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Abstract

A weakly nonlinear analysis is conducted for localized bulging of an inflated hyperelastic

cylindrical tube of arbitrary wall thickness. Analytical expressions are obtained for the

coefficients in the amplitude equation despite the fact that the primary deformation is inho-

mogeneous and the incremental governing equations have variable coefficients. It is shown

that for each value of wall thickness a localized bulging solution does indeed bifurcate sub-

critically from the primary solution for almost all values of fixed axial force or fixed axial

stretch for which the bifurcation condition is satisfied, as reported in all previous experi-

mental studies, but there also exist extreme cases of fixed axial stretch for which localized

bulging gives way to localized necking. Validation is carried out by comparing with results

obtained under the membrane assumption and with fully numerical simulations based on

Abaqus. It is shown that even for thin-walled tubes the membrane approximation becomes

poorer and poorer as the tube is subjected to increasingly larger and larger axial stretch or

force prior to inflation.
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1. Introduction

This paper continues our systematic studies on localized bulging of inflated hyperelastic

tubes for the entire range of wall thickness. Based on the membrane assumption, our early

studies include the establishment of localized bulging as a bifurcation phenomenon (Fu et al.,

2008), and analysis of imperfection sensitivity (Fu & Xie, 2012) and stability of the bulged

configurations (Iĺıchev & Fu, 2012, 2014; Fu & Xie, 2010, 2012; Fu & Iĺıchev, 2015). Our

recent studies have abandoned the membrane assumption and attention has turned to tubes

of arbitrary wall thickness. It was shown in Fu et al. (2016) that the bifurcation condition

for localized bulging of inflated tubes of arbitrary wall thickness takes a very simple form,

namely that the Jacobian determinant of the internal pressure and resultant axial force as

∗Corresponding author at: School of Computing and Mathematics, Keele University, Staffordshire ST5
5BG, UK

Email address: y.fu@keele.ac.uk (Yibin Fu)

Preprint submitted to Elsevier November 26, 2019



functions of two principal stretches is zero. This result makes it possible to examine the effect

of rotation (Wang et al., 2017b), fibre-reinforcement (Wang & Fu, 2018), and multi-layering

(Liu et al., 2019; Ye et al., 2019) in a systematic manner. An experimental study guided by

these newly emerged theoretical results has also been conducted (Wang et al., 2019).

When the membrane assumption is used, the governing equations are ordinary differential

equations and due to the existence of two conservation laws the entire inflation process can

be understood analytically or semi-analytically (Pearce & Fu, 2010). When the membrane

assumption is removed and tubes of arbitrary wall-thickness are considered, the governing

equations are nonlinear partial differential equations, and as a result even a weakly nonlinear

near-critical analysis becomes a non-trivial task. Currently, the only means to understand

the post-bifurcation behaviour is through numerical simulations. The current paper makes

the first analytical step. The main question to be addressed is whether localized bulging

can indeed take place when the bifurcation condition is satisfied and, if it can, whether it

is always a sub-critical bifurcation for all values of wall-thickness. This is achieved through

derivation of an explicit weakly nonlinear amplitude equation.

Our previous and current studies draw together three different strands of research on

circular cylindrical hyperelastic tubes that are subject to large deformations. The first

strand consists of bifurcation and stability studies in which the bifurcation or instability

modes are periodic in the axial and/or azimuthal direction; see, for instance, Shield (1972),

Haughton & Ogden (1979a,b), Chen (1997), Chen & Haughton (2003), Merodio & Haughton

(2010), and Rodriguez & Merodio (2011). The second strand is concerned with the so-

called “limiting-point” instability, which refers to the fact that under uniform inflation the

pressure as a function of internal volume may reach a maximum; see Alexander (1971),

Benedict et al. (1979), Kanner & Horgan (2007), Ren et al. (2011), Horny et al. (2015), and

the references therein. The third strand comprises analytical, experimental and numerical

studies of localized bulging; see, for instance, Yin (1977), Chater & Hutchinson (1991),

Kyriakides & Chang (1990, 1991), Shi & Moita (1996), Pamplona et al. (2006), Goncalves

et al. (2008). It is now understood that (i) the pressure maximum in the limiting-point

stability analysis is the initiation pressure for localized bulging when the resultant axial force

is fixed, but this correspondence may not exist when other end conditions are considered

(for instance, the case of fixed axial length), and (ii) the bifurcation condition of Haughton

& Ogden (1979a) with the mode number in the axial direction set to zero is in fact also

the bifurcation condition for localized bulging although the mode corresponds to an extra

uniform expansion in the radial direction and is seemingly unrelated to localized bulging.

Inflation of a circular cylindrical tube is a fundamental problem in finite elasticity (Green

& Zerna, 1954). The uniform inflation solution can be obtained in closed-form even for the

most general strain-energy function and can be used as a bench-mark solution in many

applications. It is one of the simplest situations to derive the Kortewed-de Vries equation

and hence to demonstrate the existence of solitary waves under the combined effects of
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nonlinearity and weak dispersion (Fu & Iĺıchev, 2010). It is also probably the simplest

prototypical example to demonstrate the coexistence of two uniform deformations and how

a high-gradient theory in lower dimension can be derived from the exact nonlinear elasticity

theory (Lestringant & Audoly, 2018). Recent interest in the localized bulging problem has

also been spurred by its relevance to modelling aneurysm initiation and rupture (Ren, 2007;

Fu et al., 2012; Varatharajan & DasGupta, 2017; Alhayani et al., 2013, 2014; Demirkoparan

& Merodio, 2017b), suppression of localized bulging in energy harvesting devices (Bucchi &

Hearn, 2013a,b), and potential use of electroelastic tubes in actuators (Lu et al., 2015; An

et al., 2015; Wang et al., 2017a). Other recent studies have addressed the effects of swelling

(Demirkoparan & Merodio, 2017a), viscoelasticity/chemorheology (Wineman, 2015, 2017),

and plasticity (Takla, 2018).

