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ABSTRACT 

The development of low cost 3D printer technology is having a profound effect on everyday 

life. Over the past few years there have been many reports in the media detailing futuristic 

uses of this technology. Whilst the merits of these applications are clear there is an 

opportunity for this technology to enhance current research where a degree of fabrication is 

required. This work describes some initial research into the use of 3D printing for the 

fabrication of cyclonic spray chambers for inductively coupled plasma applications. The 

linearity, precision and detection limits obtained from the 3D printed chamber have been 

compared to a commercial model with largely positive results. Comparison between the 

performance of subsequent prints of the same spray chamber has also been carried out and 

has been shown to be highly reproducible. This work suggests that low-cost 3D printing 

techniques can be used as an inexpensive way to fabricate prototype spray chambers to 

accelerate the research in this area.   

INTRODUCTION 

With the advent of inexpensive electronics, more powerful computers and the open source 

movement, 3D additive printing has become increasing popular over the last few years
[1, 2]

. 

The most common form of additive printing is that using extrusion deposition as a printing 

method
[2]

. During this process the printing material is extruded onto a flat surface that is 

lowered between successive layers to allow the model to be formed. This approach has been 

used in many applications including the production of reaction vessels that are pre-

impregnated with a catalyst (termed ‘reactionware’)
[3-5]

 and bioengineering projects such as 

the production of bone implants
[6]

 and tissue scaffolds
[7]

. Whilst it is clear that 3D printing 

technology will enable many new areas of research there are many current areas that require 

objects to be fabricated that could benefit from this technology.   
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One area of research that has the potential to be enhanced by 3D printing is spray chamber 

design. It has long been recognised that sample transport efficiency to the plasma is a limiting 

factor of Inductive Coupled Plasma (ICP) based analyses
[8-10]

. Whilst there have been many 

advances in nebuliser technology to overcome this (particularly at low flow rates) the spray 

chambers used are largely unchanged
[10]

. As the most common material used in spray 

chamber fabrication is borosilicate glass or quartz, a significant obstacle to be overcome 

when undertaking this type of research is the significant funds and expertise required to 

fabricate a prototype without any guarantee of success. Production of such a prototype 

requires access to a skilled glassblower which is becoming increasing rare with the loss of 

traditional fabrication facilities in many universities
[11]

. The latter point also makes it difficult 

for any researcher in such a position to produce and evaluate any new designs that are 

presented in the literature but not yet commercially available.  

The 3D printer technology described in this work has the potential to overcome these issues. 

This work details a relatively straight forward and inexpensive process to design and produce 

a cyclonic spray chamber using readily available technology and materials. To the best of our 

knowledge this is the first time a 3D printed spray chamber has been created for operational 

use. To enable a meaningful discussion, the data obtained from the 3D printed spray chamber 

has been compared to both an equivalent chamber that is commercially available and two 

subsequent prints of the same chamber. The choice of commercial spray chamber used for 

comparative studies was based on the instrument manufacturers’ recommendation for the 

model of ICP used in this work. 

 

MATERIALS & METHODS 

Object design 

The 3D printed spray chambers were designed using AutoCAD 2013 software (Autodesk, 

Inc., San Rafael, CA). An academic (non-commercial) licence for this software is freely 

available from the company web site to qualifying individuals and institutions. To enable a 

suitable comparison, the external dimensions of the 3D printed spray chamber were based on 

the commercial spray chamber used as a comparison. Internal dimensions were estimated 

from the commercial spray chamber. Objects designed in this software were exported as a 

stereolithography (.stl) file allowing direct import into the printer software. 
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Object slicing and printing 

After importing the spray chamber file into the printer software the object must be ‘sliced’ to 

create a series of distinct 2D layers that can be printed. Object slicing and printer control was 

achieved using Repetier Host version 0.90c, slicing and printing parameters are shown in 

Table 1. This software is freely available from the printer manufacturer. The spray chambers 

were printed using a dual extruder Leapfrog Creatr printer (Leapfrog BV, Alphen aan den 

Rijn, The Netherlands). The printing medium for this type of printer is a 1.67 mm diameter 

polymer filament. The dual extruder capability of this printer allowed both a dissolvable 

support polymer and a structural polymer to be printed simultaneously. Polylactic Acid was 

used as a support material with the printing material being acrylonitrile butadiene styrene 

(ABS), both of these materials were purchased directly from the printer manufacturer.  

After printing the support material is removed by sonicating the spray chamber in 1M sodium 

hydroxide (Sigma-Aldrich, Poole, Dorset) at 60°C for 3-4 hours. The spray chamber was 

produced in parts to allow a complete inspection prior to its use on the instrument (see Figure 

1). The parts of the spray chamber were bonded together using epoxy resin. 

