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Lay summary
Peritoneal dialysis (PD) uses the peritoneal membrane for dialysis. The peritoneal membrane is a thin layer of tissue that
lines the abdomen. The lining is used as a filter to help remove extra fluid and poisonous waste from the blood. Everybody
is unique. What is normal for one person’s membrane may be very different from another person’s. The kidney care team
wants to provide each person with the best dialysis prescription for them and to do this they must evaluate the person’s
peritoneal lining. Sometimes dialysis treatment itself can cause the membrane to change after some years. This means
more assessments (evaluations) will be needed to determine whether the person’s peritoneal membrane has changed.
Changes in the membrane may require changes to the dialysis prescription. This is needed to achieve the best dialysis
outcomes. A key tool for these assessments is the peritoneal equilibration test (PET). It is a simple, standardized and
reproducible tool. This tool is used to measure the peritoneal function soon after the start of dialysis. The goal is to
understand how well the peritoneal membrane works at the start of dialysis. Later on in treatment, the PET helps to
monitor changes in peritoneal function. If there are changes between assessments causing problems, the PET data may
explain the cause of the dysfunction. This may be used to change the dialysis prescription to achieve the best outcomes.
The most common problem with the peritoneal membrane occurs when fluid is not removed as well as it should be. This
happens when toxins (poisons) in the blood cross the membrane more quickly than they should. This is referred to as a
fast peritoneal solute transfer rate (PSTR). Since more efficient fluid removal is associated with better outcomes, developing
a personal PD prescription based on the person’s PSTR is critically important. A less common problem happens when the
membrane fails to work properly (also called membrane dysfunction) because the peritoneal membrane is less efficient,
either at the start of treatment or developing after some years. If membrane dysfunction gets worse over time, then this is
associated with progressive damage, scarring and thickening of the membrane. This problem can be identified through
another change of the PET. It is called reduced ‘sodium dip’. Membrane dysfunction of this type is more difficult to treat
and has many implications for the individual. If the damage is major, the person may need to stop PD. They would need to
begin haemodialysis treatment (also spelled hemodialysis). This is a very important and emotional decision for individuals
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with kidney failure. Any decision that involves stopping PD therapy or transitioning to haemodialysis therapy should be
made jointly between the clinical team, the person on dialysis and a caregiver, if requested. Although evidence is lacking
about how often tests should be performed to determine peritoneal function, it seems reasonable to repeat them
whenever there is difficulty in removing the amount of fluid necessary for maintaining the health and well-being of the
individual. Whether routine evaluation of membrane function is associated with better outcomes has not been studied.
Further research is needed to answer this important question as national policies in many parts of the world and the
COVID-19 has placed a greater emphasis and new incentives encouraging the greater adoption of home dialysis therapies,
especially PD. For Chinese and Spanish Translation of the Lay Summary, see Online Supplement Appendix 1.

Key recommendations
Guideline 1: A pathophysiological taxonomy: A pathophysiological classification of membrane dysfunction, which provides
mechanistic links to functional characteristics, should be used when prescribing individualized dialysis or when planning
modality transfer (e.g. to automated peritoneal dialysis (PD) or haemodialysis) in the context of shared and informed
decision-making with the person on PD, taking individual circumstances and treatment goals into account. (practice
point)

Guideline 2a: Identification of fast peritoneal solute transfer rate (PSTR): It is recommended that the PSTR is determined
from a 4-h peritoneal equilibration test (PET), using either 2.5%/2.27% or 4.25%/3.86% dextrose/glucose concentration
and creatinine as the index solute. (practice point) This should be done early in the course dialysis treatment (between
6 weeks and 12 weeks) (GRADE 1A) and subsequently when clinically indicated. (practice point)

Guideline 2b: Clinical implications and mitigation of fast solute transfer: A faster PSTR is associated with lower survival on
PD. (GRADE 1A) This risk is in part due to the lower ultrafiltration (UF) and increased net fluid reabsorption that occurs
when the PSTR is above the average value. The resulting lower net UF can be avoided by shortening glucose-based
exchanges, using a polyglucose solution (icodextrin), and/or prescribing higher glucose concentrations. (GRADE 1A)
Compared to glucose, use of icodextrin can translate into improved fluid status and fewer episodes of fluid overload.
(GRADE 1A) Use of automated PD and icodextrin may mitigate the mortality risk associated with fast PSTR. (practice point)