Post-buckling analysis was routinely carried out for solids and structures described by

approximate plate and shell theories (Hutchinson & Koiter, 1972; Potier-Ferry, 1987), but

in the context of nonlinear elasticity it is relatively limited; here stability and bifurcation

analysis has predominantly been linear. The first nonlinear study seems to be the one by

Sawyers & Rivlin (1982), followed much later by Fu & Rogerson (1994), Fu (1995), Fu &

Ogden (1999), and Triantafyllidis et al. (2007) which are all concerned with hyperelastic

plates. The recent study by Chakrabarti et al. (2018) is also about a plate but is concerned

with buckling patterns produced by the elastic Rayleigh-Taylor instability when a very soft

plate is hanging below a rigid horizontal plane. The slightly more challenging geometry of

a coated hyperelastic half-space was examined by Cai & Fu (1999) and Hutchinson (2012);

they showed that depending on how stiff the coating layer is relative to the half-space,

the bifurcation can be super-critical or sub-critical. This result helps us understand why

creases appear when the coating layer and half-space have comparable stiffness whereas

robust sinusoidal patterns appear when the coating layer is much stiffer than the half-space

(Cao & Hutchinson, 2012). Weakly nonlinear analysis involving circular cylindrical geometry

has recently been conducted by Richard et al. (2018) for the buckling of a spinning elastic

cylinder and by Jin et al. (2019) for pattern formation in growing tubular tissues. Our

current study also involves circular cylindrical geometry, but our analysis is concerned with

a localized bifurcation mode. For explanations of the general methods of buckling/stability

analysis, we refer to van der Heijden (2009) and Fu (2001).

The rest of this paper is divided into four sections as follows. In the next section we sum-

marize previously known results for the primary deformation and the bifurcation condition,

and derive the incremental equations. This is then followed in Section 3 by a derivation of

the amplitude equation governing the shape of the localized bulging solution. In Section 4

we present numerical results and compare them with the membrane theory and Abaqus sim-

ulations. The paper is concluded with a summary of our main results and some additional

discussions.
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2. Problem formulation

2.1. Primary deformation

Consider a sufficiently long circular cylindrical tube that is made of an incompressible

hyperelastic material. It initially has inner radius A and outer radius B, and when it is

uniformly stretched in the axial direction and inflated by an internal pressure P , the inner

and outer radii become a and b, respectively. In terms of cylindrical polar coordinates, the

deformation is given by

r = r(R), θ = Θ, z = λzZ,

where (R,Θ, Z) and (r, θ, z) are the coordinates in the undeformed and deformed configu-

rations, respectively, and λz is the constant stretch in the axial direction. The deformation

gradient F is then given by

F =
r

R
eθ ⊗ eθ + λzez ⊗ ez + r′(R)er ⊗ er, (2.1)

so that the three principal stretches are simply

λ1 =
r

R
, λ2 = λz, λ3 = 1/(λ1λ2),

where (er, eθ, ez) is the common orthonormal basis for the two sets of cylindrical polar

coordinates, and as in Haughton & Ogden (1979b) we have identified the indices 1, 2, 3 with

the θ-, z-, and r-directions, respectively.

Incompressibility implies that

r2 = λ−1
z (R2 − A2) + a2, (2.2)

which defines function r(R) (or R as a function of r). The constitutive behaviour is deter-

mined by the strain-energy function W (λ1, λ2, λ3), in terms of which the non-zero Cauchy

stress components are given by

σii = λi
∂W

∂λi

− p, no summation on i, (2.3)

where p is a Lagrangian multiplier associated with the constraint of incompressibility. It can

then be shown (Haughton & Ogden, 1979b) that in terms of a reduced strain-energy function

w(λ1, λ2) defined by

w(λ1, λ2) = W (λ1, λ2, λ
−1
1 λ−1

2 ),

the internal pressure P and the resultant axial force N are given by

P ≡ −σ33|r=a =

∫ λa

λb

w1

λ2λz − 1
dλ, (2.4)

N ≡ 2π

∫ b

a

σ22rdr − πa2P = πA2(λ2
aλz − 1)

∫ λa

λb

2λzw2 − λw1

(λ2λz − 1)2
λdλ, (2.5)
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where the two limits λa and λb are defined by

λa =
a

A
, λb =

b

B
,

and are related to each other through the incompressibility condition by

λ2
aλz − 1 =

B2

A2
(λ2

bλz − 1). (2.6)

With λb eliminated with the use of (2.6), the load parameters P and N can be viewed as

functions of the deformation parameters λa and λz. It is shown in Fu et al. (2016) that the

bifurcation condition for localized bulging is given by

Ω(λa, λz) ≡
∂P

∂λa

∂N

∂λz
− ∂P

∂λz

∂N

∂λa
= 0, (2.7)

which states that the Jacobian determinant of the vector function (P,N) vanishes. Alter-

natively, the variable λa in the above expression can be replaced by the internal volume (Fu

et al., 2018).

In the membrane approximation, it is convenient to define the wall thickness H = B−A,

averaged radius Rm = (A+B)/2, and a dimensionless thickness parameter α through

α = H/Rm.

The membrane limit is then characterized by α → 0, and it can be shown (Fu et al., 2016)

that to leading order,

P = α
w1

λmλz

, N = 2πR2
mα

(

w2 −
λmw1

2λz

)

, (2.8)

where λm is the azimuthal stretch at the mid-surface R = Rm and w1 = ∂w/∂λ1, w2 =

∂w/∂λ2. The neglected terms in both expressions are of order α3, which gives some inkling

on why the membrane approximation is capable of giving accurate results even for tubes of

moderate wall thicknesses. This was quantified in Fu et al. (2016).

On substituting (2.8) into (2.7), we obtain the following bifurcation condition in the

membrane limit:

λm(w1 − λzw12)
2 + λ2

zw22(w1 − λmw11) = 0, (2.9)

where w12 = ∂2w/∂λ1∂λ2 etc. The above condition was first recognized by Fu et al. (2008)

as the condition for localized bulging, but the expression had already featured in the study

of Haughton & Ogden (1979a) as the condition for a sinusoidal mode with zero axial mode

number to bifurcate from the uniformly inflated configuration. In the case of fixed N , this

condition corresponds to the condition for the so-called limiting-point instability (Alexander,

1971).
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2.2. Incremental equations

To introduce the incremental equations, we denote by B0 and Be the un-inflated con-

figuration and the finitely deformed configuration determined in the previous section, re-

spectively. The deformation gradient from B0 and Be is denoted by F̄ (which supersedes

the notation F in (2.1)) and the associated nominal stress by S̄. A small amplitude axially

symmetric perturbation is now applied to Be, giving rise to the final configuration Bt, and

the associated incremental displacement field δx is given by

δx = u(r, z)er + v(r, z)ez. (2.10)

The deformation gradient corresponding to the deformation B0 → Bt is denoted by F and

the associated nominal stress by S. We write F = (I+η)F̄ so that η denotes the deformation

gradient associated with the incremental deformation Be → Bt. The divergence operator

with respect to coordinates in B0 and Be will be denoted by Div and div, respectively.

The incremental equilibrium equation can best be expressed in terms of the incremental

stress tensor χ defined by

χT = J̄−1F̄ (S − S̄), (2.11)

where the superscript T stands for transpose, and J̄ denotes the determinant of F̄ (which is

unity in the current case but is kept in the formula to maintain the generality of the formula).

