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Abstract
Anti-plane dynamic shear of a strongly inhomogeneous dynamic laminate with traction-free faces is
analysed. Two types of contrast are considered, including those for composite structures with stiff thick
or thin outer layers. In both cases, the value of the cut-off frequency corresponding to the lowest
anti-symmetric vibration mode tends to zero. For this mode the shortened dispersion relations and
the associated formulae for displacement and stresses are obtained. The latter motivate the choice of
appropriate settings supporting the limiting forms of the original anti-plane problem. The asymptotic
equation derived for a three-layered plate with thick faces is valid over the whole low-frequency range,
whereas the range of validity of its counterpart for another type of contrast is restricted to a narrow
vicinity of the cut-off frequency.
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1 Introduction

Layered structures with high contrast in material and geometrical properties of the layers are
widely used in modern engineering. Among them, we mention laminated glass and photovoltaic
panels [1, 2], smart periodic structures acting as vibration filters [3], microfibre-nanowire hybrid
structures in energy scavenging devices [4], and precipitator plates in gas filters [5]. We also note
possible applications of high-contrast layered structures in the rapidly growing area of meta-
materials, see [6].

Several engineering formulations were developed for modelling high contrast sandwich structures,
see [7–11]. Asymptotic considerations on the subject, not emphasizing characteristic peculiarities
of dynamic behaviour, were reported in [12] and [13]. In addition, we cite here recent papers [14,15]
devoted to homogenization of high-contrast periodic structures. Similarity of the asymptotic
techniques for periodic and thin layered structures was addressed in [16].

Dispersion of elastic waves in a three-layered plate was investigated in [17] using an asymptotic
approach adapted for dynamic multi-parametric analysis. The conditions for contrast material and
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geometric parameters ensuring the existence of an extra low-frequency shear mode is derived.
For four types of contrast inspired by various engineering applications, two-mode polynomial
approximations of the ‘exact’ dispersion relations, involving both the fundamental bending mode
and the lowest shear harmonic, were established. The scenarios, for which they are not uniformly
valid, are revealed.

In spite of a substantial progress in terms of the qualitative understanding of the effect of contrast
on the dynamic response of a layered plate coming from the aforementioned paper [17], asymptotic
derivation of the related shortened differential equations of motion from the original 3D vector
formulation may still seemingly need a more preliminary insight. This is also due to two distinct
kinds of asymptotic behaviour governing bending and shear motions. At the same time, a similar
anti-plane shear problem appears to be an excellent framework for developing low-dimensional
asymptotic equations within a simpler scalar one-mode setup.

In this paper, we consider anti-symmetric anti-plane shear of a three-layered laminate with
traction-free faces. The focus is on two of four types of constrast studied in [17], corresponding to
a plate with stiff thick outer layers and soft inner layer (setup (a)) and a conventional sandwich-
type plate with thin stiff skins and a soft core (setup (b)). In the absence of contrast, the problem
of interest does not support the fundamental mode with a zero cut-off frequency. Under the same
condition as in [17] on the contrast parameters, a low-frequency mode arises. For this mode, the
shortened forms of the dispersion relation demonstrate different asymptotic behaviours within
setups (a) and (b). For setup (a), the shortened dispersion relation is valid over a whole low-
frequency domain, whereas for setup (b), the range of validity is restricted to a narrow vicinity of
the lowest shear cut-off frequency. Asymptotic low-dimensional equations of motion are obtained
for both cases. The near cut-off procedure for setup (b) was earlier widely implemented for analysis
of high-frequency long-wave vibrations of plates and shells, e.g. see book [18] and also more recent
papers [19–23]. In the last few years it was also developed for vibrations of a cylindrical shell near
lowest cut-off frequencies [24,25].

The governing equations of the problem along with the exact dispersion relation and the
parameter settings for setups (a) and (b) are presented in Section 2. The estimation of the lowest
shear cut-off frequency and the polynomial dispersion relation, corresponding to long-wave low-
frequency limit, are derived in Section 3. The shortened forms of the polynomial dispersion relation
in Section 3 are analysed in Section 4 for setups (a) and (b). Asymptotic formulae for displacements
and stresses are obtained in Section 5 for both studied cases. Sections 6 and 7 deal with the
asymptotic derivation of approximate equations of motion starting from a standard procedure in
the theory of thin plates [18] and a near cut-off expansion, respectively.
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2 Statement of the problem
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Figure 1. Three-layered laminate