Comparison with commercial spray chamber 

All comparisons described in this work were carried out using a Varian Vista MPX ICP-OES 

(Agilent Technologies, Santa Clara, CA). The commercial cyclonic spray chamber used for 

comparative studies (#98301) was produced by Glass Expansion (Pocasset, MA). Operating 

parameters of this instrument are listed in Table 2. During all comparisons the following 

elements were monitored: Ag, Al, B, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, Ir, Li, Mg, Mn, Ni, 

Pb, Sr, Ti, Zn. These were obtained from a 1000 ug/mL multi-element plasma standard 

(#42885) purchased from Alfa Aesar (Heysham, Lancashire). Standards with concentrations 

between 2 and 10 µg/mL were prepared using ultrapure water (18 MΩ) produced in-house 

using an ELGA Option-Q System (Veolia Water, Saint Maurice, France). The wash solution 

used throughout the analysis was 5 % nitric acid; this was purchased from Fisher Scientific 

(Loughborough, UK) in a concentrated form (70 % analytical grade) and diluted with 

ultrapure water. Triplicate analysis of the aforementioned standards allowed the linearity and 

precision of the analysis to be calculated. The limit of detection for each element was 

calculated by adding 3 standard deviations to the average signal obtained from the analysis of 

20 blank samples. Data obtained from the conventional cyclonic spray chamber and the 3D 

printed version were collected on the same day using the same standards.  
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3D printed spray chamber reproducibility 

Further analysis was carried out to assess the reproducibility between 3 spray chambers that 

had been printed to the same design. The same standards (as mentioned above) were used in 

this evaluation. 

RESULTS & DISCUSSION 

An example of the spray chambers produced using the 3D printer can be seen in Figure 1. 

The initial analyses focused on the performance of the 3D printed spray chambers compared 

to a commercial product. The data relating to the linearity, precision and detection limit can 

been seen in Table 3. The average linearity, as expressed by the coefficient of determination 

(R
2
), is identical for both the commercial and 3D printed spray chambers, with a value of 

0.993. The linearity ranged from 0.978 to 0.999 for the commercial spray chamber and 0.981 

to 0.999 for the 3D printed spray chamber. Triplicate analysis allowed the imprecision in the 

data from both spray chambers to be determined. For the commercial spray chamber the 

imprecision ranged from 0.15 to 8.0 % with an average value of 1.1 % over all of the 

calibration standards. For the 3D printed spray chamber the imprecision ranged from 0.1 to 

8.3 % with an average value of 1.3 %. Analysis of the detection limit data showed there was a 

trend for the 3D printed spray chamber to have a higher detection limit, for a given element, 

than the commercially available chamber. The increase in the detection limit ranged from 

15.8 to 104.9 % of the value obtained from the commercially available chamber, the average 

increase was 54.5 %.  

These results highlight the similarity in performance between the 3D printed spray chamber 

and its commercial counterpart. It is likely that the increase in the detection limits observed 

when using the 3D printed spray chamber is due to physical differences in the design of two 

spray chambers. In particular the angle of the chamfer at the base of the tube that transfers the 

aerosol from the spray chamber to the ICP, this was difficult to replicate without causing 

irreparable damage the original spray chamber. The effect on washout time between the two 

spray chambers could also be a factor effecting this observation. However, analysis of the 

data obtained from the blanks does not show any trend suggesting a reduction in signal over 

the course of this analysis.     

If this manufacturing approach is to be practically feasible it is important to be able to 

produce multiple spray chambers, from the same design, that have similar performance 
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characteristics. To this end two additional spray chambers were printed using the same CAD 

files and construction methodology. Analysis of the same standard solutions as the previous 

study gave an average imprecision of 6.6 % over a range from 0.5 to 18.0 %. These 

measurements were all carried out on the same day but the plasma was extinguished as the 

chambers were changed.  

The aforementioned performance characteristics of the 3D printed spray chambers show that 

they are able to produce data that are comparable in quality and signal intensity to that of a 

commercial model. Additional analysis indicates that subsequent prints of the spray chambers 

give comparable results. These characteristics permit the use of these techniques to produce 

low-cost prototype chambers that can be easily modified. The typical material cost per print 

is less than $5 with the printer used in this work being priced around $2000. The 

development of the printer technology since the purchase of this model now means a printer 

capable of producing these spray chambers is now available for around $900. This low-cost 

production has the potential to accelerate the development of new spray chambers as the 

production time is very short and there is little financial risk associated with a ‘failed’ model. 