With the use of the identity div J̄−1F̄ = 0 and the equilibrium equations Div S̄ = 0 and

DivS = 0, we obtain

div χT = 0. (2.12)

For the current axi-symmetric deformation, only the equations corresponding to i = 2, 3 are

not satisfied automatically, and they are given by

χ3j,j +
1

r
(χ33 − χ11) = 0, χ2j,j +

1

r
χ23 = 0. (2.13)

For our weakly nonlinear analysis, we need expansions of χij up to the quadratic order, and

they are given by

χij = Bjilkηkl + p̄ξji − p∗(δji − ξji) +
1

2
B2

jilknmηklηmn + · · · , (2.14)

where

ξji = δji − F−1
Ai F̄jA = ηji − ηjmηmi + · · · . (2.15)

See, e.g., Fu & Ogden (1999). In (2.14) the p̄ and p∗ are the Lagrangian multipliers associated

with the deformations B0 → Be and Be → Bt, respectively. The ηkl are the components of

η given by

η =









u

r
0 0

0 vz vr

0 uz ur









, vz ≡
∂v

∂z
, vr ≡

∂v

∂r
etc, (2.16)
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and Bjilk and B2
jilknm are the 1st- and 2nd-order instantaneous elastic moduli, the expressions

of which can be found in Ogden (1984) or Fu & Ogden (1999).

Due to the introduction of the extra variable p∗, the equilibrium equations are augmented

by the incompressibility condition which can be expanded as

ηii −
1

2
ηmnηnm + ... = 0. (2.17)

When (2.14) is substituted into (2.12), the resulting expression can be simplified by making

use of the fact that div ξ = 0, which follows from

div ξ = div (I − F̄F−1) = −div (J̄−1F̄F−1) = −J̄−1Div (F−1) = −J̄−1Div (JF−1) = 0,

where use has in turn been made of the relation (2.15) and the identities div (J̄−1F̄ ) = 0

and Div (JF−1) = 0. More precisely, we shall replace (2.12) by

l ≡ div χT − (p̄+ p∗) div ξ = 0 (2.18)

in the subsequent derivations.

We also need to expand the boundary conditions to quadratic order. The external surface

of the tube is assumed to be traction-free, and the inner surface is subjected to a hydrostatic

pressure P . It then follows that on the inner surface we have

STFTñ = −P ñ, S̄TF̄Tn = −Pn,

where ñ is the unit outward normal to the inner surface in Bt and n its counterpart in Be.

The two unit normals are related by Nanson’s formula

F̄Tnda = FTñdã,

where da and dã are area differentials in Be and Bt, respectively. With the use of these

expressions, we obtain

χnda = STF̄Tnda− S̄TF̄Tnda = STFTñdã− S̄TF̄Tnda = −P ñdã+ Pnda

= −PF−TF̄Tnda+ Pnda = PξTnda.

Thus, we have

χn = −σ33ξ
Tn, on r = a, (2.19)

where we have used the boundary condition σ33|r=a = −P . The outer surface is traction

free, and so the associated boundary condition is simply χn = 0 which can be replaced by

χn = −σ33ξ
Tn since σ33|r=b = 0. Therefore, the boundary conditions on the inner and outer

surfaces can both be written in the form

χ∗

23 = 0, χ∗

33 = 0, on r = a, b, (2.20)

where χ∗ is defined by

χ∗ = χ+ σ33ξ
T. (2.21)

When the nonlinear terms are neglected, these boundary conditions are consistent with the

boundary conditions (21) in Haughton & Ogden (1979b).
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3. Near-critical bulging solution

We now look for an asymptotic solution for (2.17) and (2.18) subject to the boundary

conditions (2.20). We use λa as the control parameter in our post-bifurcation analysis. The

λz is either fixed or determined from the end condition N = const. The idealized case of

fixed λz is used to approximate the case of fixed axial length which can be realized more

easily experimentally or in Abaqus simulations. This approximation is expected to be valid

in the initial stage of bulge growth although the two cases differ more and more as the bulge

evolves further.

Guided by the analysis in Fu (2001), we may write

λa = λacr + ελ0, (3.1)

and define a far distance variable s through

s =
√
εz, (3.2)

where λ0 is a constant and ε is a small positive parameter characterizing the order of deviation

of λa from its critical value λacr. Note that as a result of (3.1), the moduli Bjilk and B2
jilknm,

the deformed radii a and b, and λz (if not fixed) must all be expanded in terms of ε as well,

but these expansions are not written out for the sake of brevity. Again guided by the scalings

given by Fu (2001), we may assume

u = O(
√
εv), p∗ = O(

√
εv),

and that v is of order
√
ε. Thus, we look for an asymptotic solution of the form

u = ε
{

u(1)(r, s) + εu(2)(r, s) + ε2u(3)(r, s) + · · ·
}

,

v =
√
ε
{

v(1)(r, s) + εv(2)(r, s) + ε2v(3)(r, s) + · · ·
}

, (3.3)

p∗ = ε
{

p(1)(r, s) + εp(2)(r, s) + ε2p(3)(r, s) + · · ·
}

,

where all the functions on the right hands are to be determined from successive approxima-

tions.

In the linear analysis, the incremental pressure p∗ can be eliminated by subtracting the

cross-differentiations of the two equilibrium equations in (2.18), that is from l3,2 − l2,3 = 0.

In the current nonlinear setting, it is no longer possible to eliminate p∗ completely, but the

above manipulation still helps since it can at least eliminate p∗ from the first and second

orders.

On substituting (3.3) into l3,2 − l2,3 = 0, the incompressibility condition (2.17), the

boundary conditions (2.20), and then equating the coefficients of like powers of ε, we obtain

a hierarchy of boundary value problems. To leading order, we obtain

d

dr

1

r

d

dr
rζ(r)v(1)rs = 0, v(1)s +

1

r

d

dr
ru(1) = 0, a < r < b, (3.4)
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and

v(1)rs = 0,
1

r

d

dr
rζ(r)v(1)rs = 0, on r = a, b, (3.5)

where ζ(r) = B3232 and v
(1)
rs = ∂2v(1)/∂r∂s. Note that a and b are now the inner and outer

radii at the critical configuration.

Using (3.4)2 to eliminate v
(1)
s from (3.4)1 and (3.5), we obtain

L[u(1)] = 0, a < r < b, (3.6)

B1[u
(1)] = 0, B2[u

(1)] = 0, on r = a, b, (3.7)

where the three differential operators are defined by

L[u] = d

dr

1

r

d

dr
rζ(r)

d

dr

1

r

d

dr
ru, B1[u] =

1

r

d

dr
rζ(r)

d

dr

1

r

d

dr
ru, B2[u] =

d

dr

1

r

d

dr
ru.