Consider anti-plane shear of a three-layered laminate with the inner layer of thickness 2hc and
the outer layers of thickness hs, see Figure 1. It is assumed that both core and skin layers are
isotropic and the whole structure is symmetric about the mid-plane. In Cartesian coordinates xn,
n = 1, 2, 3, the equations of motion can be written as

∂σq13
∂x1

+
∂σq23
∂x2

− ρq
∂2uq
∂t2

= 0, q = c, s, (1)

with
σqi3 = µq

∂uq
∂xi

, i = 1, 2, (2)

where t is time, uq are out of plane displacements, σqi3 are shear stresses, µq are Lamé parameters,
and ρq are mass densities. Here and below indices q = c and q = s correspond to core (inner) and
skin (outer) layers, respectively. The continuity conditions along interfaces x2 = ±hc are given by

σc23 = σs23 and uc = us. (3)

We also impose the traction-free boundary conditions

σs23 = 0 at x2 = ±(hc + hs). (4)

Relations (1) can be readily reduced to the wave equations

∆uq −
1

c22q

∂2uq
∂t2

= 0, q = c, s. (5)

with c2q =

√
µq
ρq

.

It can easily be shown that the dispersion relation associated with the formulated problem in
case of antisymmetric modes takes the form

µα1 cosh(α1) cosh(α2h) + α2 sinh(α1) sinh(α2h) = 0, (6)

with
α1 =

√
K2 − Ω2, α2 =

√
K2 − µ

ρ
Ω2, (7)
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where non-dimensional frequency Ω and wavenumber K have been introduced in the form

Ω =
ωhc
c2c

, K = khc, (8)

together with the basic dimensionless problem parameters

h =
hs
hc
, µ =

µc
µs
, ρ =

ρc
ρs
. (9)

The related displacements and stresses after separating factor exp{i(kx1 − ωt)} are expressed
as

uc = hc
sinh(α1ξ2c)

α1

,

σc13 = iµcK
sinh(α1ξ2c)

α1

,

σc23 = µc cosh(α1ξ2c),

(10)

and

us = hcβ (cosh [α2(hξ2s + 1)]− tanh [α2(h+ 1)] sinh [α2(hξ2s + 1)]) ,

σs13 = iµsKβ (cosh [α2(hξ2s + 1)]− tanh [α2(h+ 1)] sinh [α2(hξ2s + 1)]) ,

σs23 = µsα2β (sinh [α2(hξ2s + 1)]− tanh [α2(h+ 1)] cosh [α2(hξ2s + 1)]) ,

(11)

where
β =

sinhα1

α1

(
coshα2 − sinhα2 tanh[α2(h+ 1)]

) ,
together with the scaled variables

ξ2c =
x2
hc
, 0 ≤ x2 ≤ hc, (12)

ξ2s =
x2 − hc
hs

, hc ≤ x2 ≤ hc + hs.

Below we study two setups of the contrast, similar to [17]. They are given by the following
asymptotic relations between problem parameters in (9)

(a) µ� 1, h ∼ 1, ρ ∼ µ, (13)

and

(b) µ� 1, h ∼ µ, ρ ∼ µ2, (14)

corresponding to a plate with stiff thick skin layers and a soft core and to a traditional sandwich-
type structure with thin stiff faces, respectively. In what follows, we demonstrate that the effect
of contrast results in low-frequency anti-symmetric vibration modes. At the same time, it is also
pretty clear that in absence of contrast, dispersion relation (6) supports high-frequency modes
only.
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3 Long-wave low-frequency limit: lowest cut-off frequency and polynomial dispersion
relation

First, setting K = 0 in dispersion relation (6), we have for cut-off frequencies

tan(Ω) tan

(
h

√
µ

ρ
Ω

)
=
√
µρ. (15)

Over the low frequency range

Ω

(
1 + h

√
µ

ρ

)
� 1 (16)

this predicts the single cut-off frequency

Ω ≈
(ρ
h

) 1
2 � 1 (17)

provided that
ρ� h� µ−1. (18)

Approximation (17) coincides with that for the lowest shear cut-off frequency for the plane
problem in elasticity studied in [17]. In contrast to the latter, the anti-plane problem under
consideration does not support the fundamental mode with a zero cut-off frequency.

