
Towards Visualising Change-based Models
Alfa Yohannis∗‡, Horacio Hoyos Rodriguez∗, Fiona Polack†, Dimitris Kolovos∗

∗Department of Computer Science, University of York
alfa.yohannis@merahputih.id, horacio_hoyos_rodriguez@ieee.org, dimitris.kolovos@york.ac.uk

†School of Computing and Maths, Keele University, United Kingdom
f.a.c.polack@keele.ac.uk

‡Department of Computer Science, Kalbis Institute, Indonesia

Abstract—This paper extends our previous work on change-based
model persistence and demonstrates a tool that can replay the
construction change-based model. The tool takes a change-based
persistence file as input and plays it in the form of evolving
diagrams reflecting the changes applied to the model.

Index Terms—visualization, change-based persistence, model evo-
lution, BPMN2, model-driven engineering, replay, animation

I. INTRODUCTION

In [1], we explored the concept of change-based persistence
for models conforming to object-oriented metamodelling ar-
chitectures, such as MOF and Ecore. We also demonstrated a
prototype (EpsilonLabs CBP1), which enables persisting EMF
models as sequences of changes (as opposed to snapshots of
their state in XMI), which was further evaluated and extended
in [2]–[4].

In this paper, we extend our previous work on change-based
persistence (CBP) of models conforming to the MOF/EMF
metamodelling architectures [1]–[4] by contributing a tool that
can visualise changes that have been applied to construct a
model. Our tool takes a change-based model as input and
constructs an animation of the changes it comprises.

The rest of the paper is structured as follows. Section II provides
an overview of our previous work on change-based model
persistence. Section III discusses our approach to using change-
based persistence to visualise model construction. Section ??
presents the evaluation of our approach. Section IV provides
an overview of related work, and Section V concludes with a
discussion on directions for future work.

II. CHANGE-BASED PERSISTENCE

Instead of persisting snapshots of models as commonly
practised in model-driven engineering, change-based model
persistence persists the complete editing history of changes.
This means that all changes applied to a model are recorded
so that they can be re-used for other purposes.

Figure 1: A simple BPMN2 model.

1https://github.com/epsilonlabs/emf-cbp

Let’s say that Bob developed a simple BPMN2 model in
Figure 1. If the model is persisted in a state-based format,
the persistence produces an XMI file (simplified) as in Listing
1. This type of persistence only preserves the eventual state of
the model, losing the detailed information of changes executed
by Bob to construct the model. In contrast, if we record all
the changes made by Bob and persist them into a CBP file,
we can obtain a list of change events in Listing 2. In this list,
the CBP file is pseudo-formatted to improve readability, but
in implementation, the file is persisted in an XML-like format.
Replaying these recorded changes produces a model with the
same eventual state as in Figure 1 and Listing 1.

Listing 1: A BPMN2 model in Figure 1 persisted in simplified
XMI.

1<process id="e1" name="Process 1">
2 <startEvent id="e2">
3 <outgoing>e6</outgoing>
4 </startEvent>
5 <endEvent id="e4">
6 <incoming>e7</incoming>
7 </endEvent>
8 <task id="e5" name="Task A">
9 <incoming>e6</incoming>

10 <outgoing>e7</outgoing>
11 </task>
12 <sequenceFlow id="e6" sourceRef="e2" targetRef="e5"/>
13 <sequenceFlow id="e7" sourceRef="e5" targetRef="e4"/>
14</process>

From Listing 2, we can know the sequence of changes made
by Bob to construct the model. We can also identify that Bob
made invalid changes that connect SequenceFlow e3 from
EndEvent e4 to StartEvent e2 (no SequenceFlow is allowed
to come out from an EndEvent or enter a StartEvent) (lines
10-11) which he deleted in the following changes (lines 13-17).
Such phenomenon might not be identified if we persist the
model in state-based format.

Listing 2: The pseudo-formatted CBP of the model in Figure
1.
1 create e1 type Process
2 set e1.name to "Process 1"
3 create e2 type StartEvent
4 add e2 to e1.flowElements at 0
5 create e3 type SequenceFlow
6 set e3.name from to "Sequence Flow 1"
7 add e3 to e1.flowElements at 1
8 create e4 type EndEvent
9 add e4 to e1.flowElements at 0