On integrating (3.4), we find that v(1) and u(1) must be a linear combination of the indepen-

dent solutions

1, κ̂1(r), κ̂2(r),

and

r,
1

r
, κ1(r), κ2(r),

respectively, where

κ̂1(r) =

∫ r

a

s

ζ(s)
ds, κ̂2(r) =

∫ r

a

1

sζ(s)
ds,

κ1(r) =
1

r

∫ r

a

tκ̂1(t)dt κ2(r) =
1

r

∫ r

a

tκ̂2(t)dt.

However, on substituting this general solution into the boundary conditions (3.5), we find

that the coefficients of κ̂1, κ̂2, κ1, κ2 must necessarily vanish, and so u(1) and v(1) take the

reduced form

v(1) = −A1(s), u(1) = c1(s)r + c2(s)
1

r
, (3.8)

where c1(s) and c2(s) are arbitrary functions, and A′

1(s) = 2c1(s).

At second order, we find that u(2) and v(2) satisfy the governing equations

d

dr

1

r

d

dr
rζ(r)v(2)rs = h1, v(2)s +

1

r

d

dr
ru(2) = h2, a < r < b, (3.9)

and boundary conditions

v(2)rs = h3,
1

r

d

dr
rζ(r)v(2)rs = h4, on r = a, b, (3.10)

where the inhomogeneous terms h1, h2, h3 and h4 on the right hand sides involve the leading

order solution u(1). It turns out that h1 is linear in terms of c′1(s) and c′2(s), taking the form

h1 = −c′1(s)ω1(r)− c′2(s)ω2(r), (3.11)
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where ω1(r) and ω2(r) are as defined in Fu et al. (2016). Solving (3.9)1 then yields

v(2) = −A2(s)− A3(s)κ̂1(r)− A4(s)κ̂2(r)− c′1(s)κ̂3(r)− c′2(s)κ̂4(r), (3.12)

where

κ̂3(r) =

∫ r

a

1

xζ(x)

∫ x

a

t

∫ t

a

ω1(s)dsdtdx, κ̂4(r) =

∫ r

a

1

xζ(x)

∫ x

a

t

∫ t

a

ω2(s)dsdtdx. (3.13)

It is seen that the first three terms in (3.12) are the complementary solution whereas the last

two terms represent a particular integral. In view of the fact that the boundary conditions

(3.10) does not involve u(2), we may now substitute (3.8) and (3.12) into (3.10) and obtain a

matrix equation of the form Md = 0 where M is a 4×4 matrix which is not written out here

for the sake of brevity, and d is the column vector formed from the four unknown functions

c′′1(s), c
′′

2(s), A
′

3(s), A
′

4(s). It then follows that detM = 0 must be satisfied for a non-trivial

solution to exist. This condition is simply the bifurcation condition, and is verified numeri-

cally to be equivalent to (2.7) as pointed out by Fu et al. (2016). Also, c′′2(s), A
′

3(s), A
′

4(s) can

be expressed as constant multiples of c′′1(s). In particular, after integrating the expression

for c′′2(s) twice, we obtain

c2(s) = Γc1(s) (3.14)

for localized solutions, where Γ is a constant depending on tube wall thickness and the

material model used.

Once u(1), v(1) and v(2) are known, the leading order incremental pressure p(1) can be

obtained by equating the coefficients of ε3/2 in (2.13)2 and then integrating the resulting

equation with respect to s. We thus obtain

p(1) =

{

B2211 − 2B2222 +B2233 + 2B3223 + rB′

3223 −
∫ r

0

ω1(t)dt+ rp̄′
}

c1(s)

+
1

r2

{

B2211 − 2B2233 + rB′

3223 − r2
∫ r

0

ω2(t)dt+ rp̄′
}

c2(s)− 2

∫ s

−∞

A3(s)ds. (3.15)

Finally, u(2) can be determined from the incompressibility condition (3.9) as

u(2) = c3(s)r +
1

r
c4(s) + A′

3(s)κ1(r) + A′

4(s)κ2(r)

+c′′1(s)κ3(r) + c′′4(s)κ4(r) +
3

2
rc21(s)−

1

2r3
c22(s), (3.16)

where c4(s) is a new arbitrary function arising from integration, c3(s) = A′

2(s)/2, and

κ3(r) =
1

r

∫ r

a

tκ̂3(t)dt, κ4(r) =
1

r

∫ r

a

tκ̂4(t)dt. (3.17)

This then completes the first and second order solutions, and we are now in a position to

derive the amplitude equation.
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At third order, u(3) and v(3) satisfy a boundary value problem similar to (3.9)–(3.10).

However, the inhomogeneous term in the counterpart of (3.9)1 now contains nonlinear terms,

and as a result the solution takes the form

v(3) = −A7(s)− A5(s)κ̂1(r)− A6(s)κ̂2(r)− c′3(s)κ̂3(r)− c′4(s)κ̂4(r) + κ5(r, s), (3.18)

where the first five terms are similar to those in (3.12) with A5(s), A6(s), A7(s) to be de-

termined at higher order, and κ5(r, s) is a particular solution associated with the nonlinear

terms mentioned above. Substituting (3.18) and the lower order solutions into the associated

boundary conditions, we obtain a matrix equation of the form Me = f , where the column

vector e is formed from the four unknown functions c′′3(s), c
′′

4(s), A
′

5(s), A
′

6(s), and the right

hand side f contains lower order solutions and can be expressed entirely in terms of c1(s).

Since M is singular, a solvability condition, given by f ·h = 0, must be satisfied by f , where

h is a solution of MTh = 0. After some rearrangement, we find that the solvability condition

takes the form

c′′′′1 (s) + λ0k1c
′′

1(s) + k2(c
2
1(s))

′′ = 0, (3.19)

where k1 and k2 are constants whose expressions are obtained with the aid of Mathematica

(Wolfram Research Inc, 2019), but are not presented here for the sake of brevity.

