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Abstract: Epilepsy is a neurological disorder that affects 50 million people worldwide. It is
characterised by seizures that can vary in presentation, from short absences to protracted
convulsions. Wearable electronic devices that detect seizures have the potential to hail timely
assistance for individuals, inform their treatment, and assist care and self-management. This
systematic review encompasses the literature relevant to the evaluation of wearable electronics for
epilepsy. Devices and performance metrics are identified, and the evaluations, both quantitative
and qualitative, are presented. Twelve primary studies comprising quantitative evaluations from
510 patients and participants were collated according to preferred reporting items for systematic
reviews and meta-analyses (PRISMA) guidelines. Two studies (with 104 patients/participants)
comprised both qualitative and quantitative evaluation components. Despite many works in the
literature proposing and evaluating novel and incremental approaches to seizure detection, there is
a lack of studies evaluating the devices available to consumers and researchers, and there is much
scope for more complete evaluation data in quantitative studies. There is also scope for further
qualitative evaluations amongst individuals, carers, and healthcare professionals regarding their
use, experiences, and opinions of these devices.
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1. Introduction

Epilepsy is a neurological disorder affecting 50 million people worldwide [1]. While seizures can
be controlled with antiepileptic drugs, more than 30% of people with epilepsy have drug-resistant
seizures [2]. The timely detection of seizures is important in hailing assistance that can reduce the
potential for injuries and sudden unexpected death in epilepsy (SUDEP) events [3,4]. This paper
reviews the literature relevant to qualitative and quantitative assessments of the wearable electronics
available to individuals and researchers for the detection of epilepsy seizures.

The onset of epileptic seizures is associated with autonomic changes including flushing,
sweating, and heart rate changes [5,6] that have the potential to be detected by wearable temperature,
electrodermal activity (EDA), and optical pulse “photoplethysmography” (PPG) sensors,
respectively. The seizures themselves can be convulsive or nonconvulsive. Convulsive seizures
involve repeated involuntary contractions and relaxations of muscles that appear as repetitive,
rhythmic, shaking motions. The pronounced motor activity of convulsive seizures makes them
potentially recognisable with accelerometery. In contrast, nonconvulsive seizures can be difficult to
detect; they can appear as simple absences or losses in muscle strength. Seizure types are described
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according to their type of presentation as tonic, clonic, tonic-clonic, myoclonic, atonic, and absence as
summarised below:

e  Tonic seizures (TS) associated with contractions of the muscles;

e  Clonic seizures (CS) associated with repeated contractions and relaxation of muscles;

e Tonic-clonic seizures (TCS) associated with stiffening followed by shaking;

e Myoclonic seizures (MS) associated with twitching regions of muscles;

e Atonic seizures associated with loss of muscle strength;

e Absence seizures associated with individuals appearing detached or inattentive.

The management and treatment of epilepsy relies on the assessment of seizure presentation and
frequency, but patient self-reports and carer recall can be unreliable [7] and patient seizure diaries
can underestimate seizure frequency [8,9]. In a review of electroencephalography (EEG) and other
seizure reporting technologies for epilepsy treatment, Bidwell et al. [10] highlighted “a strong need
for better distinguishing between patients exhibiting generalized and partial seizure types as well as
achieving more accurate seizure counts” but concluded that high false positive seizure detection rates
meant that most technologies failed to surpass patient self-reporting performance.

Whilst EEG is used in clinical laboratory settings for seizure assessment and diagnosis, new
research toward wearable ambulatory EEG sensing [11] offers future opportunities for assessment
and monitoring beyond the clinical environment. However, currently, despite “great interest in the
use of wearable technology across epilepsy service users, carers, and healthcare professionals” [7],
the monitoring of seizures outside the clinic, in real-world settings and during the activities of
everyday living, is limited to the sensing afforded by a small set of available wearable epilepsy
seizure-sensing devices. Additionally, some nonwearable devices are available, for example, sensors
designed to attach to a bed or mattress to detect night-time seizures; however, the focus of this review
is on wearable devices.