Guideline 3: Recognizing low UF capacity: This is easy to measure and a valuable screening test. Insufficient UF should be
suspected when either (a) the net UF from a 4-h PET is <400 ml (3.86% glucose/4.25% dextrose) or <100 ml (2.27%
glucose /2.5% dextrose), (GRADE 1B) and/or (b) the daily UF is insufficient to maintain adequate fluid status. (practice
point) Besides membrane dysfunction, low UF capacity can also result from mechanical problems, leaks or increased fluid
absorption across the peritoneal membrane not explained by fast PSTR.

Guideline 4a: Diagnosing intrinsic membrane dysfunction (manifesting as low osmotic conductance to glucose) as a
cause of UF insufficiency: When insufficient UF is suspected, the 4-h PET should be supplemented by measurement of the
sodium dip at 1 h using a 3.86% glucose/4.25% dextrose exchange for diagnostic purposes. A sodium dip �5 mmol/L and/
or a sodium sieving ratio �0.03 at 1 h indicates UF insufficiency. (GRADE 2B)

Guideline 4b: Clinical implications of intrinsic membrane dysfunction (de novo or acquired): in the absence of residual kidney
function, this is likely to necessitate the use of hypertonic glucose exchanges and possible transfer to haemodialysis.
Acquired membrane injury, especially in the context of prolonged time on treatment, should prompt discussions about
the risk of encapsulating peritoneal sclerosis. (practice point)

Guideline 5: Additional membrane function tests: measures of peritoneal protein loss, intraperitoneal pressure and more
complex tests that estimate osmotic conductance and ‘lymphatic’ reabsorption are not recommended for routine clinical
practice but remain valuable research methods. (practice point)

Guideline 6: Socioeconomic considerations: When resource constraints prevent the use of routine tests, consideration of
membrane function should still be part of the clinical management and may be inferred from the daily UF in response to
the prescription. (practice point)
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Introduction: What is the purpose of this
guideline?

The International Society of Peritoneal Dialysis has not

produced a guideline on the assessment of peritoneal

membrane function since 2000.1 The most recent compre-

hensive guideline on this important issue was from the

European Best Practice guideline group in 2010.2 This is

despite the fact that over the last two decades there has been

mounting evidence that peritoneal membrane function is an
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important predictor of clinical outcomes, especially sur-

vival, and the considerable increase in our understanding

of the changes in membrane function that occur over time

on dialysis and the underlying mechanisms of peritoneal

membrane injury. Other guidelines have dealt with the

implications of individual variation in membrane function

for clinical prescribing, especially fluid management. Over

time there has been a paradigm shift away from defining

the efficacy of dialysis treatment simply in terms of small

solute clearance,3–5 with the realization that at least equal

weight should be placed on fluid management and out-

comes important to people on dialysis.6,7 Recent epidemio-

logical studies have consistently shown a strong and

independent association between fluid overload and poor

outcome, including mortality, among patients with kidney

failure on dialysis.8,9 Volume overload is highly prevalent

among patients on peritoneal dialysis (PD), with more than

50% of individuals showing some degree of hypervolemia

and 25% being severely volume overloaded.10,11 There-

fore, high-quality PD prescription should aim to achieve

and maintain fluid and salt homeostasis, through preserva-

tion of residual kidney function including urine volume and

natriuresis, dietary counselling and peritoneal ultrafiltra-

tion (UF), the latter being the focus of this guideline and

especially important when there is little or no residual kid-

ney function.6,12–14 High-quality dialysis prescription is

now defined in terms of an individualized goal-directed

approach.7 This necessitates the measurement of individual

membrane function and appreciation of the implications

this has for shared clinical decision-making. It is also clear

from the SONG-PD initiative that patients, carers and their

clinicians rate the importance membrane function highly

along with its implications for technique failure, survival

and cardiovascular outcomes.15,16

This guidance has been constructed with three main

objectives in mind: (1) to provide a clear clinicopathologi-

cal classification of membrane dysfunction which provides

the clinician with a framework to be used in clinical prac-

tice, (2) to provide guidance on which membrane tests can

be used to establish evidence of membrane dysfunction

according to this classification and (3) to assist clinicians

with the interpretation of these tests and their implications

for clinical management. To do this, we have provided a

brief description of how the membrane can be described by

theoretical and animal models followed by an updated clas-

sification of membrane dysfunction that uses the insights

from these models to integrate function with underlying

membrane physiology and pathophysiology (guideline 1).

