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Abstract

The Synthetic Biology Open Language (SBOL) is an emerging synthetic biology

data exchange standard, designed primarily for unambiguous and efficient machine-

to-machine communication. However, manual editing of SBOL is generally difficult

for non-trivial designs. Here, we describe ShortBOL, a light-weight SBOL scripting

language that bridges the gap between manual editing, visual design tools, and direct

programming. ShortBOL is a shorthand textual language developed to enable users to

create SBOL designs quickly and easily, without requiring strong programming skills

or visual design tools.
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Synthetic Biology Open Language (SBOL) version 2 has emerged as a data standard for

synthetic biology.1 SBOL facilitates computational design, exchange, and reproducibility of

biological systems and is defined as a data model with an RDF/XML serialization. While

well-suited for precise machine communication, SBOL RDF/XML is too verbose and complex

for humans to manually edit designs, particularly for those involving many components and

features.

Software tools and libraries have been developed to manipulate SBOL. For example,

libSBOLj2 and pySBOL3 can be linked to other software, enabling them to read, write, and

manipulate SBOL data. While these libraries support tool developers and others with strong

programming skills, using them presents an extremely challenging learning curve for most

synthetic biologists. Computer-aided Design (CAD) and visualization tools have also been

developed to visualize designs and make the designs easier for humans to communicate.4–6

These visual design tools, however, are often limited in the features of the representation

that they can access and visual editing is often a slow and rather manual process. Thus,

there is a need for a light-weight SBOL scripting language that bridges the gap between

manual editing, visual design, and direct use of libraries.

Here, we describe such a language, ShortBOL (v.1.0), a human readable/writable short-

hand for describing biological designs in SBOL. This language is developed for those who

are familiar with the SBOL data model but wish to rapidly sketch synthetic biology designs

using a simple, text-based scripting language instead of writing code that utilizes the SBOL

libraries. Using this language, SBOL data can be generated easily and quickly from simple

textual descriptions. The utility of such domain-specific languages has long been recog-

nised by the synthetic biology community, and languages such as the Genotype Specification
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Language7 and Eugene8 have previously been developed, in particular to enable automated

assembly and the exploration of the synthetic biological design space. ShortBOL shares

many design aims and characteristics with these languages. However, being an abstraction

of SBOL data, ShortBOL inherits the richness of the SBOL data model and the ability

to encapsulate design information of unique importance to synthetic biological constructs.

Moreover, the ability to describe arbitrary RDF data in ShortBOL provides a flexibility and

extensibility that will be important in producing ever greater abstraction, modularity, and

concision.

Results

ShortBOL v1.0 is designed to be easy to use for synthetic biologists who may not have much

software development training but understand the fundamentals of the SBOL data model.

Those with software development training can also find ShortBOL useful as a rapid method

of producing SBOL more simply than by writing code that uses the SBOL libraries. The

language is text-based, but has a simplified syntax that abstracts some of the more complex

features of SBOL. Moreover, by following the tutorial, users who are new to the SBOL data

model can gain exposure to the terminology and approach without having to work with the

SBOL code libraries.

ShortBOL is currently built around a minimal selection of language constructs. A typical

shorthand document is a list of imports, variable assignments, and template statements to be

expanded. A standard template library is provided with ShortBOL, which allows different

aspects of genetic designs to be generated using the SBOL data model in response to keywords

in the ShortBOL language (Figure 1).

The standard library templates themselves are also written in shorthand, in the same

way that a user might create their own template libraries to capture abstractions common

within their designs or the synthetic biology domain. These new templates may extend any
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number of existing templates, or be built from scratch. Furthermore, if libraries are shared,

they can then be imported, used and extended by others.

ComponentDefinition(t)
(

Identified(ComponentDefinition)
type = t

)

DnaComponent ()
(

ComponentDefinition(DNA)
)

Promoter ()
(

DnaComponent ()
role = promoter

)

Figure 1: An example of a ShortBOL template for a promoter. Here, a promoter is defined
from a DnaComponent which is, in turn, defined using a ComponentDefinition. Users can
define templates to create specialized representations of design patterns used in their SBOL
designs.

Custom templates can be used to provide simple aliases, application-specific syntax,

access to common terminologies, and can even be used to model complex parameterized

multi-component designs. Variable assignments, on the other hand, associate a value with

an identifier, using the equals (=) operator. For example, repressor = tetR associates the

value tetR with the identifier repressor. This can be used to set up aliases to provide more

natural local names for remotely defined terms and design components.

ShortBOL Usage. ShortBOL can be used from both the command line and from a

custom Web application (http://shortbol.org/). The ShortBOL repository on GitHub

includes documentation on how to compile ShortBOL text files to SBOL XML files using

the supplied Python software at the command line. The web application allows ShortBOL

documents to be written in the web-based editor and automatically compiled to an SBOL

RDF/XML file, which the user can then download. A tutorial describing how to use Short-

BOL is also provided, which also introduces features of the SBOL data model. When Short-

BOL code is executed via the command line or web application, the output is validated for

compliance with the SBOL specification, ensuring ShortBOL output will interoperate with

other SBOL tooling.

4

Page 4 of 11

ACS Paragon Plus Environment

ACS Synthetic Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

http://shortbol.org/


Figure 2: Screenshot of the ShortBOL Web application showing the built-in editor and
output window.