Wearable Electronics for Epilepsy Seizure Detection

There has been strong interest and market growth in wrist-worn wearable health and well-being
devices [12] incorporating digital thermometers for temperature, conductivity sensors for EDA,
micro-electromechanical systems (MEMS) for accelerometery, and light-emitting diodes (LEDs) and
photodiodes for PPG pulse wave detection [13], as well as new advances toward flexible skin-
inspired sensors [14]. Despite reliability concerns related to ambulatory sensing [15], wearable
devices are increasingly used in clinical and healthcare applications. Low- and mid-range wearable
devices typically comprise optical PPG pulse, EDA, temperature, and three-axis accelerometer
sensors [16-19]. As illustrated in Figure 1, wearable electronics for epilepsy seizure detection, based
on wrist- and arm-worn sensor configurations, are now available to individuals and researchers for
the purpose of detecting and reporting seizures and alerting carers for timely assistance. Additional
sensors such as gyroscopes and GPS (global positioning system) receivers can detect rotational
movements and location, respectively. Signals from these sensors can be used to detect “preictal”
periods before a seizure by electrodermal activity and heart rate changes, or, during the seizure,
shaking motor movements (or lack of movement during absences), and can be used to locate, report,
and log seizure events. It is, however, difficult to reliably detect seizures in everyday life [20], and the
challenge of disambiguating seizures and normal everyday (seizure-like) movements such as teeth
brushing may result in false alarms that require repeated cancellations and which may disincentivise
uptake among patients.

Table 1 summarises the currently available wearable consumer seizure-detecting devices that
have been evaluated in the literature. These include the Embrace seizure-detecting wrist-worn sensor,
developed by Empatica [21]. Embrace is a maturing product that is available to consumers via device
purchase and monthly subscription (subscriptions, at the time of writing, are £9.90-£44.90 per
month). Empatica also market an “E4” (previously “E3”) research version of their Embrace device
that provides researchers with access to the raw sensor data that can be used to test seizure-detecting
algorithms. Also, as shown in Table 1, other devices reported in the literature include the Epi-Care
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free [22], NightWatch [23], and SmartWatch [24]. Epi-Care free is a wrist-worn (or ankle-worn) sensor
incorporating an accelerometer, gyroscope, and GPS to detect seizure motor activity and send alerts
to family members or telecare services (subscriptions, at the time or writing, are £995 and £1115 per
year). The NightWatch sensor is an armband wearable that senses pulse and activity to detect and
report nocturnal seizures. The Smart Monitor SmartWatch is a seizure detector that makes use of
wearable heart rate and activity data (originally from prototype wearable devices and now the app,
named “Inspyre”, can access data from compatible Apple and Samsung Galaxy and Gear watches)
and summon help to the GPS location of the wearer (subscriptions, at the time of writing, are from
£9.99 to £24.99 per month). Other wearable consumer products for epilepsy seizure detection include
Brio, Epilert (no longer available), Pulse Companion, and Open Seizure Detector (App). However,
these devices have not been assessed in the literature.

u)) ¥
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(a) (b) (V]

Figure 1. Wearables and apps for epilepsy seizure detection: (a) dedicated wrist-worn sensing device
and companion app (e.g., Embrace and Epi-Care free); (b) app using sensed data from a compatible
consumer wrist-worn tracker (e.g., the SmartWatch Inspyre app with an Apple or Samsung device);
(c) a non-wrist wearable with a base station (NightWatch).

Table 1. Wearable electronics for epilepsy seizure detection.
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. Apple/Android
Smart Monitor Accelerometer Smart Monitor (San SmartAMorutor Smartphone and
(SmartWatch/ Inspyre App) PPG Jose, USA) Web lglzrtal compatible Samsung

and Apple Watches
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Detection Performance

Figure 2 summarises seizure detections in terms of true/false and positive/negative outcomes
and the related sensitivity, specificity, positive predictive value (PPV), and negative predictive value
(NPV), and the associated formulae, including the false alarm rate (FAR), are summarised in
Equations (1)—(6).