The above method of deriving the amplitude equation is conceptually simple, but the

expressions obtained for k1 and k2 are quite lengthy. As is usual in this kind of problems,

there is no need to actually solve the differential equation for v(3) if the solvability condition

is all we need to find. One alternative method is to make use of the fact that for arbitrary

functions f(r) and g(r) that are sufficiently smooth, there exists the identity

∫ b

a

rgL[f ]− rfL[g]dr = (rgB1[f ]− rfB1[g] + (rf)′ζ(r)B2[g]− (rg)′ζ(r)B2[f ])|ba, (3.20)

which implies that the operator L is self-adjoint. In particular, taking g to be any solution

of (3.6) subject to (3.7), and f = u(m), m = 2, 3, we obtain

∫ b

a

rgL[u(m)]dr = (rgB1[u
(m)]− (rg)′ζ(r)B2[u

(m)])|ba. (3.21)

Note that L[u(m)],B1[u
(m)] and B2[u

(m)] are each equal to an expression that only involves

lower order solutions. Thus, taking m = 2, and g = r or 1/r in turn in (3.21), we would

obtain a matrix equation of the form M̂ d̂ = 0 where M̂ is a 2 × 2 matrix, and d̂ is the

column vector formed from the two functions c′′1(s) and c′′2(s). The bifurcation condition is

then also given by det M̂ = 0, which provides a check on the bifurcation condition detM = 0

obtained earlier.

On the other hand, by taking m = 3, and g = r and 1/r in turn in (3.21), we obtain a

matrix equation of the form M̂ ê = f̂ , where the 2-vector ê is formed from the two functions

c′′3(s) and c′′4(s), and the right hand side f̂ only involves leading and second order solutions.
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Since M̂ is singular, the vector function f̂ must satisfy the solvability condition f̂ ·ĥ = 0 with

ĥ denoting a solution of M̂T ĥ = 0. This should and does indeed give the same amplitude

equation (3.19), but with simpler expressions for the coefficients.

Focusing on localized solutions that satisfy the decaying conditions c1(s) → 0 as s → ±∞,

we may integrate (3.19) twice to obtain

c′′1(s) = λ0k1c1(s) + k2c
2
1(s). (3.22)

In the bulged configuration, the radius at the mid-surface r = rm, denoted by r̃(z), is given

by

r̃(z) = rm + u(rm, z) = rcr + εr1 + ε

(

rcr +
Γ

rcr

)

c1(s), (3.23)

where Γ is defined by (3.14) and the near-critical expansion rm = rcr+εr1 is the counterpart

of (3.1) for rm (the connection between r1 and λ0, for instance, will be derived shortly in the

membrane limit). Also, here and hereafter we consistently neglect terms of order ε2. It is

then appropriate to define a normalized amplitude A(s) through

A(s) = (rcr +
Γ

rcr
)c1(s). (3.24)

In terms of A the amplitude equation (3.22) takes the form

A′′(s) = k3r1A(s) + k4A
2(s), (3.25)

where

k3 = (λ0/r1)k1, k4 = k2(rcr +
Γ

rcr
)−1.

This amplitude equation is of the same form as that obtained under the membrane assump-

tion, as will be discussed further later. It takes the same form as the ordinary differential

equation governing the shape of steady solitary wave solutions of the well-known Kortewed-

de Vries (KdV) equation ut − 6uux + uxxx = 0. The localized bulging solution that we are

looking for is simply a standing solitary wave, and is given by

A(s) = −3r1k3
2k4

sech2(
1

2

√

r1k3s). (3.26)

We note that the above solution is only defined if r1k3 is positive. Since a positive value of

r1 corresponds to a higher value of rm above its critical value (and hence a higher pressure),

it follows that bifurcation into the above localized solution is supercritical if k3 > 0 and

subcritical if k3 < 0. Assume that r1k3 > 0. The bifurcation solution (3.26) then represents

a bulge (a bright soliton) if k4 < 0 or a neck (a dark soliton) if k4 > 0. All experiments

that have been carried out so far for isotropic rubber tubes seem to indicate that the first

bifurcation value of λa corresponds to localized bulging and the bifurcation is subcritical.

This will partially be confirmed in the next section by numerical results based on our analysis
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although it will be shown that localized necking is also possible in some extreme cases. If k3

happened to be zero, then higher order terms would need to be included by re-scaling the

independent and dependent variables.

As a first check on the validity of the amplitude equation (3.22), we note that it admits

a constant solution given by

c1(s) = −k1
k2

λ0.

Corresponding to this solution the azimuthal stretch on the inner surface is given by

λ̃a = λa +
u(a, z)

A
= λacr + ελ0 − ε

(

λacr +
Γ

A2λacr

)

k1
k2

λ0 + · · · . (3.27)

In the case of fixed N , the bifurcation stretch λacr corresponds to the pressure maximum,

and the azimuthal stretch λ̃a given by the above expression and by (3.1) are two possible

constant solutions corresponding to the same pressure. With the aid of the local expansion

P = Pcr +
1

2

d2P

dλ2
a

∣

∣

∣

∣

λa=λacr

(λa − λacr)
2 + · · · ,

it then follows that

(λa − λacr)
2 = (λ̃a − λacr)

2, =⇒ λa − λacr = −(λ̃a − λacr),

and hence that
(

λacr +
Γ

A2λacr

)

k1
k2

= 2. (3.28)

This identity is monitored in all our numerical computations for fixed N .

4. Numerical results

In this section, we present some illustrative numerical results and compare them with

the corresponding membrane theory results and Abaqus simulations (ABAQUS, 2013). Our

expressions for the coefficients in the amplitude equation are analytical, but contain a num-

ber of definite integrals that cannot be evaluated analytically. These integrals are evaluated

numerically using the following strategy. Take as an example the evaluation of κ3(r) de-

fined by (3.17)1 together with (3.13)1. We first discretize the interval [a, b] with equally

spaced node points a < r1 < r2 < · · · rn = b. The integrals
∫ ri
a
ω1(s)ds (i = 1, 2, ..., n)

are evaluated numerically using the built-in command NIntegrate on Mathematica. The

function
∫ t

a
ω1(s)ds (a ≤ t ≤ b) is then defined by the built-in command Interpolation on

Mathematica. Further integrals involving this numerically defined function are determined

in a similar manner. To avoid errors arising from differentiation of such numerically defined

functions, derivatives of such functions are eliminated using analytical expressions wherever

possible. For instance, κ′

3(r) is eliminated with the use of κ′

3(r) = −κ3(r)/r + κ̂3(r) that
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follows from (3.17)1, and κ′′

3(r) is eliminated by differentiating this analytical expression a-

gain. The number of discretizing points is varied to test accuracy. It is found that choosing

this number to be 200 gives numerical results with at least three significant figures and the

identity (3.28) is satisfied with a relative error less than 1% except when the two bifurcation

points get very close.

We shall assume that the strain energy function is given by the Gent material model:

W = −µ

2
Jm ln(1− λ2

1 + λ2
2 + λ2

3 − 3

Jm

), (4.1)

where µ is the ground state shear modulus and Jm is a material constant characterizing mate-

rial extensibility which we take to be 97.2, a typical value for rubber materials (Gent, 1996).