This is followed by a description of the tests recommended

to identify membrane problems (guidelines 2a, 3 and 4a)

and coupled with these we have provided guidance on the

interpretation and implications of membrane function tests

for clinical management (guidelines 2b, 4b). Membrane

function tests that are insufficiently evidenced or too com-

plex for routine clinical care are described and where indi-

cated the need for further research is made (guideline 5).

Finally, it is recognized that undertaking membrane func-

tion tests is not resource neutral and approaches to its rec-

ognition in low resource settings is given (guideline 6).

Clinical case examples to illustrate the different types of

membrane problem, including cases in which poor net fluid

removal was not due to membrane dysfunction (e.g. cathe-

ter dysfunction, leaks), are given in the Online Supplement

Appendices along with a glossary of technical definitions

used and a detailed description of how membrane function

tests should be performed.

Methods

Grading of recommendations: Using the same approach

as the recent ISPD prescribing guidelines, evidence has

been graded using the Grading of Recommendations

Assessment, Development and Evaluation (GRADE) sys-

tem for classification of the level of certainty of the evi-

dence and grade of recommendations in clinical guideline

reports.17,18 In this system the strength of the recommen-

dation is indicated as Level 1 (We recommend), Level 2

(We suggest) or it is not graded and the certainty of the

supporting evidence is shown as: A (high certainty), B

(moderate certainty), C (low certainty) or D (very low

certainty). We have taken the position, in line with recent

ISPD guidelines, to label statements with low certainty

evidence (2C, 2D) as practice points.

To know the prevailing clinical practices on peritoneal

equilibration tests (PET) around the world, online surveys

of 68 PD Units in China and 20 leading Latin-American

PD nephrologists were performed (see Online Supplement

Appendix 2 for countries represented). For the China sur-

vey, PD nurses were the point of contact and data were

collected anonymously, which included unit size and

province. We were also able to obtain data from the inter-

national Peritoneal Dialysis Outcomes and Practice Pat-

terns Study (PDOPPS) and the Bio-PD Study. The results

of these surveys and studies found that most PD Units still

use Glucose 2.27% glucose/2.5% Dextrose solutions to

perform the classical PET (see Online Supplement

Appendix 2).

How the membrane works in PD – Insights from
modelling and animal models

Theoretical models for PD. The transport of water and solutes

across the endothelium and the tissues surrounding the

peritoneal capillaries during PD can be described in terms

of a three-pore model (TPM, TPM for PD).19,20 According

to the TPM, the peritoneal barrier can be considered as a

semipermeable membrane consisting mainly of numerous

small pores (radius, 4–5 nm), which mediate the diffusion

of small solutes and solute-coupled fluid transport. Addi-

tionally, trans-cellular ultra-small pores (radius, <0.3 nm)

mediate free water transport (FWT) (free from solutes), see

Figure 1. A relatively small number of large pores (radius,
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25–30 nm) account for transport of macromolecules but

play a minimal role in water and small-solute transport.