Epileptic seizure

Condition Condition
positive negative
ﬁ .y . .
2 Seizure detecton | True Positive False Positive Positive predictive
g ositive (TP) (FP) value (FPV)
3 P — TP/(TP + FP)
@
g
!
&
= . -
E Seizure detection | False Negative True Negative Negative predictive
v negative (EN) (IN) value (NFV)
2 & — TN/(FN + TN))
Sensitivity Spedcificity
=TP/(TP + FN) =TN/(FP + TN)
Figure 2. Seizure detection performance metrics.
Sensitivity = TP/(FN + TP) (@8]
Specificity = TN/(TN + FP) )
Positive Predictive Value (PPV)/Precision = TP/(TP + FP) 3)
Negative Predictive Value (NPV) = TN/(FN + TN) 4)
Accuracy = (TP + TN)/(TP + TN + FP + FN) 5)
False Alarm Probability = FP/day 6)

Ideally, assessments of wearable devices would present results for these metrics for significant
numbers of subjects over sufficient duration for testing detection of a substantial number of seizures
of different types. In addition, assessments would also ideally support repeatability by clearly
specifying test conditions, device models, and, also, version information [25]. Given the importance
of timely alerts for seizure detection and the need to reduce the anxiety and alarm fatigue associated
with high false alarm rates (FARs), detection latency and FARs should also be reported.

2. Method

A systematic review of primary studies evaluating wearable seizure-detecting devices spanning
almost fifteen years (from 1 January 2005 to 31 October 2019, when the review was initiated) was
conducted with an evidence-based methodology [26,27] and in accordance with PRISMA guidelines
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[28]. A requirement of the review was that devices were identified and available to individuals or
researchers (i.e., not unavailable, proof-of-concept, laboratory prototypes).

2.1. Search Strategy

Both technology and medical digital libraries were used to identify primary studies. These were
Association for Computing Machinery (ACM), Institute of Electrical and Electronics Engineers (IEEE)
Xplore Digital Library, Medline, ScienceDirect, and Wiley Online Library.

The keyword search string below was evolved to identify primary studies relevant to wearable
epilepsy sensing devices:

“wearable” OR “smart watch” OR “smart watch” OR “wrist-worn” OR “wrist worn” OR “wrist
worn” OR “wristband” OR “armband”) AND (“epileptic” OR “epilepsy”).

2.2. Eligibility Criteria and Selection

Studies were eligible for selection if they met all three of the following inclusion criteria:

1. Primary studies in peer-reviewed literature;

2. Studies where the main theme is consumer wearable electronics for epilepsy seizure detection;

3. Studies reporting quantitative and/or qualitative assessment data.

The relevant papers were assessed for quality according to screening criteria including rigour,
credibility, and relevance [29].

3. Results

Following the PRISMA systematic review guidance outlined in Figure 3, a total of 12 papers
satisfied the eligibility criteria. A second researcher checked the screening and eligibility of papers
and a third researcher moderated the results.

As summarised in Table 2, all 12 studies reported qualitative assessments (8 conducted in clinical
settings and 4 in free-living conditions). Two of the 12 studies also reported qualitative assessments.
While the search process did initially identify qualitative papers on wearable devices for epilepsy,
some of these studies [30,31] were assessments of perceptions about the potential of such devices
rather than assessments of actual use. No studies reported solely qualitative assessment data for the
real use of available wearable devices for seizure detection.
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Figure 3. Flow diagram of the systematic review according to preferred reporting items for systematic

reviews and meta-analyses (PRISMA) guidelines.




Electronics 2020, 9, 968 7 of 16

Table 2. Overview of studies and participant numbers.