Let us concentrate on long-wave motions, for which

K(1 + h)� 1, (19)

over low-frequency range (16). To this end, expanding all trigonometric functions in (6) in Taylor
series, we derive a polynomial dispersion relation, which can be written as

µ+ γ1K
2 + γ2K

4 + γ3K
2Ω2 + γ4Ω

2 + γ5Ω
4 + · · · = 0 (20)

with

γ1 =
µ

2

(
1 + h2

)
+ h,

γ2 =
µ

24

(
1 + 6h2 + h4

)
+
h

6
(1 + h2),

γ3 = − µ

12
(1 + 3h2)− h

6
− µh

12ρ
(2 + 3µh)− µh3

12ρ
(4 + µh) , (21)

γ4 = −µ
2
− µh

ρ

(
1 +

µh

2

)
,

γ5 =
µ

24
+
µh

12ρ
(2 + 3µh) +

µ2h3

24ρ2
(4 + µh).

Dispersion curves computed from (6) are plotted in Figures 2 and 3 for non-contrast and contrast
setups, respectively. In Figure 2, µ = 0.232, ρ = 3.0, and h = 1.0, while µ = 0.014, ρ = 0.03, and
h = 1.0 in Figure 3. In Figure 3, the lowest cut-off frequency Ω = 0.17, and formula (17) gives the
same value. As might be expected, the cut-off frequencies are not observed over the low-frequency
range in the non-contrast case, see Figure 2.
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0 1.18 3.63 6.16

0.5K

Ω

Figure 2. Dispersion curves for laminate with µ = 0.232, ρ = 3.0, and h = 1.0.

0 0.17 3.13 4.60 6.29

0.5K

Ω

Figure 3. Dispersion curves for laminate with µ = 0.014, ρ = 0.03, and h = 1.0.

In the next section, we further simplify asymptotic dispersion relation (20) by specifying
coefficients γj for two chosen scenarios, (13) and (14).

4 Shortened polynomial dispersion relations

For parameter setup (a), see (13), we readily deduce from formulae (21)

γ1 ∼ γ2 ∼ γ3 ∼ γ4 ∼ γ5 ∼ 1 (22)
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At leading order

γ1 = h

γ2 =
h(1 + h2)

6

γ3 = − h

6ρµ

(
ρµ + 1 + 2h2

)
(23)

γ4 = − h

ρµ

γ5 =
h

6ρµ

(
1 +

h2

ρµ

)
where ρµ =

ρ

µ
∼ 1. As a result, we arrive at the shortened dispersion relation

µ

h
+K2 − 1

ρµ
Ω2 = 0. (24)

Next, let us scale in (24) the dimensionless frequency and wavenumber by

Ω2 = µαΩ2
∗ and K2 = µαK2

∗ , (25)

where Ω∗ ∼ K∗ ∼ 1 and 0 < α ≤ 1. This interval of parameter α covers the whole long-wave low-
frequency band, which is now given by Ω� 1, and K � 1, see (16) and (19).

Dispersion relation (24) expressed in Ω∗ and K∗ becomes

Ω2
∗ = ρµ

(
K2

∗ +
µ1−α

h

)
. (26)

At α < 1 we have Ω∗ ∼
√
ρµK∗ or ω ∼ c2sk, corresponding to the short-wave limit for stiffer skin

layers.

0 0.17 0.5 1.0 1.5

0.5

1.0

K

Ω

Figure 4. Lowest dispersion branch corresponding to transcendental equation (6) (red solid line) and shortened formula (24)
(black dashed line)
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Figure 5. Lowest dispersion branch corresponding to transcendental equation (6) (red solid line) and shortened formula (34)
(black dashed line)

Figure 4 displays dispersion curves by shortened formula (24) and original transcendental
equation (6) for the same set of parameters as in Figure 3. A good agreement over a broad
frequency range is observed.

For setup (b), see (14), we obtain from (21)

γ1 ∼ γ2 ∼ µ and γ3 ∼ γ4 ∼ γ5 ∼ 1. (27)

This time, in addition to the leading order expansion for coefficients γj, j 6= 4, we also need a
two-term expansion for coefficient γ4. Thus, we have

γ1 =µ

(
1

2
+ hµ

)
γ2 =

µ

6

(
1

4
+ hµ

)
γ3 =− hµ

6ρµ
(28)

γ4 =− hµ
ρµ
− µ

2

γ5 =
hµ
6ρµ

.

where ρµ =
ρ

µ2
∼ 1 and hµ =

h

µ
∼ 1. The sought for dispersion relation becomes

µ+ µ

(
1

2
+ hµ

)
K2 − hµ

6ρµ
K2Ω2 −

(
µ

2
+
hµ
ρµ

)
Ω2 +

hµ
6ρµ

Ω4 = 0. (29)