Their relevance to peritoneal protein loss is discussed later

(see discussion underpinning guideline 5). A refinement of

the TPM is the distributed model,22 (see Figure 2), that

allows for the separation of the peritoneal barrier into tissue

and capillary wall components. In this approach, the spatial

distribution of the blood capillaries within the peritoneal

tissue, situated at different distances from the peritoneal

cavity, is taken into account.23,24 The TPM is used to

describe transport across the blood capillary wall, whereas

the transport of fluid and solutes through the interstitial

tissue depends on the local tissue hydration, and is driven

by the local interstitial hydrostatic and osmotic pressure

gradients. The distributed model shows that only up to few

millimetres of the tissue that surrounds peritoneal cavity

takes part in the exchanges during PD. Increased tissue

hydration observed within this layer, caused by the adapta-

tion of the peritoneal tissue to the PD treatment, alters local

transport properties facilitating water and solute transport

across the peritoneal barrier.23–25

Peritoneal solute transfer rate. The rate at which a solute

transfers across the membrane is described by its diffusion

capacity, or mass transfer area coefficient (MTAC), the

maximal rate of clearance by diffusion, which occurs when

the concentration of the solute is zero in the dialysate (see

glossary in the online supplemental material for a more

complete description of MTAC and how the different theo-

retical models estimate this). In the clinical setting, this is

estimated using the solute dialysate-to-plasma concentra-

tion ratio. For example, a 4-h dialysate:plasma ratio of 0.7

is a typical finding in a patient with average peritoneal

solute transfer rate (PSTR), corresponding to a diffusion

capacity (MTAC) of about 12 mL/min. It should be appre-

ciated that this is an approximation as estimating the

MTAC from a dialysate to plasma (D/P) ratio is reliable

only when it greatly exceeds the UF rate. Furthermore, the

diffusion capacities of small solutes such as glucose or

creatinine are typically almost twice as high at the begin-

ning of the dwell, an effect that typically disappears after

120 min.26–29 Moreover, both the diffusion and UF capac-

ity of the peritoneal membrane will vary with the intraper-

itoneal dialysate volume.24,30–33 There are also recent

results to suggest that TPM parameters are dependent on

the glucose concentration.32 Because of all these factors,

peritoneal testing should always be performed in a standar-

dized manner using the same glucose concentration and fill

volume.

Mechanisms and pathways of water transport. The main fac-

tors determining the efficiency of peritoneal water transport

Figure 1. The TPM describes the membrane as two compartments, formed by the endothelium between capillary lumen and the
peritoneal cavity. The three-pore systems are the trans-cellular pores (AQP), the inter-cellular small pores (tight junctions) between
endothelial cells and the large pores. The driving forces for solute or fluid transfer are shown in square brackets. The mesothelium has
no barrier function in this model. The disappearance of large molecular weight substances during an exchange indicates a further
pathway through which fluid can be reabsorbed into the body, presumed to be either directly or indirectly entering the circulation via
lymphatics. An extension of the TPM, the fiber–matrix model,21 is also described in which the interstitium acts as a second barrier in
series. The insertion of collagen fibres into the interstitium reduces the effectiveness of water flow though the membrane.
TPM: three-pore model; AQP: aquaporins.
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during a glucose dwell are the peritoneal osmotic conduc-

tance to glucose (OCG), the rate of glucose diffusion from

dialysate to blood (which as stated above is proportional to

the PSTR), the peritoneal lymph flow and, finally, the glu-

cose concentration at the start of the dwell.34 The OCG, in

turn, is proportional to the UF capacity, an intrinsic prop-

erty of the membrane that is typically between 50 mL/min/

mmHg and 100 mL/min/mmHg. The OCG is also deter-

mined by the efficiency of glucose as an osmotic agent,

which is relatively low because the overall reflection coef-

ficient (the proportion of glucose molecules exerting an

osmotic effect) is only about 5% due to the high fraction

of the small pores (or large small pore surface area) and

their large diameter compared to the molecular diameter of

the osmotic agent. In contrast, the efficiency of glucose

across the water exclusive ultra-small pores is 100% but

only accounts for half of the UF due to their much lower

fraction (i.e. much smaller surface area). The addition of

this third ultra-small pore to the TPM also explains the

‘sodium sieving’ phenomenon. Sodium sieving refers to

the decrease in dialysate sodium concentration (‘dip’)

observed during the first hour of a hypertonic glucose dwell

(typically about 7–9 mmol/L at 60 min with hypertonic

glucose solution). Computer simulations suggested that

sodium sieving results from the dilution of dialysate

sodium concentration by solute-FWT.