No. Studies =12

No. Quantitative =12 No. Qualitative =2
Clinical setting = 8 Free-living = 4 -
No. participants/patients = 341 No. participants/patients = 169 No. participants/patients = 104
TOTAL =510 TOTAL =104

3.1. Quantitative Studies

3.1.1. Clinical Setting

Eight of the 12 quantitative studies were conducted in clinical settings. All eight were evaluation
studies [32-39] with data gathered from epileptic inpatients and outpatients; none were two-arm or
controlled studies with healthy participants. Most studies compared recorded device data with other
clinical reference recordings, including EEG, video EEG (VEEG), electromyography (EMG), and
electrocardiogram (ECG). The studies are summarised in Table 3 in terms of the devices used, the
numbers of participants, the numbers of seizures detected, and, where specified, the study duration.
As shown in the summary in Table 3, four of the studies used Empatica E3, E4, and Embrace devices,
three used Smart Monitor’s evolving SmartWatch devices, and one used the Epi-Care free. The
numbers of patient participants varied from 3 to 135. A study [33] with three participants selected 1
h recorded segments rather than continuous recordings. Otherwise, observation durations varied
within studies [33,38,39] as well as between studies from 17 h to 487 days, and two studies [35,37] did
not report durations. The total number of seizures detected in studies varied from 7 and 55 and,
across all studies, a total of 226 seizures were reported as detected. Only one study [33] did not report
the number of detected seizures.

Table 4 summarises the performance assessments of the studies. The reporting of performance
metrics was variable and sparse across most of the studies. For example, false alarm rates for only
three studies could be identified. The studies using the Empatica E3 and E4 implemented machine
learning detection methods (kNN: k-nearest neighbour; RF: random forest; NB: naive Bayes; SVM:
support vector machine). Regalia et al., 2019 [35] made brief reference to previously unpublished
assessments with 135 patients and 22 seizures with 100% sensitivity and an FAR of 0.42 per day for a
“fixed and frozen” algorithm. No methodology, sensitivity, or other assessment information was
provided, and the paper largely focused on compiling and comparing other Empatica wristband
performance indicators. Heldberg et al., 2015 [32] reported the sensitivity and specificity for two
different classifiers. Vandecasteele et al. [34] compared the performance of SVM classifiers on hospital
ECG with wearable ECG and E4 PPG recordings. PPG motion artefacts (which would have been
largely induced by the seizures themselves) made more than half of the seizures undetectable via this
approach and resulted in a poor sensitivity of 32%. The studies encompassed different seizure types
but with TCS and “motor” seizures often included. Dramatically different performance results were
observed. For example, sensitivities of 100% and 16% were reported by the authors of [35] and [37],
respectively. Notably, the latter paper [37] comprised a large number of (undetected) nonmotor
seizures. The levels of patient activity and any movement constraints were not generally explicitly
reported and, in any case, are difficult to convey. However, in the clinical setting, worn sensors
usually benefit from reduced interference from activities of daily living. For example, the good
wearable performance for the small study in [33] was achieved from recordings taken simultaneously
with EEGs, i.e., when one would expect patients to be inactive.
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Table 3. Clinical setting studies with number of seizures and duration.

Clinical Settings

. No. No. Seizures .
Study Device Participants Detected Duration
Heldberg et al., 2015 [32] E3 8 55 23 days
Al-Bakri et al., 2018 [33] E4 3 unspecified 5 .days (1 hour
intervals)
Vandecasteele et al., 2017 [34] E4 11 47 29 days
Regalia et al., 2019 [35] Embrace and E4 135 40 unspecified
Lockman et al., 2011 [36] SmartWatch 40 7 487 days
Patterson et al., 2015 [37] SmartWatch 41 30 unspecified
Velez et al., 2016 [38] SmartWatch 30 12 1-9 days
Beniczky et al., 2013 [39] Epi-Care free 73 35 17-171 hours

- - TOTAL =341 TOTAL =226 -

Smart Monitor’s SmartWatch was used in three of the eight clinical assessments. Patterson et al.
[37] reported the lowest sensitivity (16% overall: 31% for general tonic-clonic (GTC) and 0% for MS)
in a study of 41 patients aged 541 years. Citing Lockman et al. [36], the authors did not record false
positives “because these are well known”. Lockman et al. [36] did report 204 false alarm occurrences
in their SmartWatch study with 40 patients between “March 2009 and June 2010” but did not specify
an FAR or confirm the duration of actual usage within the study period. Velez et al. [38] referred to
81 false alarms but also did not specify an FAR (and one cannot be estimated because of the varying
durations of 1-9 days). Beniczky et al. [39] reported a sensitivity of 90% and an FAR of 0.2 per day in
a study with 73 participants with GTC seizures who were monitored for 17-171 hours. An average
detection latency of 55 s was reported.
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Table 4. Performance assessments in clinical settings.