To facilitate comparison, we shall scale all length variables/parameters by the averaged ra-

dius Rm, the internal pressure by αµ, and the resultant axial force by 2πR2
mα; see (2.8). In

Figure 1(a), we have shown a representative solution of the bifurcation condition (2.7) when

α = 0.01 together with two possible loading paths N(λa, λz) = 0 and N(λa, λz) = 3.25,

respectively. Figure 1(b) shows the variation of P with respect to λa associated with the

condition N(λa, λz) = 0. We note that the pressure maximum and minimum correspond to

the intersections A and B in Figure 1(a), respectively. The two bifurcation points A and

B are associated with localized bulging and necking, respectively, and they get closer and

closer as N is increased, coalescing when N is approximately equal to 3.25. Thus, for the

case of fixed N , localized bulging is only possible for N less than 3.25. On the other hand, if

it is the axial stretch that is fixed during inflation, then localized bulging is only possible for

λz less than 3.61, the value at which the two bifurcation points coalesce. We do not make

precise statements about the lower bounds for N or λz. As N or λz is reduced, a point will

be reached where localized bulging gives way to periodic buckling. Determination of this

boundary is beyond the scope of this paper.
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Figure 1: (a) Solution of the bifurcation condition (2.7) and two possible loading paths with fixed N ; (b)

Relation between P and λa in uniform inflation with N = 0. The curve N = 0 in (a) can be viewed as a

loading path and the points A and B on this path correspond to points A and B in (b).

In our Abaqus simulations, all tubes have averaged radius equal to 10 units and total
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length equal to 300 units unless otherwise stated. We have also considered the total length

equal to 500, but the numerical results obtained are found to be graphically indistinguishable

from when the length is 300 units. To ensure that localized bulging initiates from the middle

point of the tube, a small section with length 20 units around the middle point is weakened

by taking its shear modulus to be 0.9995 times the modulus for the rest of the tube. For the

case of fixed N , the ends are allowed to move freely in the axial direction but are prevented

from moving in the radial direction. For the case of fixed total length, neither end is allowed

to move in the axial direction after applying the pre-stretch, but is free to move in the radial

direction. The r∞ is taken to be the averaged radius near the ends. This should provide a

very good approximation except when the rapid propagation stage is reached. The critical

stretch λacr given by Abaqus simulations typically differs from its exact value by around 1%.

Under the membrane assumption, the principal stretches at the center of the bulge (i.e.

z = 0) can be determined by solving two algebraic equations whether it is the N or λz

that is fixed (Fu et al., 2008). In the case of fixed length, these principal stretches can be

determined by using the iteration procedure explained in Wang et al. (2019). Thus, in all

three cases the amplitude diagrams can be obtained semi-analytically.

4.1. Validation of the coefficients k3 and k4 by comparing with the membrane theory

For the primary deformation, it can be shown that

λa = (rm − α

2rmλz
)(1− 1

2
α)−1, (4.2)

where rm is the constant radius of the mid-surface in the finitely inflated, non-bulged config-

uration when λa is given by (3.1), and is the main parameter used in the membrane theory.

When describing localized bulging solutions, we rewrite rm as r∞ to signify the fact that it

is the (scaled) uniform radius at infinity (but for a sufficiently long tube it is the radius near

the ends). If r∞ = rcr + εr1 as in Fu et al. (2008), then

λa = (rcr −
α

2rcrλz

)(1− 1

2
α)−1 + εr1(1−

1

2
α)−1, (4.3)

where we have neglected terms of order αε. Comparing this expression with (3.1) gives the

connections

λacr = (rcr −
α

2rcrλz

)(1− 1

2
α)−1, λ0 = r1(1−

1

2
α)−1. (4.4)

If we use the critical value rcr from the membrane theory to compute the right hand side of

(4.4)1, the result will differ from λacr determined from the exact bifurcation condition (2.7).

The accuracy of the membrane theory is then determined by how close these two values are.

Such a quantitative assessment has previously been carried out in Fu et al. (2016) and will

not be repeated here. It is the second connection in (4.4) that will be used in the comparison

of the amplitude equations.
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Table 1: Linear and non-linear coefficients given by the exact theory and their membrane approximations:

fixed λz = 1.5 and Gent model.

k3 k3mem |1− k3/k3mem| k4 k4mem 1− k4/k4mem|
α = 0.5 -0.9888 -1.060 6.7% -0.5928 -0.5854 1.3%

α = 0.4 -1.001 -1.060 5.6% -0.5904 -0.5854 0.85%

α = 0.3 -1.015 -1.060 4.2% -0.5891 -0.5854 0.63%

α = 0.2 -1.0291 -1.060 2.9% -0.5884 -0.5854 0.51%

α = 0.1 -1.044 -1.060 1.5% -0.5880 -0.5854 0.44%

α = 0.05 -1.052 -1.060 0.75% -0.5879 -0.5854 0.43%

α = 0.01 -1.058 -1.060 0.19% -0.5879 -0.5854 0.43 %

On the other hand, according to the weakly nonlinear analysis under the membrane

assumption, Fu et al. (2008), the radius at the mid-surface in the bulged configuration is

given by

r = rcr + εr1 + εy, (4.5)

where in terms of the notations used in the current paper y satisfies the differential equation

y′′(s) =
1

λ2
z

ω′(rcr)r1y +
3

2λ2
z

γ(rcr)y
2, (4.6)

and the coefficient functions ω(r∞) and γ(r∞) are as defined in Fu et al. (2008). Comparing

(4.6) with (3.24) then shows that we should have

k3 =
1

λ2
z

ω′(rcr) +O(α), k4 =
3

2λ2
z

γ(rcr) +O(α). (4.7)

Although it is not possible to establish this connection analytically due to the complex nature

of the expressions for k3 and k4, we can verify this numerically. We shall denote the first

terms on the right hand sides of (4.7) by k3mem and k4mem, respectively, and refer to them

as membrane approximations. In Table 1, we have shown values of these coefficients for the

case when λz is fixed to be 1.5. The corresponding results for the case of fixed N = 0 are

given in Table 2. It is seen that in the limit α → 0, our amplitude equation (3.25) does

indeed tend to its counterpart in the membrane theory.
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Table 2: Linear and non-linear coefficients given by the exact theory and their membrane approximations:

fixed N = 0 and Gent model.

k3 k3mem |1− k3/k3mem| k4 k4mem |1− k4/k4mem|
α = 0.5 -2.718 -3.217 16% -1.574 -1.609 2.2%