These predictions of the TPM were subsequently vali-

dated by the identification of aquaporin (AQP) water chan-

nels in the peritoneal membrane and by experimental models

of PD. The water channel AQP1 is the archetype of a family

of water channels facilitating osmotically driven water trans-

port across biological membranes.35 The constitutive expres-

sion of AQP1 in the plasma membrane of endothelial cells

lining peritoneal capillaries and venules suggested it may

have a role in water transport during PD.36 This hypothesis

was confirmed by the development of experimental models

of PD and their application to transgenic mice devoid of

water pores. In these models, complete or partial deletion

of the Aqp1 gene resulted in a 50% decrease in net UF, and a

complete abolition of sodium sieving when hypertonic glu-

cose was used as osmotic agent.37–39 These studies identified

AQP1 as the molecular counterpart of the ultra-small pore

predicted by the TPM and validated the importance of water

channels in glucose-driven free-water transport. To date,

Figure 2. Distributed model describes the peritoneal barrier as blood and lymph capillaries spatially distributed within a peritoneal
tissue space (made up of parenchymal cells, interstitial cells and matrix molecules).22 The three-pore model is used to describe
transport between blood circulation and the interstitial space across the blood capillary wall with ultra-small pores (aquaporins), small
pores and the large pores taken into account. In this approach, the water and solute transport through the tissue depends not only on
the local pressures, tissue hydration and concentrations that drive each transport but also on the local properties of the tissue that are
changing due to physiological response to the undergoing treatment. A further extension of the distributed model that takes into
account two phase structure of the interstitium (colloid and fluid phases) can be used to investigate concomitant bidirectional solute
transport across the structured interstitium.23
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AQP1 is the only identified protein directly involved in

transport processes sustaining PD.

In contrast to crystalloid osmotic agents such as glucose

and amino acids, the osmotic conductance of high molecu-

lar weight osmotic agents like icodextrin is similar to the

UF capacity of the membrane (since such solutes have an

osmotic reflection coefficient of 90–100%). Model predic-

tions and experimental models demonstrate that the trans-

peritoneal water flow generated by the glucose polymer

icodextrin is independent from the presence of water chan-

nels and tonicity so that it is more dependent on the UF

capacity of the membrane and occurs predominantly across

small pores of peritoneal capillaries, at the level of inter-

endothelial junctions.40,41 Solute-coupled water transport

induced by icodextrin relies on the presence of large col-

loidal fractions, with a hydrodynamic radius larger than the

radius of small pores.

UF insufficiency resulting from membrane dysfunction. The

most common cause of UF insufficiency (causing a UF

capacity of less than 400 mL in a 4-h dwell with 3.86%
glucose/4.25% dextrose concentration) is early loss of the

osmotic gradient due to a fast PSTR of which the most

important known determinant is local membrane inflam-

mation.42 However, membranes with low OCG will also

cause UF insufficiency which will manifest as a low UF

volume in a conventional PET which cannot in general be

used to distinguish between UF insufficiency due to fast

PSTR versus low OCG, especially as these conditions may

occur simultaneously. Membranes with a low UF capacity

and a D/P ratio of anything less than 0.8 raises the possi-

bility that intrinsic membrane dysfunction is also present,

for example de novo at the start of treatment or due to

acquired membrane damage over time. To fully diagnose

the cause of UF insufficiency, clinical tests have been

designed to assess the UF capacity and/or the OCG, such

as the double mini-PET43 or a three-fold Evidence based

nephrology. 2nd ed peritoneal test (see overvlow).44 In fact,

with appropriate measurements and by using non-linear

regression, all mentioned parameters can be assessed using

the TPM or the distributed model. However, many of these

are complex and not suitable for routine clinical settings.