9 of 16

Authors/ . . e . e s Detection
No. Participants Device Seizure Sensitivity Specificity FAR PPV/R Latency
Heldberg et al., 2015 [32] 89.1% (KNN) 93.1% (kNN)
8 participants B3 PNMS, PMS 87.3% (RF) 95.2% (RF)
Al-Bakri et al., 2018 [33] B4 i 84% (NB) (preictal sleep) 79% (NB) (preictal sleep) i i )
3 participants 78% (NB) (preictal wake) 80% (NB) (preictal wake)
Vandecasteele et al, 2017 [34] E4 (PPG) TLS, CPS 32% (SVM) - 180 perhour  143% -
11 participants
Regalia et a%.,.2019 [33] E4 and Embrace GTC 100% - 0.42 per day - -
135 participants
Lockman et ‘al‘., 2011 36] SmartWatch TCS 87.5% - - - -
40 participants
Patterson et.ay, 2015 [37] SmartWatch TS, GTC, MS, 16% . ) ) )
41 participants MTS, PS
Velez et al, 2016 [38] SmartWatch TCS 92.3% - . . -
30 participants
Beniczky et al, 2013 [39] Epi-Care free TCS 90% - 0.2 per day - 55s

73 participants

Seizure Abbreviations: CPS: complex partial seizures, GTC: general tonic-clonic, MS: myoclonic seizures, MTS: myoclonic-tonic seizures, PMS: predominantly motor

seizures, PNMS: predominantly nonmotor seizures, PS: partial onset seizures, TCS: tonic-clonic seizures, TLS: temporal lobe seizures, TS: tonic seizures. Classifier

Abbreviations: KNN: k-nearest neighbour; NB: naive Bayes; RF: random forest; SVM: support vector machine. Other Abbreviations: FAR: False Alarm Rate; PPV/R:

Positive Predictive Value/Rate.
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3.1.2. Free-Living Environment

Four of the 12 quantitative studies report free-living environment evaluations. These studies are
summarised in Tables 5 and 6 and comprise 169 participants and 850 seizures.

Table 5. Free-living studies with number of seizures and duration.

Free-Living Settings

No. Seizures

References Device Participants Duration
Detected
Onorati et al., 2017 [40] E3 and E4 69 32 247 days
Van de Vel et al., 2014 [3]  Epi-Care free 1 9 19 nights
Meritam et al., 2018 [8] Epi-Care free 71 - 15 months median (24 days to 6 years)
Arends et al., 2018 [41] NightWatch 28 809 1826 nights

- TOTAL=169 TOTAL =850 -

Onorati et al. [40] reported a range of classifier performances for the E3 and E4 with sensitivities
from 83.64% to 94.55% and FARs of between 0.2 and 0.29 per day. Van de Vel et al. [3] and Meritam
et al. [8] both reported Epi-Care free evaluations with 71 and 1 participants, respectively. For the 71
patients [8], a sensitivity of 90% and an FAR of 0.1 per day were reported. Arends et al. [41] reported
a sensitivity of 86% for the NightWatch arm-worn nocturnal seizure monitor, an FAR of 0.25 per
night, and a PPV of 49%.
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Table 6. Performance metrics in a free-living setting.