Now, let us normalize wavenumber and frequency by

K2 = µK2
∗ and Ω2 = µΩ2

∗, (30)
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having from (29)

1 + µ

(
1

2
+ hµ

)
K2

∗ − µ
hµ
6ρµ

K2
∗Ω2

∗ −
(
µ

2
+
hµ
ρµ

)
Ω2

∗ + µ
hµ
6ρµ

Ω4
∗ = 0, (31)

and adapt a near cut-off asymptotic expansion in the form

Ω2
∗ = Ω2

0 + µΩ2
1 + · · · (32)

On substituting the latter into (31), we find

Ω2
0 =

ρµ
hµ

and Ω2
1 =

ρµ
hµ

(
1

3
+ hµ

)
K2

∗ −
1

3

ρ2µ
h2µ
, (33)

leading to the optimal shortened dispersion relation(
hµ +

1

3

)
K2 − 1

µ

hµ
ρµ

Ω2 +

(
1− µρµ

3hµ

)
= 0. (34)

In contrast to the previous case, it is valid only over a narrow vicinity of the cut-off frequency,
as also illustrated by Figure 5 plotted for µ = 0.014, ρ = 0.03, and h = 1.0. Indeed, the dispersion
curves in this figure corresponding to (6) and (34) rapidly approach the bound of long-wave region.

5 Asymptotic formulae for displacements and stresses

On inserting K2 = µK2
∗ and Ω2 = µΩ2

∗ into formulae (10) and (11) we have for leading order
displacements and stresses within setup (a), see (13),

uc = hcξ2c,

σc13 = iµc
√
µK∗ξ2c,

σc23 = µc,

(35)

and

us = hc,

σs13 = iµs
√
µK∗,

σs23 = µch

(
K2

∗ −
Ω2

∗
ρµ

)
(ξ2s − 1) .

(36)

For setup (b), see (14), these relations hold true, except for the last formula in (36), which now
has to be replaced by

σs23 = µc
hµΩ2

∗
ρµ

(1− ξ2s) . (37)

As a consequence, we obtain for both setups

uq
hc
∼ σq23

µc
∼ σq13
µq
√
µ
, (38)

where, as above, q = c, s.
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The normalized displacements and one of the stresses for case (a) are presented in Figures 6

and 7. In these figures ξ2 = ξ2c, u =
uc
hc

, and σ23 =
σc23
µc

, (0 < ξ2 ≤ 1) or ξ2 = 1 + ξ2s, u =
us
hc

, and

σ23 =
σs23
µc

, (1 < ξ2 ≤ 2) , see formula (12). The problem parameters here are the same as in figures

(3) and (4). Numerical results obtain from asymptotic formula (35), and (36) and exact solution
(10), and (11) are compared with each other. In spite of drastical difference between two studied
settings (13) and (14), including the behaviour of parameter h expressing the ratio of thicknesses,
analogous graphs for case(b) plotted in scaled coordinate ξ2 appear to have virtually the same
form.

0 0.5 1.0 1.5

0.5

1.0

1.5

u

ξ2

Figure 6. Normalized displacement u computed from exact relations (10) and (11) (red solid line) and asypmtotic formulae (35)
and(36) (black dashed line)

.

0 0.5 1.0 1.5

0.5

1.0

1.5

σ23

ξ2

Figure 7. Normalized stresses σ23 computed from exact relations (10) and (11) (red solid line) and asypmtotic formulae (35)
and(36) (black dashed line)
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6 Long-wave low-frequency approximation of equations of motions

Let us return back to setup (a) again assuming the problem parameters to be related to each
other by formulae (13). First, scale longitudinal coordinate and time by

x1 =
hc√
µ
ξ1 and t =

hc
c2c
√
µ
τ, (39)

using transformations (12) for transverse variable x2. Also, motivated by asymptotic formulae (35)
and (36), we normalise displacement and stresses as

uq = hcv
q, σq13 = µq

√
µSq13, σq23 = µcS

q
23, q = c, s. (40)

with all dimensionless quantities assumed to be of order unity. Then, we insert (39) and (40) as
well as (12) into governing equations (1)–(4) in Section 2 to obtain for the core and skin layers,
respectively,

µ
∂Sc13
∂ξ1

+
∂Sc23
∂ξ2c

− µ∂
2vc

∂τ 2
= 0. (41)

Sc13 =
∂vc

∂ξ1
, Sc23 =

∂vc

∂ξ2c

and

∂Ss13
∂ξ1

+
1

h

∂Ss23
∂ξ2s

− 1

ρµ

∂2vs

∂τ 2
= 0, (42)