α = 0.4 -2.817 -3.217 12% -1.584 -1.609 1.6%

α = 0.3 -2.920 -3.217 9.2% -1.595 -1.609 0.87%

α = 0.2 -3.023 -3.217 6.0% -1.604 -1.609 0.31%

α = 0.1 -3.123 -3.217 2.9% -1.610 -1.609 0.062%

α = 0.05 -3.171 -3.217 1.4% -1.612 -1.609 0.19%

α = 0.01 -3.208 -3.217 0.28% -1.612 -1.609 0.19%
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Figure 2: Amplitude diagrams for a thin-walled tube with α = 0.04 and N = 0. The solid lines in both

(a) and (b) are numerical simulation results using Abaqus, the dashed line in (a) is the result based on the

membrane assumption, and the dashed line (b) is the weakly nonlinear result given by the full 3D theory.
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Figure 3: Amplitude diagrams for a thin-walled tube with α = 0.04 and λz fixed to be 1.5. The solid lines

in both (a) and (b) are numerical simulation results using Abaqus, the dashed line in (a) is the result based

on the membrane assumption, and the dashed line (b) is the weakly nonlinear result given by the full 3D

theory.
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Figure 4: Amplitude diagrams for a thick-walled tube with α = 0.5 and N = 0. The solid lines in both (a)

and (b) are numerical simulation results using Abaqus and the dashed line (b) is the weakly nonlinear result

given by the full 3D theory.
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Figure 5: Amplitude diagrams for a thick-walled tube with α = 0.5 and λz fixed to be 1.5. The solid lines

in both (a) and (b) are numerical simulation results using Abaqus and the dashed line (b) is the weakly

nonlinear result given by the full 3D theory.

4.2. Comparison with Abaqus simulations

The weakly nonlinear post-buckling solution for λ̃a(z) is given by

λ̃a(z) = λ∞ +
u

A
= λ∞ + ε

1

A
(a+

Γ

a
)c1(s), (4.8)

where a is now the inner radius in the critical configuration given by a = λacrA. In the above

expression we have neglected terms of order ε2. At z = 0, we have

λ̃a(0) = λ∞ − 1

A
(a+

Γ

a
)
3ελ0k1
2k2

,

= λ∞ − 1

A
(a +

Γ

a
)
3k1
2k2

(λ∞ − λacr). (4.9)

Thus, the bulge amplitude λ̃a(0)− λ∞ is a linear function of λ∞.
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For the case when the scaled wall thickness α is no longer small, we compare our weakly

nonlinear results with the numerical simulation results obtained with the aid of Abaqus.

Our Abaqus implementation is in turn validated by comparing with the membrane theory

when α is sufficiently small. Thus, in Figures 2 and 3 we have shown all the three sets

of results for a thin-walled tube with α = 0.04. In each figure the Abaqus simulation

results for both the variation of P versus λ̃a(0) and λ̃a(0) − λ∞ versus λ∞ are shown (as

solid lines), where λ̃a(z) denotes the azimuthal stretch on the inner surface in the bulged

configuration and λ∞ = λ̃a(∞). For the sake of clarity, in each figure we have only shown

the membrane theory result on the left (dashed line) and the weakly nonlinear result on

the right (dashed line). In the case of fixed N , after reaching its critical value for localized

bulging, the pressure decreases monotonically, and approaches, but would never reaches,

its propagation value. This value and the associated value of λ̃a(0) can be determined by

Maxwell’s equal area rule. In contrast, in the case of fixed length, the pressure decreases to

a minimum first and then grows slowly, and it is on this ascending branch that the bulge

starts to propagate rapidly in the axial direction. It is noted that there is excellent agreement

between the membrane theory results and Abaqus simulation results, and in particular both

exhibit non-smooth pressure variation at the pressure maximum in the case of fixed axial

stretch.

In Figures 2(b), 3(b), 4(b) and 5(b) we have shown the weakly nonlinear results together

with the Abaqus simulation results for both the thin-walled tube discussed above and another

thick-walled tube with α = 0.5. It is seen that for all cases the weakly nonlinear result

describes the near-critical behaviour correctly. We note that in Figures (3b) and (5b) our

weakly nonlinear result corresponds to fixed λz whereas the Abaqus simulations correspond

to fixed length. These two end conditions result in different post-bifurcation behavior, but

in a sufficiently small neighbourhood of the bifurcation point, the difference is expected to

be negligible. This is indeed seen in Figures (3b) and (5b).

4.3. Effect of increasingly larger and larger N or λz

We recall that inflation can be carried out by fixing either N or λz and localized bulging

cannot occur if either of these two values is large enough. In this subsection, we consider a

thin-walled tube with α = 0.01 and investigate the variations of the two coefficients k3 and

k4 with respect to N or λz. The results are presented in Tables 3 and 4 where we have also

shown the corresponding results obtained under the membrane assumption.

We first discuss the case of fixed N and recall that N = 3.47 is approximately the

maximum value beyond which localized bulging becomes impossible. It is seen in Table 3

that as N is increased towards this maximum value, k3 and k4 do not change sign, meaning

that the bifurcation is always sub-critical and corresponds to bulging. The ratio k3/k4 varies

between 1.65 and 1.99 which is not significant. However, both k3 and k4 decrease by several

orders of magnitude as the maximum of N is approached. Recall from (3.26) that the
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bulging solution depends on z through k3s so that the smaller the k3 is, the slower the

bulging solution decays. Thus, for instance, the bulging solution at N = 3.47 would spread

over a domain 30 times as large as the solution at N = 0. This is consistent with what has

been observed in our Abaqus simulations.

We next turn to the case of fixed axial stretch and recall that λz = 3.6 is approximately

the maximum value beyond which localized bulging becomes impossible. It is seen in Table

4 that the manner in which k3 and k4 behave as λz is increased towards its maximum value

is similar to when N is increased towards its maximum value. Thus, the bulging solution

would also spread over a larger and larger domain as λz is increased, but there is a major

difference between the current and previous cases. It is now observed that k4 changes sign as

λz is increased beyond the value of 3.5, whether it is the membrane theory or the 3D exact

theory that is used. This implies that if the tube is first stretched with λz greater than 3.5

and then inflated with the two ends fixed, the first bifurcation will correspond to localized

necking, instead of bulging, although the bifurcation is still sub-critical. Similar transition

behaviour is also observed for other values of wall thickness. To give this prediction more

credence, we have also run a series of numerical simulations with the use of Abaqus, and a

typical set of results is given in Figure 6. To produce the profile for necking centered around

z = 0, we have introduced a small imperfection such that the shear modulus for a small

middle section is 1.002 times the modulus for the rest of the tube. We also note that neither

bulging nor necking is as pronounced as the bulging for much lower values of λz. This is a

general feature as the maximum value of N or λz is approached, that is when localization

has almost become impossible.