10 add e3 to e2.incoming at 0
11 add e3 to e4.outgoing at 0

12 add e1 to resource at 0
13 remove e3 from e2.outgoing at 0 composite c1
14 remove e3 from e4.incoming at 0 composite c1
15 unset e3.name from "Sequence Flow 1" to null composite c1
16 remove e3 from e1.flowElements at 1 composite c1
17 delete e3 type SequenceFlow composite c1
18 create e5 type Task
19 set e5.name from to "Task 1"
20 add e5 to e1.flowElements at 2
21 create e6 type SequenceFlow
22 add e6 to e2.outgoing at 0
23 add e6 to e5.incoming at 0
24 add e6 to e1.flowElements at 3
25 create e7 type SequenceFlow
26 add e7 to e5.outgoing at 0
27 add e7 to e4.incoming at 0
28 add e7 to e1.flowElements at 4
29 set e5.name to "Task A"

While persisting all these changes is perceived too excessive
as it requires more storage space [3], in some conditions,
it is desirable especially when we want to perform model
analytics, such as understanding model evolution, identifying
model editing/language usage patterns, etc. [1]. Moreover, CBP
can also drastically speed up model comparison [4].

Trying to understand changes executed by Bob in Listing 2 may
require extra cognitive effort as one who tries to comprehend it
needs to build a mental model and emulate the changes in their
mind. One solution to reduce the required cognitive effort is by
providing a visualisation tool. With the tool, they can replay
the model construction and observe what kind of changes have
been made by Bob.

III. VISUALISING MODEL CONSTRUCTION

For the reasons we have exposed, we have built CBP-Player,
a prototype2, that visualises the construction of change-based
models. It is a JavaScript application and uses the mxGraph
diagramming library [5] for displaying graphical representations
of the evolving model.

A. Process

Figure 2 shows the process of drawing a model in CBP-Player.
The process consists of three phases: Loading, Building, and
Drawing. In the Loading phase, the CBP-Player loads a CBP
file as a sequence of change events in memory. It also loads
the metamodel of the change-based model. The metamodel3

defines the model that will be constructed by the Building
phase.

In the Building and Drawing phases, the CBP-Player plays the
loaded change events one-by-one emulating the construction of
the model in the CBP file. This construction also computes the
values required to draw the model’s graphical representation.
For example, the shifting of elements’ indexes caused by the
deletion of an element in a containing feature in order to label
edges, or determining the types of edges to represent features.

2Project and demo can be found at https://github.com/epsilonlabs/emf-cbp/
tree/master/CBPPlayer and https://alfa-ryano.github.io/visualization.html

3For now, the metamodel is still defined from scratch in Javascript. Further
extension is required to load metamodel from Ecore files.

Figure 2: The process to visualise model construction using
change-based persistence.

When executing a change event, besides applying the change
to construct an abstract/semantic model, the change is also
reflected to a graphical model. Currently, the prototype is
designed to have more than one model drawer to reflect
changes to different graphical models. In Figure 2, we have
two drawings which allow viewing a model construction in two
perspectives: here, BPMN2 and object-diagram-like notation
that visualises Ecore models in a graph/tree structure (further
we refer this as Ecore).

B. Implementation

Figure 3 depicts the simplified class diagram of the implemen-
tation of the CBP-Player. The main class, CBP-Player, has
methods load, play, and stop to load and control the play
of a CBP file.

Figure 3: The simplified class diagram of the CBP-Player
implementation.

When initialising, the CBPPlayer registers all kinds of
ModelDrawer that are going to be used. In Figure 3, we
use EcoreDrawer and BPMN2Drawer classes as exam-
ples for the model drawers. Both classes are derived from
ModelDrawer class. This ModelDrawer class consists
of different extension classes of the ChangeEventDrawer
class. Each extension class determines what kind of drawing
operations should be executed on the graphical model if an
instance of ChangeEvent is executed. For example, when the
play method of the DeleteElementEventDrawer class is

Figure 4: The application of CBP-Player.

executed, it removes an element from the graphical model. The
instance of this class should be registered to its corresponding
ChangeEvent, in this case, class DeleteElementEvent.
If the instance of this ChangeEvent plays, it also executes
the draw method of the ChangeEventDrawer instances
registered to it. Thus, if an element is deleted from an abstract
model, the corresponding element is also deleted in its graphical
representation.

While executing the load method, a CBP file is loaded into
memory, a list of ChangeEvent (changeEvents), and a corre-
sponding ChangeEventDrawer is registered to each change
event. When CBP-Player plays this changeEvents, it
iterates throughout the list and executes the play method of
each change event emulating the construction of a model.
After executing each play method, the draw method of
the corresponding registered ChangeEventDrawer is also
executed to draw the model’s graphic. Classes Resource,
Element, and Feature are used as internal data structures
for constructing the abstract model.