Ss13 =
∂vs

∂ξ1
, µhSs23 =

∂vs

∂ξ2s
,

where ρµ =
ρ

µ
∼ 1. In this case the continuity and boundary conditions become

vc
∣∣
ξ2c=1

=vs
∣∣
ξ2s=0

Sc23
∣∣
ξ2c=1

=Ss23
∣∣
ξ2s=0

(43)

and

Ss23
∣∣
ξ2s=1

= 0. (44)

Now, expand displacements and stresses into asymptotic series as

vq =vq0 + µvq1 + · · · , (45)
Sqj3 =Sqj3,0 + µSqj3,1 + · · · , q = c, s and j = 1, 2.

On substituting these into formulae (41)- (44), we arrive at leading order at

Sc13,0 =
∂vc0
∂ξ1

,
∂Sc23,0
∂ξ2c

= 0, Sc23,0 =
∂vc0
∂ξ2c

, (46)

and

∂Ss13,0
∂ξ1

+
1

h

∂Ss23,0
∂ξ2s

− 1

ρµ

∂2vs0
∂τ 2

= 0, (47)
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Ss13,0 =
∂vs0
∂ξ1

,
∂vs0
∂ξ2s

= 0 (48)

with

vc0

∣∣∣
ξ2c=1

=vs0

∣∣∣
ξ2s=0

Sc23,0

∣∣∣
ξ2c=1

=Ss23,0

∣∣∣
ξ2s=0

(49)

and

Ss23
∣∣
ξ2s=1

= 0 (50)

Next, we obtain from the second equation in (48)

vs0 = w(ξ1, τ). (51)

The rest of the quantities in (46)–(50) are expressed in terms of w as

Sc13,0 =ξ2c
∂w

∂ξ1
, Sc23,0 = w, vc0 = ξ2cw, (52)

Ss13,0 =
∂w

∂ξ1
, Ss23,0 = w(1− ξ2s), (53)

with w satisfying the 1D equation

∂2w

∂ξ21
− 1

ρµ

∂2w

∂τ 2
− 1

h
w = 0, (54)

which may be presented in the original variables as

∂2us
∂x21

− ρs
µs

∂2us
∂t2
− µc
µshchs

us = 0, (55)

where us(x1, t) ≈ w(x1, t).
Let us insert ansatz us = exp {i(kx1 − wt)} into the last equation. As a result, we have the

dispersion relation

k2 − ρs
µs
ω2 +

µc
µshchs

= 0, (56)

coinciding with (24) in Section 4.

7 Near cut-off approximation of equations of motion

For parameter setup (b), see (14), we may use the same scaling of the independent variables and
time (12), and (39) and also start from the asymptotic behaviour of displacements and stresses
predicted by (40). Then, the original relations in Section 2 become

µ
∂Sc13
∂ξ1

+
∂Sc23
∂ξ2c

+ µΩ2
0v
c − µ2L(vc) = 0, (57)

Sc13 =
∂vc

∂ξ1
, Sc23 =

∂vc

∂ξ2c
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and

µ
∂Ss13
∂ξ1

+
1

hµ

∂Ss23
∂ξ2s

+
1

ρµ
Ω2

0v
s − µ

ρµ
L(vs) = 0, (58)

Ss13 =
∂vs

∂ξ1
, µ2hµS

s
23 =

∂vs

∂ξ2s

with continuity and boundary conditions (43) and (44), where Ω0 is a frequency to be found,

hµ =
h

µ
∼ 1, ρµ =

ρ

µ2
∼ 1, and

L(vq) =
1

µ

(
Ω2

0v
q +

∂2vq

∂τ 2

)
, q = c, s. (59)

This operator is introduced for taking into account a small deviation from time-harmonic vibrations
with frequency Ω0. This setup appears to be a natural generalisation of near cut-off expansion (32)
of dispersion relation (31). Before, near cut-off expansions were widely expoited for analysing
high-frequency long-wave vibrations of homogenous plates and shells, e.g. see [18].