Finally, we observe from Tables 3 and 4 that in both cases the membrane theory gives

increasingly poorer and poorer predictions for k3 and k4 as N or λz is increased towards its

respective maximum value. A general observation that can be made is that the membrane

theory tends to give poor approximations for stiff tubes, as demonstrated in Wang & Fu

(2018). In the current context, the higher the pre-stretch λz, the stiffer the tube becomes.

This will be discussed further in the concluding section.

5. Conclusion

In this paper we have shown that an amplitude equation describing the shape of a lo-

calized bulge/neck can be derived analytically for a tube of arbitrary wall thickness. This

equation can be used to determine whether the localization as a bifurcation phenomenon

is supercritical or subcritical and whether the bifurcation corresponds to localized bulging

or necking. We anticipated that the subcritical nature of the bifurcation was unlikely to
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Table 3: Dependence of k3 and k4 on N when inflation is carried out with fixed N .

k3 k3mem |1− k3/k3mem| k4 k4mem |1− k4/k4mem|
N = 0.00 −3.21 −3.22 0.287 % −1.612 −1.609 0.237 %

N = 1.00 −0.7205 −0.7103 1.44 % −0.3632 −0.3551 2.27 %

N = 2.00 −0.1391 −0.1347 3.25 % −0.07076 −0.06737 5.02 %

N = 2.50 −0.06020 −0.0577 4.360 % −0.03091 −0.02884 7.18 %

N = 3.00 −0.02332 −0.0218 6.89 % −0.01222 −0.01091 12.0 %

N = 3.25 −0.01217 −0.0109 11.7 % −0.006540 −0.005448 20.1 %

N = 3.47 −0.003299 −0.000556 494 % −0.001997 −0.0002775 619 %

Table 4: Dependence of k3 and k4 on λz when inflation is carried out with fixed λz.

k3 k3mem |1− k3/k3mem| k4 k4mem |1− k4/k4mem|
λz = 2.0 −0.3131 −0.3135 0.117 % −0.1597 − 0.1581 0.989 %

λz = 3.0 −0.03475 −0.03478 0.0680 % −0.01633 −0.01572 3.90 %

λz = 3.3 −0.01523 −0.01524 0.0554 % −0.006632 −0.006179 7.34 %

λz = 3.4 −0.01056 −0.01057 0.0520 % −0.004249 −0.003847 10.4 %

λz = 3.5 −0.0064 −0.006413 0.0329 % −0.002020 −0.001674 20.8 %

λz = 3.6 −0.002044 −0.002046 0.106 % 0.0007747 0.001048 26.1 %
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Figure 6: Abaqus simulation results that confirm the theoretical prediction that when λz = 3.5 bulging

occurs (upper figure) whereas when λz = 3.6 necking occurs (lower figure).

be changed by increased wall thickness, especially for the case of fixed N since the critical

pressure corresponds to the pressure maximum in uniform inflation. This is indeed con-

firmed by our numerical results which describe accurately the behaviour of the bifurcation

diagram near the bifurcation point. Additionally, our calculations also reveal that localized

bulging may give way to localized necking although it can only occur in the case of fixed axial

stretch and in a small interval of the axial stretch for the particular strain-energy function

used. This should be noted against the fact that only localized bulging has been reported

in previous experimental studies. The validity of the membrane theory in the description

of post-bifurcation states is assessed, and it is found that the membrane theory gives in-

creasingly poorer and poorer predictions when the tube is more and more stretched, through

either N or λz, before inflation is carried out.

Since our earlier study Wang & Fu (2018) has indicated that the membrane theory is not

suitable for finding the critical pressure for fibre-reinforced tubes or tube that exhibit similar

stiff behaviour, we decided to also carry out computations for a variety of models for arteries.

The most prominent feature associated with arterial models is the existence of a material

parameter, γ say, that describes the fractional percentage or relative stiffness/extensibility of

the reinforcing fibres. It was shown in Wang & Fu (2018) that for each fixed wall thickness,

the contour plot of the bifurcation condition (2.7) would move down as γ was increased

gradually, disappearing completely when γ reaches a critical value. In a similar manner, for

each fixed value of γ, the contour plot of (2.7) would also move down as the wall thickness

was increased gradually, disappearing completely when the wall thickness reaches a critical
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value. When the bifurcation condition does not have any solution, the tube will not suffer

localized bulging no matter how the tube is inflated (fixed N or fixed length). There also

exist intermediate values of γ for which localized bulging cannot occur for fixed N but

can take place for fixed length. It turns out that all the features described above are also

exhibited by the following simple isotropic model that has previously been used by Alhayani

et al. (2014):

W =
µ

2(1− k + km)

{

(1− k)I1 + kem(I1−3) + 2k − 3
}

, (5.10)

where k and m are constants satisfying the conditions 0 ≤ k ≤ 1 and m > 0. It is seen

that this is a linear combination of the classical neo-Hookean model and the Demiray model

(Demiray, 1996), and the two constants k and m can be viewed as measures of the fractional

percentage and stiffness of the reinforcing fibres, respectively. In Figure 7, we have shown

the contour plots of the bifurcation condition for the two representative cases k = 0.4, m =

0.25 and k = 0.45, m = 0.25, respectively. In each plot we have also shown the curve

corresponding to N = 0, but we note that curves corresponding to other fixed values of N

could also be plotted. The right figure corresponding to k = 0.45 demonstrates the fact

that although localized bulging is not possible when N = 0, it is still possible when it is λz

that is fixed instead (the case of fixed length). We note, however, that in the latter case

inflation would trace the line λz = C in the (λa, λz)-plane, where C is the fixed value of λz,

and Euler-type buckling may occur before localized bulging (that is before the line λz = C

intersects the bifurcation curve). This has been verified with the aid of Abaqus simulations.
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Figure 7: Contour plots of Ω(λa, λz) = 0 and N(λa, λz) = 0 for a tube with α = 0.1 when the material is

given by (5.10). (a) k = 0.4,m = 0.25; (b) k = 0.45,m = 0.25.

In the case when k = 0.4, Figure 7(a) shows that localized bulging may occur when

either N = 0 or λz is fixed to be any value between 1.26 and 1.41. Our further calculations

show that for all the cases when localized bulging is possible and occurs before Euler-type

buckling, the membrane theory gives poor predictions for the coefficients k3 and k4 even for

very thin-walled tubes. Combing this with our earlier observations, we may conclude that
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membrane theory tends to give poor predictions for stiff tubes whether the stiffness is due

to fibre reinforcement or excessive stretching in the axial direction.
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