Implementation

SBOL entities are created within the shorthand by using the (is a) operator to expand a

template (Figure 3A). For example, lacI cds is a CDS introduces a new identifier lacI cds

whose properties will be set according to the pattern described by the CDS template. In

this particular case, the CDS template further expands to a SBOL:ComponentDefinition

template, which sets the type property to the DnaRegion BioPAX term and role property to

the CDS (SO:000316) Sequence Ontology term, as recommended in the SBOL best practices

for encoding a CDS using SBOL (Figure 3B). Templates can also be parameterized by one

or more arguments. For example, the DNASequence template expects a single argument,

containing a DNA string. When the template is expanded, the elements property of the

resulting SBOL:Sequence is set to be equal to the supplied argument. This mechanism

allows common design and composition patterns to be captured relatively easily within

templates, without requiring a full programming language. In combination with the recursive

expansion of templates, this can allow collections of specialized, domain-specific templates

to be composed from generic ones.

Template expansions can also contain a block of ShortBOL expressions. These are used

to declare additional properties and their values. For example, the template application
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A)

@prefix igem = <http://parts.igem.org/>
@prefix igem

lacI_cds is a CDS()
(

description = "The lacI CDS"
name = "lacI"
sequence = lacI_seq

)
lacI_seq is a DNASequence("atggtgaatgt")

B) ↓ Template Expansion

lacI_seq is a Sequence ()
(

encoding = iupacDNA
displayId = "lacI_seq"
elements = "atggtgaatgt"

)
lacI_cds is a ComponentDefinition ()
(

role = cds
type = dna
displayId = "lacI_cds"
description = "The lacI CDS"
name = "lacI"
sequence = lacI_seq

)

C) ↓ Rendering to SBOL RDF/XML
<sbol:ComponentDefinition rdf:about="http://parts.igem.org/lacI_cds /1">

<sbol:persistentIdentity rdf:resource="http: //parts.igem.org/lacI_cds"/>
<sbol:version >1</ sbol:version >
<sbol:displayId >lacI_cds </ sbol:displayId >
<sbol:sequence rdf:resource="http: // parts.igem.org/lacI_seq /1"/>
<dcterms:title >lacI </ dcterms:title >
<dcterms:description >The lacI CDS </ dcterms:description >
<sbol:role rdf:resource="http: // identifiers.org/so/SO:0000316"/>
<sbol:type rdf:resource="http: //www.biopax.org/release/biopax -level3.owl#Dna"/>

</sbol:ComponentDefinition >
<sbol:Sequence rdf:about="http://parts.igem.org/lacI_seq /1">

<sbol:elements >atggtgaatgt </sbol:elements >
<sbol:displayId >lacI_seq </ sbol:displayId >
<sbol:encoding rdf:resource="http: //www.chem.qmul.ac.uk/iubmb/misc/naseq.html"/>
<sbol:persistentIdentity rdf:resource="http: //parts.igem.org/lacI_seq"/>
<sbol:version >1</ sbol:version >

</sbol:Sequence >

Figure 3: Rendering SBOL documents using ShortBOL. A genetic circuit representation in
ShortBOL is recursively rendered using templates until standard SBOL documents are pro-
duced. A) Shorthand representation of a CDS component. B) This shorthand representation
is recursively expanded into a version that includes no reference to a template. C) Standard
SBOL representation of the same component is produced.

lacI cds is a CDS may be followed by an bracketed block containing the property assign-

ment description = "The lacI CDS".

Interpretation. The statements contained in shorthand documents are interpreted

sequentially, and from each template expansion statement a RDF graph is generated. The

union of these graphs is then serialized as RDF/XML to produce a valid SBOL document.

The steps involved in interpreting a shorthand statement depend on the type of that

statement:
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• Import statements: Import URIs are resolved to ShortBOL documents. These are then

interpreted and the declared assignments and templates made available to the current

shorthand script.

• Variable assignment: Assigned values are associated with their alias, and made avail-

able for value substitution in all subsequent statements.

• Template declaration: Templates are associated with their identifier, and made avail-

able for future expansion.

• Template expansion: If the name of a template application matches a registered tem-

plate, expand that template and set all the nested properties.

Discussion

ShortBOL v1.0 fulfills the need for an SBOL shorthand. This version is designed to be

true to the SBOL data model, allowing synthetic biologists to read and write SBOL, and for

the rapid creation and exchange of synthetic biology designs without complex computational

tools or the need for a mediating GUI. ShortBOL comes with a formal syntax and semantics,

and so is also suitable for machine exchange. ShortBOL is not intended to replace SBOL,

however, which can represent additional complex design information, including material that

is not textual or that has user-defined semantics. Moreover, SBOL is based on RDF and

can benefit from existing Semantic Web tooling. Instead, the ShortBOL syntax simplifies

the creation of SBOL documents. As a textual language with a defined syntax, it has the

advantage of describing design information unambiguously for machines, compared to visual

languages, which are for human consumption.

Following the syntax and approach of the SBOL model has the advantage of making the

ShortBOL syntax familiar to developers but can be daunting to biologists not familiar with

SBOL terms and approaches. There is a further need for future development of ShortBOL
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to abstract away the more complex features of the SBOL data model and use a syntax that

is more commonplace in the synthetic biology community. The current version of ShortBOL

is centered around SBOL version 2.0, which allows synthetic biology designs to be encoded.

However, subsequent SBOL versions also include features such as capturing the lineage of

designs, combinatorial assembly, encoding parameters and measures, and recording experi-

mental data. Modifications and extensions to the standard library included with ShortBOL

will be required in order to support these features of the data model.

Development of a new version that includes the newer features above, together with a

fully on-line editor and expansion pipeline is ongoing, supporting while-you-type integration

with other SBOL tooling, including VisBOL.4 We hope that the open nature of ShortBOL

template libraries will support rapid development of SBOL extensions and domain-specific

design terminologies. Moreover, we envisage community-driven development of template

libraries to intuitively design biological systems according to the needs of different labs.
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cds is a CDS()
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