Nevertheless, these more sophisticated approaches to

measuring membrane function have provided insights into

the possible mechanisms of UF insufficiency and mem-

brane injury. The effective glucose concentration gradient

that induces UF across the blood capillary wall is not con-

stant but decays with the distance from the peritoneal cav-

ity across the interstitial tissue.24,32 Since UF is driven by

the local concentration gradient between tissue and blood

circulation according to Starling forces, the blood capil-

laries situated in the peritoneal barrier closer to the perito-

neal cavity will have the greater contribution to the overall

UF than those situated at a greater distance. The values of

the peritoneal UF capacity and glucose diffusion capacity

depend on the transport properties of both barriers, that is,

capillary wall and interstitium (peritoneal tissue). In the

normal state, the capillary wall component has a prevailing

impact, and under these circumstances, UF insufficiency

might be caused by differences in the molecular structure

of the membrane, for example AQP1 expression. This,

however, might change in the case of long-term PD. The

functional analysis of membranes with acquired UF insuf-

ficiency shows complex changes within transport proper-

ties of both components of the peritoneal barrier. In

particular, the decrease in peritoneal OCG, as typically

observed in acquired UF insufficiency, is related to both

a decrease of glucose reflection coefficient and the UF

capacity of the peritoneal membrane. Moreover, whereas

decrease of the glucose reflection coefficient is related to

the changes in the blood capillary wall (i.e. the decrease of

the blood capillary wall reflection coefficient of glucose

due to a decrease in the ultra-small pore fraction), the

changes in the UF capacity are mainly caused by changes

in the peritoneal tissue properties that might correspond to

the processes of fibrosis.32

Classification of causes of membrane dysfunction
based on current understanding of the underlying
pathophysiology (underpins guideline 1)

Clinically, it is possible to identify three main types of

membrane dysfunction (see Table 1 and Figure 3):

(1) membranes that exhibit rapid small solute diffu-

sion, termed ‘fast peritoneal solute transfer rate’

(PSTR),

(2) membranes that exhibit poor intrinsic UF from the

start of PD and

(3) membranes that become less effective over time

leading to acquired membrane insufficiency.

It should be recognized that there are potentially other

explanations as to why poor net UF may occur. These

might include mechanical problems affecting dialysate

drainage, leakage of dialysate outside the peritoneal space,

high intraperitoneal pressure causing a reversal in flow of

fluid, either across the capillary bed or into the peritoneal

tissues, or excessive fluid ‘lymphatic absorption’. These

problems cannot be described as peritoneal membrane dys-

function as such but must be considered when evaluating

the peritoneal membrane (see case examples in Online Sup-

plement Appendix 3 and text underpinning guideline 5).

It should also be remembered that different types of

dysfunction may coexist.

(1) Fast PSTR – local inflammation, but recogni-

tion of other mechanisms

Clinical evidence and implications. A fast PSTR can be present

at the start of dialysis or can appear after exposure to PD

solutions over variable lengths of time. It has long been
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recognized that there can be about a three-fold inter-

individual variability in the PSTR at the start of PD. In a

study from 764 facilities operated by a large dialysis pro-

vider organization in the United States, over 10,000 people

were evaluated with 2.5% dextrose at a median of 39 days

from start of PD. The mean (+ standard deviation) D/P of

creatinine and UF volume at 4 h were 0.65 + 0.12 mL and

281 + 254 mL, respectively.45 This compares with a mean

D/P creatinine ranging between 0.62 and 0.73 as reported in

a number of cohort studies from around the world (see

Table 2). Many of these studies, including more than

18,000 patients from all regions of the world, have shown

that the faster the solute transfer rate is the higher is the risk

for death and hospitalizations. The largest of these studies

demonstrated that the relationship between PSTR and

adverse health outcomes increases across the entire clinical

range, and it is clinically important when the 4-h D/P crea-

tinine is higher than the mean for the population (>0.65 for

this population). It is not possible to give a generally appli-

cable cut-off value, however, as multicenter studies, such

as those shown in Table 2, show that there is a clear centre

effect, and possible a regional effect seen when measuring

PSTR, likely due to different methods for measuring blood

and dialysate creatinine levels, including adjustment for

glucose concentration in the dialysate.42,45–53 Ideally, cen-

tres would establish their own normal range (a further argu-

ment for undertaking routine measurements in all newly

established patients at a standardized time point), but it is

recognized that this may not be practical, especially for

many smaller centres. One solution to this would be the

national reporting of membrane function tests, as is

achieved by the ANZDATA registry.50

Table 1. Classification of membrane dysfunction, including definition, underlying pathophysiology and clinical implications.