11 of 16

Study/No: of Participants Device Seizure Sensitivity Specificity FAR PPV/R Detection Latency
Onorati et al,, 2017 [40] 83.64% (Class.if.ier I) 0.29 per day (Class.if.ier I) 31.2s (Class.if.ier I)
69 participants E3 and E4 BTCS, FTC 92.73% (Classifier II) - 0.21 per day (Classifier II) - 29.3 s (Classifier II)
ici
partcip 94.55% (Classifier III) 0.20 per day (Classifier IIT) 29.3 5 (Classifier III)
Van de Vel et al., 2014 [3
adeteeta Bl Epi-care free TS, CS, TCS 41% - 0.05 per night - -
1 participant
Merit t al., 2018 [8
eritam e .a. 8] Epi-Care free BTCS 90% BTCS median - 0.1 per day median - -
71 participants
MS, TC,
Arends et al., 2018 [41
rendsetal, 2018 [4] - \iopwatch TCS, 86% median - 0.25 per night median ~ 49% median -
28 participants .
Hyperkinetic

Seizure Abbreviations: BTCS: bilateral tonic-clonic seizures, CS: clonic seizures, FTC: focal tonic-clonic, FS: focal seizures, MS: myoclonic seizures, TCS: tonic-clonic seizures,
TS: tonic seizures. Other Abbreviations: FAR: false alarm rate, PPV/R: positive predictive value/rate.
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3.1.3. Data Failures —Missing and Unusable Data

12 of 16

In addition to missed seizures caused by algorithms failing to detect seizures in acquired data,
seizures can also be missed when data are not recorded, not received, or not usable (for example, if
they are so corrupted as to be unusable). There were limited discussions of data failures or the
“missingness” of data in the studies. Examples are summarised in Table 7.

Table 7. Missing data.

Studies Device Participants  Data Failures Reasons
Motion artefacts
PPG motion “PPG signal.was drastically affected ...
Vandecasteele et al., 2017 [34] E4 11 tefact 55% of the seizures could not be detected
artefacts
because of motion artefacts ... no reliable
HR could be extracted”
2x wireless co ication failures and
Velez et al., 2016 [38] SmartWatch 30 3 occasions Wit . mnuhicat n a u.r an
1x device not worn during seizure
“Device deficiencies” (including 2x
Beniczky et al., 2013 [39] Epi-Care free 73 “15 times” evice deficiencies” (including

“technical error”, 11x “battery failure”)

3.2. Qualitative Studies

Only two studies provided qualitative assessment data for device evaluations. Both of these
studies also reported quantitative evaluations that were included in the earlier sections. Summaries
of patient and stakeholder views and observations are listed in Table 8.

Table 8. Qualitative studies.

Study/
No. Participants

Stakeholder Views and Observations

Benefits Barriers/Concerns
. Timely responses to urgent
situations.
Arends et al., 2018 [41] . Skin irritation.

33 qualitative carer
respondents

Offers carers more freedom.
Helps carers give better care.
More autonomy for people
with epilepsy.

e Armband not fitting properly.

e  Poor signal reception.

Meritam et al., 2018 [8] o
71 qualitative patient
respondents

Good overall device
satisfaction (5.5/7)

Easy to use.

Clear alarm signals.
Timely alerts enabled 40%
reduction in injuries.
Feeling of security and a
decreased psychological
burden.

e  High false alarm rate.

. Skin irritation or discomfort.

o Low effectiveness for detecting seizures.

. Unstable sensor communication and

interference issues.

e  Limited battery life and lack of water

resistance.

10% of patients stopped using the device for

device-related reasons.

Arends et al.,, 2018 [41] evaluated the NightWatch night-time upper arm seizure monitor using
a multifactor questionnaire with 33 carer stakeholder respondents comprising 30 nurses, 2 parent
carers, and 1 “not specified”. Meritam et al., 2018 [8] performed a qualitative evaluation of the Epi-
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Care free monitor with 71 patient participants aged 7-72 years using a post-study systems usability
questionnaire (PSSUQ) comprising 13 questions and requiring a 1-7 Likert-scale response from
participants on aspects on monitor usability.

Both studies identified concerns in terms of (a) physical intrusion, e.g., discomfort or irritation,
and (b) performance concerns, e.g., signal reception or detection failures. Participants in both studies
agreed with the benefits of the monitors in terms of the potential for improved responses to seizure
events and the potential for improved care outcomes.

