability predictions, which are quali-
tatively similar to those obtained by Noiray.

Our paper gives a good analytical approximation for
the nonlinear heat release rate (FDF). It also provides a
fast prediction tool for the stability of a combustion
system using this heat release rate law and tailored
Green’s function. Our multiple time-lag model can be
applied for any flame with known FDF. Our stability
analysis, which is based on the Green’s function, can be
applied to any combustor configuration, for which the
tailored Green’s function is known analytically. In this
paper, we have calculated the tailored Green’s function
for a rather simple configuration: a quarter-wave res-
onator with a temperature jump. This calculation can
be extended to more complex configurations, provided
that these can be modelled as a combination of 1D
elements. Features that can be included in our model
are for example: dump plane between tube sections,
orifice between tube sections, frequency-dependent
reflection coefficients at the inlet and outlet.

However, not included in this paper are losses in the
combustion system and thus we over-predict the
unstable region. This will be addressed in a future
paper.
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10. Ćosić B, Moeck JP and Paschereit CO. Nonlinear

instability analysis for partially premixed swirl flames.

Combust Sci Technol 2014; 186: 713–736.
11. Polifke W, Kopitz J and Serbanovic A. Impact of the fuel

time lag distribution in elliptical premix nozzles on com-
bustion stability. In: 7th AIAA/CEAS aeroacoustics con-

ference and exhibit, Maastricht, The Netherlands, 28–30

May 2001.
12. Flohr P, Paschereit CO, van Roon B, et al. Using CFD

for time-delay modeling of premix flames. In: Proceedings

of ASME Turbo Expo 2001, New Orleans, Louisiana,

USA, 4–7 June 2001.
13. Flohr P, Paschereit CO and Bellucci V. Steady CFD ana-

lysis for gas turbine burner transfer functions. In: 41st

10 International Journal of Spray and Combustion Dynamics 0(0)



AIAA aerospace sciences meeting and exhibit, Reno,
Nevada, USA, 6–9 January 2003.

14. Tay-Wo-Chong L, Bomberg S, Ulhaq A, et al.

Comparative validation study on identification of pre-
mixed flame transfer function. J Eng Gas Turbines
Power 2011; 134: 021502-021502–8.

15. Iurashev D, Campa G and Anisimov V. Response of

swirl stabilized perfectly premixed flame to high-ampli-
tude velocity excitations. In: The 23rd International
Congress on Sound and Vibration, Athens, Greece, July

2016.
16. Heckl MA. Analytical model of nonlinear thermo-

acoustic effects in a matrix burner. J Sound Vib 2013;

332: 4021–4036.
17. Palies P, Durox D, Schuller T, et al. Nonlinear combus-

tion instability analysis based on the flame describing

function applied to turbulent premixed swirling flames.
Combust Flame 2011; 158: 1980–1991.

18. Li J and Morgans AS. Time domain simulations of non-
linear thermoacoustic behaviour in a simple combustor

using a wave-based approach. J Sound Vib 2015; 346:
345–360.

19. Heckl M. A new perspective on the flame describing func-

tion of a matrix flame. Int J Spray Combust Dyn 2015; 7:
91–112.

20. Bigongiari A and Heckl MA. A Green’s function

approach to the rapid prediction of thermoacoustic
instabilities in combustors. J Fluid Mech 2016; 798:
970–996.

21. Gopinathan SM, Bigongiari A and Heckl MA.

Time-domain representation of a flame transfer func-
tion with generalised n� – law featuring a time-lag dis-
tribution. In: Proceedings of the 23rd international

congress on sound and vibration, Athens, Greece, 10–14
July 2016.

22. Polifke W. Black-box system identification for reduced

order model construction. Ann Nuclear Energy 2014; 67:
109–128.

23. Heckl MA and Howe MS. Stability analysis of the rijke

tube with a green’s function approach. J Sound Vib 2007;
305: 672–688.

24. Gradshteyn IS and Ryzhik IM. Table of integrals,
series and products, 4th ed. London: Academic Press,

1980.
25. Howe MS. Acoustics of fluid–structure interaction.

Cambridge: Cambridge University Press, 1998.

26. Levine H and Schwinger J. On the radiation of sound
from an unflanged circular pipe. Phys Rev 1948; 73:
383–406.

Appendix 1. Derivation of the FTF for
the heat release rate law with multiple
time-lags and Gaussian distribution of
time-lags

We assume that the distributions in equation (6) are
such that Dð� � �jÞ � 0, for �5 0 (j ¼ 1, 2, . . . , k);
then we can extend the integration range from ð0, 1Þ

to ð�1, þ1Þ and apply the Fourier Transform to
equation (6),

F
Q0ðtÞ

�Q


 �
¼ F n1

Z 1
�1

u0ðt� �Þ

�u
Dð� � �1Þd�

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Term 1
0
BB@

þ n2

Z 1
�1

u0ðt� �Þ

�u
Dð� � �2Þd�

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Term 2

þ � � �

þ nk

Z 1
�1

u0ðt� �Þ

�u
Dð� � �kÞd�

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Term k
1
CCA: ð33Þ

The Fourier transform of the LHS of equation (33)
is

F
Q0ðtÞ

�Q


 �
¼

Q̂ð!Þ
�Q
: ð34Þ

By applying the convolution theorem, ‘Term j’ in
equation (33) can be written as

F nj

Z 1
�1

u0ðt� �Þ

�u
Dð� � �jÞd�


 �

¼ njF
u0ðtÞ

�u


 �
F Dð� � �jÞ
� 	

:

ð35Þ

Also,

F
u0ðtÞ

�u


 �
¼

ûð!Þ

�u
and F Dð� � �jÞ

� 	
¼ F Dð�Þð Þei!�j ;

ð36Þ

and the Fourier transform of the Gaussian function
Dð�Þ is24

F Dð�Þð Þ ¼ e
�!2�2

2 : ð37Þ

‘Term j’ now becomes

F nj

Z 1
�1

u0ðt� �Þ

�u
Dð� � �jÞd�


 �
¼ nj

ûð!Þ

�u
ei!�j e

�!2�2
j

2 :

ð38Þ

Combination of equations (34), (38) and (33) gives

Q̂ð!Þ
�Q
¼ n1

ûð!Þ

�u
ei!�1e

�!2�2
1

2 þ n2
ûð!Þ

�u
ei!�2e

�!2�2
2

2 þ � � �

þ nk
ûð!Þ

�u
ei!�ke

�!2�2
k

2 ð39Þ
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and

T kð!Þ ¼

Q̂ð!Þ
�Q

ûð!Þ
�u

¼ n1e
i!�1e

�!2�2
1

2 þ n2e
i!�2e

�!2�2
2

2 þ � � �

þ nke
i!�ke

�!2�2
k

2 : ð40Þ

Appendix 2. Reflection and transmission
coefficients at the interfaces

The pressure reflection and transmission coefficient for
the combined interface have been derived in Heckl.;16

the results are:

RAC ¼
RAB � RABRBARBC þ TABTBATBC

1� RBARBC
and

TAC ¼
TABTBC

1� RBARBC
:

ð41Þ

RAB, TAB are the coefficients of the perforated plate;
these are given by (see Howe,25p. 361)

RAB ¼
!

!þ 2iN cK
and TAB ¼

2iN cK

!þ 2iN cK
; ð42Þ

where N is the number of holes per unit area, and K is
the Rayleigh conductivity. For a plate of thickness h
and with circular holes of radius rp (see Howe25,p. 356),

K ¼
r2p�

rp�=2þ h
: ð43Þ

RBC is the reflection coefficient of an unflanged open
tube end; for a tube with radius a, it is given by Levine
and Schwinger26

RBC ¼ �
1� ½ð1=4Þð!a=c2Þ � ið!a=cÞ0:6133�

1þ ½ð1=4Þð!a=c2Þ � ið!a=cÞ0:6133�
: ð44Þ

The wave radiated from the open end is modelled by
a complex ‘transmission coefficient’, TBC, which is con-
structed in the following way: its magnitude is chosen
such that acoustic energy is conserved, i.e. jRBCj

2þ

jTBCj
2 ¼ 1, and its phase is chosen such that the velo-

city has continuous phase at the tube end. This gives

TBC ¼ jTBCje
i’, with jTBCj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jRBCj

2

q
and

’ ¼ Argð1� RBCÞ:

ð45Þ

Appendix 3. Harmonic oscillator equation
for a single mode

The local heat release rate fluctuation q0ðx, tÞ is related
to its global counterpart Q0ðtÞby Q0ðtÞ ¼

R
q0ðx, tÞ �
dV,

where the integration is taken over the volume of the
flame. This reduces to qðtÞ ¼ Q0ðtÞ=ð �
SÞ for a compact
flame described by equation (23). Hence, with equa-
tions (6) and (28), we can write q(t) as

qðtÞ ¼
Q0ðtÞ

�
S
¼ 	

�
n1

Z 1
�1

u0ðt� �ÞDð� � �1Þd�

þ n2

Z 1
�1

u0ðt� �ÞDð� � �2Þd�

�
;

ð46Þ

and its derivative as

_qðtÞ ¼ 	

�
n1

Z 1
�1

_u0ðt� �ÞDð� � �1Þd�

þ n2

Z 1
�1

_u0ðt� �ÞDð� � �2Þd�

�
:

ð47Þ

In order to simplify equation (46), we assume that
u0ðtÞ is harmonic with an unknown frequency �,
given by

u0ðtÞ ¼ A cos �t; ð48Þ

and

_u0ðtÞ ¼ �A� sin �t: ð49Þ

The time-lagged terms u0ðt� �Þ and _u0ðt� �Þ can be
written with the trigonometric addition formulae as

u0ðt� �Þ ¼ u0ðtÞ cos�� �
_u0ðtÞ

�
sin�� ð50Þ
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and

u0
:

ðt� �Þ ¼ u0ðtÞ� sin�� þ _u0ðtÞ cos��: ð51Þ

The local heat release rate fluctuation q(t) and its
derivative then become

qðtÞ ¼ 	 n1

Z 1
0

Dð�� �1Þ u
0ðtÞ�sin��þ _u0ðtÞcos��ð Þd�

�

þn2

Z 1
0

Dð�� �2Þ u
0ðtÞ�sin��þ _u0ðtÞcos��ð Þ�d�

�
,

ð52Þ

and

_qðtÞ ¼	 n1

Z 1
0

Dð�� �1Þ u0ðtÞcos���
_u0ðtÞ

�
sin��


 �
d�

�

þn2

Z 1
0

Dð�� �2Þ u0ðtÞcos���
_u0ðtÞ

�
sin�


 �
�d�

�
:

ð53Þ

The frequency � can be approximated by
� � Reð!nÞ. Substituting equations (52) and (53) into
equation (25), and sorting the many terms, we get equa-
tion (30).
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