On substituting asymptotic expansion (45) into the formulae above, we obtain at leading order

∂Sc23,0
∂ξ2c

= 0, Sc23,0 =
∂vc0
∂ξ2c

, Sc13,0 =
∂vc0
∂ξ1

1

hµ

∂Ss23,0
∂ξ2s

+
1

ρµ
Ω2

0v
s
0 = 0

Ss13,0 =
∂vs0
∂ξ1

,
∂vs0
∂ξ2s

= 0 (60)

with (49) and (50).
Next, we deduce from the first and last equations in (60), respectively,

Sc23,0 = p1(ξ1, τ) and vs0 = w2(ξ1, τ) (61)

and also observe that frequency Ω0 coincides with the leading order term in near cut-off asymptotic
expansion (31). As a result, we have

Sc13,0 = ξ2c
∂w2

∂ξ1
, vc0 = ξ2cp1, (62)

and

Ss13,0 =
∂w2

∂ξ1
, Ss23,0 = w2(1− ξ2s). (63)

In contrast to the consideration in the previous section, the adapted near cut-off scheme suggests
to proceed to the next asymptotic order. Thus, we arrive at the equations

∂Sc13,0
∂ξ1

+
∂Sc23,1
∂ξ2c

+
ρµ
hµ
vc0 = 0 (64)

Sc13,1 =
∂vc1
∂ξ1

, Sc23,1 =
∂vc1
∂ξ2c

Prepared using sagej.cls



14 Journal Title XX(X)

and

∂Ss13,0
∂ξ1

+
1

hµ

∂Ss23,1
∂ξ2s

+
vs1
hµ
− L(w2)

ρµ
= 0 (65)

Ss13,1 =
∂vs1
∂ξ1

,
∂vs1
∂ξ2s

= 0

with

vc1
∣∣
ξ2c=1

=vs1
∣∣
ξ2s=0

(66)

Sc23,1
∣∣
ξ2c=1

=Ss23,1
∣∣
ξ2s=0

and

Ss23,1
∣∣
ξ2s=1

= 0. (67)

On integrating them across the thickness and taking into account (62) and (63), we establish
that p1 = w2 along with the expressions

Sc13,1 =ξ1

((
ξ2c
2
− ξ32c

6

)(
∂3w2

∂ξ31
+
ρµ
hµ

∂w2

∂ξ1

)
− ξ2chµ

(
L(w2)

ρµ
− ∂2w2

∂ξ21
− w3

hµ

))
Sc23,1 =

(
1

2
− ξ22c

2

)(
∂2w2

∂ξ21
+
ρµ
hµ
w2

)
− hµ

(
L(w2)

ρµ
− ∂2w2

∂ξ21
− w3

hµ

)
vc1 =

(
ξ2c
2
− ξ32c

6

)(
∂2w2

∂ξ21
+
ρµ
hµ
w2

)
− ξ2chµ

(
L(w2)

ρµ
− ∂2w2

∂ξ21
− w3

hµ

)
(68)

Ss13,1 =
∂w3

∂ξ1

Ss23,1 =hµ(ξ2s − 1)

(
L(w2)

ρµ
− ∂2w2

∂ξ21
− w3

hµ

)
vs1 =w3(ξ1, τ),

where the sought for function w2 satisfies the 1D equation(
hµ +

1

3

)
∂2w2

∂ξ21
+

ρµ
3hµ

w2 −
hµ
ρµ
L(w2) = 0, (69)

which can be transformed to(
hsµs
hcµc

+
1

3

)
∂2us
∂x21

− hsρs
hcµc

∂2us
∂t2
− 1

h2c

(
1− hcρc

3hsρs

)
us = 0 (70)

with us(x1, t) ≈ w2(x1, t).
As might be expected, the associated dispersion relation(

hsµs
hcµc

+
1

3

)
k2 − hsρs

hcµc
ω2 +

1

h2c

(
1− hcρc

3hsρs

)
= 0 (71)

is identical to (34).
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Concluding Remarks

Asymptotic equations of motion (55) and (70) are established for two distinct setups of contrast
parameters. The former is applicable over the whole low-frequency range, while the second one is
valid only over a narrow vicinity of the lowest cut-off frequency. Dispersion relations (56) and (71)
following from these equations agree with the numerically tested shortened forms (24) and (34) of
exact dispersion relation (6), see Figures 4 and 5.

For the sake of simplicity, the adapted near cut-off asymptotic routine in Section 7 does not
fully rely on the method of multiple scales as it has been done in [26] and [27]. The obtained
results may be extended to similar anti-plane problems for asymmetric multi-layered structures
as well as to more sophisticated plane and 3D problems. We also remark that proper formulation
of the boundary conditions for systems with a small but nonzero cut-off frequency may require
implementation of the low-frequency decay conditions [28], generalising the classical St. Venant
principle for an elastic semi-infinite strip.
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