Classification Definition Pathophysiology Clinical implications and actions

Fast PSTR D/P creatinine ratio above the
population mean value at the
end of a 4-h PET using either
2.27/2.5% or 3.86/4.25%
glucose/dextrose-based
solution. While most studies
report that PSTR is normally
distributed, with a typical
average value of 0.65,
multicentre studies show a
significant centre effect.

It can be present at the start of PD
and/or develop or resolve over
time

� Membrane inflammation
causing a large effective
vascular surface area
� Neovascularization
� Both the above may potentially

be, in part, genetically
determined

� Reduces net ultrafiltration
with glucose-based dialysate
due to early loss of the
osmotic gradient and more
rapid fluid reabsorption
� In patients with significant

residual kidney function, ‘dry’
nights when treated with
CAPD or partial or complete
‘dry’ days when treated with
APD. If long dwells required
use icodextrin (daytime for
APD, overnight for CAPD)
� Shorten glucose-based

overnight dwells (e.g. 90–180
min) when using APD coupled
with icodextrin during the day
long dwell.
� If neither APD nor icodextrin

available increase glucose
strength to prevent
reabsorption.

Poor intrinsic
ultrafiltration (low
OCG at start of PD

Sodium dip at 60 min�5 mmol/l or
sodium sieving ratio <0.07 with
a 3.86% glucose/4.25% dextrose
PET

� Explanations largely not
understood
� Potential influence of genetic

determinants (e.g. aquaporin
expression)
� Note: a low DDNa 0–60 min

can also be observed in
patients with very fast PSTR
due to early dissipation of the
osmotic gradient

� Low OCG at baseline: careful
evaluation and monitoring of
fluid volume.
� May be associated with fast

PSTR
� Earlier indicator of

ultrafiltration insufficiency than
fast PSTR

Acquired intrinsic
ultrafiltration
insufficiency (low
OCG) developing
over time (years)
on PD

Sodium dip at 60 min �5 mmol/L
or sodium sieving ratio <0.07
with a 3.86% glucose /4.25%
dextrose PET

� Structural alterations in the
peritoneal interstitium in
keeping with progressive
fibrosis
� Usually associated with fast

PSTR

� Discussion about the potential
risks of continuing PD,
including EPS, vs. transition to
another modality, and shared
decision-making with the
patient and the PD team

PSTR: peritoneal solute transfer rate; D/P: dialysate to plasma; PET: peritoneal equilibration test; PD: peritoneal dialysis; CAPD: continuous ambulatory
peritoneal dialysis; APD: automated peritoneal dialysis; OCG: osmotic conductance to glucose; EPS: encapsulating peritoneal sclerosis.
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There is also strong evidence that PSTR increases with

time in patients treated with PD; typically, in 1 of every

3 patients the 4-h D/P creatinine increases by at least 0.1 after

1-year treatment with PD.47,54–61 The drivers of this change

are likely to include exposure to glucose54,62,63 and glucose-

derived products in conventional solutions,64 infections61,65

and earlier loss of residual kidney function, likely in part due

to the increased requirements for hypertonic glucose.62

Peritoneal inflammation. Only 5–11% of the total inter-

individual variability in PSTR can be explained by demo-

graphic or clinical variables. After adjusting for the centre

measurement effect, it is significantly and independently

faster in men, diabetics, lower body mass index and those

with more residual kidney function, but these effects are

small. More important seems to be the local amount of peri-

toneal inflammation as determined from dialysate

interleukin-6 (IL-6) levels. Dialysate IL-6 concentration is,

despite the dilutional effect of 2 L of instilled dialysate, typi-

cally higher than the blood IL-6 levels (up to 3 orders of

magnitude) and it correlates with other locally produced

inflammatory cytokines. It is the strongest known association

with PSTR,42,66–68 whereas systemic inflammation is associ-

ated with comorbidity and thereby patient survival.42 The

drivers of this local peritoneal inflammation remain unclear

– but some of the between patient variation may by accounted

for by genetic factors, as determined from small single centre

studies of several different candidate genes, for example,

those associated with IL-6 production.69,70

Despite their observational nature, these studies suggest

a causal relationship between higher IL-6 levels in the

peritoneal effluent and PSTR. This is further supported

by biological plausibility, in that local inflammation will

increase the vascular surface area, so increasing the crea-

tinine diffusion capacity, as also happens during more

intense inflammation during peritonitis.71 There is increas-

ing evidence that the longitudinal changes in PSTR are

associated with increases in the dialysate IL-6 concentra-

tion59,68 (unpublished data, Global Fluid Study).