C. Application

To obtain the change-based model in Listing 2, firstly, we had
to modify the Eclipse BPMN2 Modeler [6]. In particular, we
added ChangeEventAdapter [7] of the EpsilonLabs CBP
[1] to the Bpmn2Resource’s eAdapters in the Eclipse
BPMN2 Modeler. The said adapter can capture every change
made to a model through the modeller. We then created the
model in Figure 1 by following the course of changes in Listing
2, and saved the model, producing XMI and CBP files such
as those in Listings 1 and 2.

We have built a simple application in which we employ
the CBP-Player (Figure 4). The application can visualise the
construction of a BPMN2 model using two notations: an object-
diagram-like notation, and the standard BPMN2 graphical
syntax. To demonstrate the application, we feed it with the
produced CBP file. The application loads the change events in
the CBP file into memory and replays them one-by-one. Every
time a change event is replayed, it is also reflected in the two
diagrams.

In the object diagram perspective, as displayed in Figure 5c,
elements and values are represented with rectangles, features
are depicted in rounded rectangles, and containment/non-
containment relationships are represented with solid/dashed
directed edges. Solid directed edges also represent ownership
between elements and their features. Numbers on the edges
indicate the indexes of the elements in their containers.

Figure 5 shows the graphical models displayed by the prototype.
Figures 5c and 5a show the object diagram and BPMN2
diagram at the time when edge e3 is about to be removed
(Listing 2, line 12). In Figure 5c, we can notice there is
element e1 with type Process contained by the resource at
index 0. The element has a single-valued feature name with
value “Process 1”. Element e1 also has a multi-valued feature
flowElements that contains three other elements, e2 with
type StartEvent, e3 with type SequenceFlow, and e4
with type EndEvent, each at index 0, 1, and 3 respectively.
Element e3 has a feature name with value “Sequence Flow
1”. This element is referenced by elements e2’s incoming
and e4’s outgoing features.

Figure 5a displays the model in BPMN2; the state of the model
in the object diagram perspective is hidden from users. In the
figure, we can notice a SequenceFlow with name “Sequence
Flow 1” wrongly connects EndEvent e2 to StartEvent
e1. No SequenceFlow is allowed to leave an EndEvent or
enter a StartEvent. Later, the SequenceFlow is removed
from the model (Listing 2 lines 13-17).

Figures 5b and 5d show the diagrams after all changes have
been applied. In Figure 5b, the diagram does not contain the
SequenceFlow with name “Sequence Flow 1” anymore. It
is replaced with a Task “Task A” and two SequenceFlow
e6 and e7 in the correct direction. Figure 5d shows the same
model but displayed in the object diagram perspective.

IV. RELATED WORK

Some tools are available to visualise Ecore-based models.
EcoreTools [8] is a tool to define metamodels graphically while
other tools such as Eugenia [9] and Sirius [10] are used to
define the visual concrete syntax of models. Nevertheless, these
tools are not intended to visualise the evolution or changes
of models. Visualisation of model evolution has been studied
in different domain-specific modelling languages for business
processes [11] and software [12]. Work on visualising changes
specific to Ecore-based models was performed by Maier et
al. [13]. They used a state-based approach to persist different
versions of a model. Changes between versions were derived
using EMF Compare [14], a model differencing tool, and
then presented in a timeline format with colour-coding used
to identify changes between versions, e.g. a new element is
coloured green while other old elements are coloured grey. In
contrast, our approach exploits change-based persistence to
obtain changes and visualise them in the form of animation.

e2

e4

Sequence Flow 1

(a) BPMN2 model at line 12
in Listing 2

e2

e4

Task A

e6

e7

(b) BPMN2 model at line 29
in Listing 2

resource

e1: Process

name

Process 1

0

flowElements

e2: StartEvent

0

e3: SequenceFlow

name

Sequence Flow 1

1

e4: EndEvent

2

incoming

0

outgoing

0

(c) Ecore model at line 12 in Listing 2

resource

e1: Process

name

Process 1

0

flowElements

e2: StartEvent

0

e4: EndEvent

1

incoming outgoing

e5: Task

name

Task A

2

outgoing

e6: SequenceFlow

0

incoming

0

3

outgoing

e7: SequenceFlow

0

incoming

0

4

(d) Ecore model at line 29 in Listing 2

Figure 5: The graphical models produced by the prototype during the construction of the model in Figure 1.

V. CONCLUSIONS AND FUTURE WORK

This paper has presented an extension to the work of change-
based model persistence that aims at providing a tool, the
CBP-Player, to visualise model construction. The tool takes a
CBP file as input and plays it in the form of a graphical model,
emulating the changes applied to the persisted model. The
tool is designed to be extensible to any types of visualisation
that aim to exploit the information contained in CBP. The
tool itself is still at a prototype state. Some features that are
planned to be added are visualising model differencing and

conflict detection and model metrics (number of elements,
features, etc.) throughout the evolution of a model. We have
not undertaken any performance evaluation in this work since
performance is not the main goal of the current prototype. To
evaluate correctness, we have employed unit tests that exercise
the features presented in this work. A systematic evaluation
is required in later iterations to evaluate the performance,
usefulness, and usability of the tool.