Additionally, with the printer files being easy to distribute, anyone with a 3D printer could 

produce their own print to verify its performance on any instrument. An additional advantage 

of this production method is the ability, for somebody who does not have access to traditional 

fabrication methods, to replicate new spray chambers that have been highlighted in the 

literature but are not yet commercially available. This would allow developments made in 

this area to be utilised by the community as a whole in a short space of time from publication. 

An example of this is the range of dual nebuliser (hydride forming) spray chambers that have 

been reported
[12-14]

. 

The disadvantages of the described methodologies include the limited number of polymers 

that are currently available as printing filament; those that are available have limited chemical 

resistance. ABS is resistant to aqueous acids and alkalis and concentrated hydrochloric acid. 

It is not recommended that you use a concentration of nitric acid over 50 % or use glacial 

acetic or formic acid
[15]

. This more limited chemical resistance would cause little problem for 

conventional ICP analyses but it is less than that offered by a quartz or borosilicate chamber 

so it is worth highlighting. From a practical point of view the spray chambers produced using 

these methods are opaque so it is not possible to observe the nebulised sample stream in the 

chamber. This could be addressed by the addition of viewing windows into any design where 

this would be a significant issue. Additionally, the layered approach used during printing 
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makes the surface of chambers relatively rough, this type of surface is likely to be 

significantly wettable therefore facilitating the adherence of sample droplets to the inner 

surfaces
[16]

. This would increase the sample washout time and increase carryover. It is 

possible this effect could be negated by either mechanically or chemically smoothing the 

inner surfaces or by the application of a hydrophobic coating such as that developed by 

Mulazim et al
[17]

. 

CONCLUSIONS 

This research has demonstrated the potential use of 3D additive printing techniques for the 

rapid fabrication of cyclonic spray chambers for ICP based techniques. The reproducibility 

demonstrated by the 3D printed spray chamber is comparable to that of a commercial version 

and inter-spray chamber reproducibility has been demonstrated. Issues with the elevated 

detection limits and the effect the layer production require further investigation. 

This work opens the possibility of using the described techniques to develop novel spray 

chambers that can be tailored to specific applications and flow rates. With the reproducibility 

demonstrated these spray chambers could be used ‘as is’ or as a prototype for fabrication 

from more conventional materials. Whilst this research is in its infancy there is a clear 

potential for 3D printing to have a positive impact on the development of equipment for 

analytical instrumentation.  
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FIGURES & TABLES 

 

Figure 1 – An overview of the production of the 3D printed cyclonic spray chamber. Top – 

The constituent parts of the spray chamber after printing, the blue material (ABS) is the 

structural elements of the chamber, the white material (PLA) is a dissolvable support to 

enable the conical shaped top of the chamber to be printed (the chamber is shown upside 

down on the print bed). Middle – The assembled spray chamber in position on the 

instrument. Bottom – A cross-sectional representation of the 3D-printed spray chamber in 

position on the instrument. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



10 
 

Table 1 – Slicing and printing parameters of the Leapfrog Creatr 3D printer 

 

Printer Configuration 

Structural Printing 

Material 

Acrylonitrile 

butadiene styrene 

(ABS) 

Support Printing 

Material 

Polylactic Acid 

(PLA) 

Filament diameter 

(mm) 
1.75 

ABS Extruder 

Temperature (°C) 
220 

PLA Extruder 

Temperature (°C) 
195 

Print Bed 

Temperature (°C) 
80 

Layer Height (mm) 0.2 

Fill density (%) 40 

ABS Print Speed 

(mm/s) 
40 

PLA Print Speed 

(mm/s) 
50 
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Table 2 – Operating conditions of the Varian Vista MPX ICP-OES  

 

Instrument Conditions 

Plasma Power (kW) 1.0 

Plasma Gas Flow 

(L/min) 
15.0 

Aux Gas Flow 

(L/min) 
1.5 

Nebuliser Gas Flow 

(L/min) 
0.75 

Viewing Height (mm) 10 

Replicates 3 

Replicate read time 

(s) 
5 

Monitored Wavelengths (nm) 

Ag 328.068 

Al 396.152 

B 249.772 

Ba 455.403 

Bi 223.061 

Ca 396.847 

Cd 514.437 

Co 238.892 

Cr 267.716 

Cu 327.395 

Fe 238.204 

Ga 294.363 

Ir 224.268 

Li 670.783 

Mg 279.553 

Mn 257.610 

Ni 231.604 

Pb 220.353 

Sr 407.771 

Tl 190.794 

Zn 213.857 
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Table 3 – Comparison between the performance characteristics of the 3D printed spray 

chamber and a commercial counterpart. 

 

 