4. Discussion

The aim of this review was to collate and analyse qualitative and quantitative assessments of
wearable electronics for epilepsy seizure monitoring that are available to individuals and researchers.
Although there are over 3000 works in the literature discussing, proposing, and evaluating novel and
incremental approaches to epilepsy seizure detection, there are very few that report evaluation data
and, as observed previously [42], none that report comparative results of large-scale studies. In terms
of the Oxford Centre for Evidence-Based Medicine 2011 Levels of Evidence 1-5 scale [43], none of the
reviewed studies would qualify as the highest level of evidence (Level 1), and most would rank as
Level 3 or below.

The diversity of the reviewed studies in terms of motor and nonmotor seizure types and levels
of patient activity/freedom of movement is matched by the diversity of results including, for example,
very high and very low sensitivities.

Across the reviewed works there was a lack of full detail, including details required to establish
important metrics such as false alarm rates (FARs) and details important to reproducibility such as
device, firmware, and app version numbers [44]. Ideally, the frequency, duration, impact, and cause
of all data recording failures (resulting in the “missingness” of data) would also be provided in all
performance assessment studies. There was also a lack of detail regarding the performance of the
devices themselves in terms of seizure detection and estimation of key parameters such as heart rate.
In a recent study [45], researchers compared consumer-grade and research-grade heart rate (HR) and
heart rate variability (HRV) estimating wearables (including the Empatica E4 and two other HR
sensing devices) and observed that “while the research-grade wearables are the only wearables that
provide users with raw data that can be used to visualize PPG waveforms and calculate HRV, the
HR measurements tended to be less accurate than consumer-grade wearables. This is especially
important for researchers and clinicians to be aware of when choosing devices for clinical research
and clinical decision support.” [45] This very difficult problem of achieving accurate and reliable
continuous sensor data in nonsedentary scenarios is highly significant and worthy of more attention
if researchers are to develop robust methods and make valid conclusions from acquired data.

Wearable electronic devices for epilepsy seizure detection have the potential to improve patient
outcomes and to afford carers more freedom. However, the technology is still evolving. There are
opportunities for improvements in system reliability and algorithm detection performance and,
ideally, monitors would be sensitive across the range of seizure types whilst maintaining acceptably
low false alarm rates. Ideally, future seizure sensing systems and algorithms would benefit from
detailed qualitative and quantitative assessments of their performance. However, we should
appreciate that assessing technology in critical health scenarios is not easy. Clinical assessments are
onerous and resource-expensive undertakings, and their timescales are at odds with the iterative
updating of digital technologies. Free-living assessments in particular require investments in time
and resources, and they present additional difficulties in terms of truth data.

5. Conclusions

There is much scope for further research and improved performance reporting of wearable
devices for epilepsy seizure detection and monitoring. There is a lack of qualitative studies eliciting
feedback and stakeholder recommendations from real-world experiences of device usage. Ideally,
future studies will report on the data quality and reliability of the sensing devices and provide much
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more detailed information regarding assessments, including device model and version numbers as
well as detailed contextual information about the wearers and their activity.
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Abbreviations

The following abbreviations are used in this manuscript:

BTCS Bilateral tonic-clonic seizures

CPS Complex partial seizures

CcSs Clonic seizures

ECG Electrocardiogram

EDA Electrodermal activity

EMG Electromyography

FN False negative

FNV/R False negative value/rate

FP False positive

FPV/R False positive value/rate

FS Focal seizures

FTC Focal tonic—clonic

GTC General tonic-clonic

HRV Heart rate variability

kNN k-nearest neighbour

MS Myoclonic seizures

MTS Myoclonic-tonic seizures

NB Naive Bayes classifier

NPV/R Negative predictive value/rate

PMS Predominantly motor seizures

PNMS Predominantly non-motor seizures

PPG Photoplethysmography

PPV/R Positive predictive value/rate

PRV Pulse rate variability

PS Partial onset seizures

RF Random forest

SUDEP Sudden unexpected death in epilepsy

SVM Support vector machine

TCS Tonic-clonic seizures

TLS Temporal lobe seizures

N True negative

P True positive

TPV/R True positive value/rate

TS Tonic seizures

vEEG Video electroencephalogram
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