ACKNOWLEDGMENT

This work was part supported by the European Commission via
the CROSSMINER (project number 732223) and TYPHON
(project number 780251) H2020 projects and through a
scholarship managed by Lembaga Pengelola Dana Pendidikan
Indonesia (Indonesia Endowment Fund for Education).

REFERENCES

[1] A. Yohannis, D. S. Kolovos, and F. Polack, “Turning models
inside out,” in Proceedings of MODELS 2017 Satellite Events co-
located with ACM/IEEE 20th International Conference on Model Driven
Engineering Languages and Systems (MODELS 2017), Austin, TX, USA,
September, 17, 2017., 2017, pp. 430–434. [Online]. Available: http:
//ceur-ws.org/Vol-2019/flexmde_8.pdf

[2] A. Yohannis, H. H. Rodriguez, F. Polack, and D. S. Kolovos,
“Towards efficient loading of change-based models,” in Modelling
Foundations and Applications - 14th European Conference, ECMFA
2018, Held as Part of STAF 2018, Toulouse, France, June 26-28, 2018,
Proceedings, 2018, pp. 235–250. [Online]. Available: https://doi.org/10.
1007/978-3-319-92997-2_15

[3] ——, “Towards hybrid model persistence,” in Proceedings of MODELS
2018 Workshops co-located with ACM/IEEE 21st International Confer-
ence on Model Driven Engineering Languages and Systems (MODELS
2018), Copenhagen, Denmark, October, 14, 2018., 2018, pp. 594–603.
[Online]. Available: http://ceur-ws.org/Vol-2245/me_paper_3.pdf

[4] A. Yohannis, H. H. Rodriguez, F. Polack, and D. Kolovos, “Towards
efficient comparison of change-based models,” B. Combemale and
A. Shaukat, Eds., vol. 18, no. 2, Jul. 2019, pp. 7:1–21, the 15th European
Conference on Modelling Foundations and Applications. [Online].
Available: http://www.jot.fm/contents/issue_2019_02/article7.html

[5] JGraph, “mxGraph 4.0.0,” https://jgraph.github.io/mxgraph/, accessed:
2019-06-05.

[6] Eclipse, “Eclipse BPMN2 Modeler,” https://www.eclipse.org/
bpmn2-modeler/, accessed: 2019-06-04.

[7] EpsilonLabs, “emf-cbp/ChangeEventAdapater.java,” https:
//github.com/epsilonlabs/emf-cbp/blob/master/org.eclipse.epsilon.
cbp/src/org/eclipse/epsilon/cbp/event/ChangeEventAdapter.java, accessed:
2019-06-06.

[8] Eclipse, “EcoreTools - Graphical Modeling for Ecore - Eclipse,” https:
//www.eclipse.org/ecoretools/, accessed: 2019-06-10.

[9] D. S. Kolovos, A. García-Domínguez, L. M. Rose, and R. F.
Paige, “Eugenia: towards disciplined and automated development of
gmf-based graphical model editors,” Software & Systems Modeling,
vol. 16, no. 1, pp. 229–255, Feb 2017. [Online]. Available:
https://doi.org/10.1007/s10270-015-0455-3

[10] Eclipse, “Sirius - Overview - Eclipse,” https://www.eclipse.org/sirius/,
accessed: 2019-06-10.

[11] B. Fritscher and Y. Pigneur, “Visualizing business model evolution
with the business model canvas: Concept and tool,” in 2014 IEEE 16th
Conference on Business Informatics, vol. 1, July 2014, pp. 151–158.

[12] A.-L. Mattila, P. Ihantola, T. Kilamo, A. Luoto, M. Nurminen, and
H. Väätäjä, “Software visualization today: Systematic literature review,”
in Proceedings of the 20th International Academic Mindtrek Conference,
ser. AcademicMindtrek ’16. New York, NY, USA: ACM, 2016, pp. 262–
271. [Online]. Available: http://doi.acm.org/10.1145/2994310.2994327

[13] S. Maier and M. Minas, “Recording, processing, and visualizing changes
in diagrams,” in 2015 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), Oct 2015, pp. 131–135.

[14] Eclipse, “EMF Compare,” https://www.eclipse.org/emf/compare/, ac-
cessed: 2018-01-15.