(2) Intrinsic low UF – variation in FWT

Clinical evidence and implications. PSTR explains less than

20% of the variation in the inter-individual differences in

Low Ultrafiltra�on (UF) Capacity
Net UF at 4 hours <400 ml using 3.86%/4.25%  

of <100 ml using a 2.27%/2.5% 
glucose/dextrose solu�on

Fast Peritoneal Solute Transfer Rate
Local inflamma�on

• Inherent fast transfer rate
variability present at baseline

• Aquired membrane injury
Long-term PD/Peritoni�s

Low osmo�c conductance to glucose
Reduced free water transport

• Intrinsic low UF
variability present at baseline

• Aquired membrane injury
Progressive fibrosis/vasculopathy

Rule out mechanical problems/leaks

Figure 3. Classification of the causes of membrane dysfunction.

Table 2. Variation in the average values of dialysate:plasma ratio of creatinine at 4 h taken from a sample of cohort studies around the
world.

Study Country/Countries Patient number Mean value Standard deviation

Twardowski et al.46 USA 86 0.65 +0.16
Cueto-Manzano et al.48 Mexico 86 0.68 +0.12
Mujais and Vonesh49 USA 1229 0.67 +0.12
Davies47 UK 574 0.65 +0.13
Rumpsfeld et al.50 Australia/New Zealand 3702 0.69 +0.12
Smit et al.51 Netherlands 154 0.73 +0.10
Lambie et al.42 UK, Canada, Korea 595 0.71 +0.12
Mehrotra et al.45 USA 10,142 0.65 +0.12
La Milia et al.53 Italy 758 0.73 +0.12
Shi et al.52 China 320 0.62 +0.11
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UF capacity. In one large cohort of incident patients with

systematic evaluation of transport characteristics, using a

modified 3.86% glucose-based PD solution, mean (SD) net

UF (corrected for bag overfill) was 675 mL (+308), with

values ranging from�570 mL to 1506 mL; that the sodium

dip also varied considerably between individuals (mean

(SD) dip at 60 min was 8.4 mEq/L (+3.8), ranging

between �3 mEq/L and 20 mEq/L)53 implies that other

mechanisms must be important. This considerable variation

in the sodium dip suggests that there are inter-individual

differences in the effectiveness of glucose as an osmotic

agent, and therefore difference in OCG at baseline.

Because the sodium dip reflects the proportion of fluid

travelling across the membrane without solute (in this case

sodium), it is also referred to as ‘free water transport’. The

sodium dip, as defined later in more detail, (section under-

pinning guideline 4a) is a reliable surrogate for OCG,72 and

it is of note that reduced dip was identified as the only

independent predictor of the risk of developing UF failure

during the course of PD in an Italian cohort.73

The reason for such inter-individual variability in OCG

already at the start of PD remains unknown but may poten-

tially be explained by genetic polymorphisms, as observed

for PSTR.

(3) Acquired membrane injury – progressive

fibrosis

Clinical evidence and implications. Systematic and longitudi-

nal follow-up of peritoneal function parameters in patients

on long-term PD has contributed to a better understanding

of the relationship between severe interstitial fibrosis and

the uncoupling of reduced UF due to increasing PSTR and

that caused by a UF reduction due to intrinsic membrane

injury.47,54,56,63 It is likely that an acquired reduction in

membrane efficiency only occurs once significant fibrosis

is already established and even then this is far from inev-

itable as the majority of individuals on long-term PD (>5

years) do not develop UF insufficiency. An even smaller

proportion go on to develop encapsulating peritoneal

sclerosis (EPS), an extremely rare but dramatic complica-

tion of long-term PD that is characterized by an exagger-

ated, inflammatory fibrogenic response of the visceral

peritoneum that cocoons the bowel, leading to episodes

of intestinal obstruction.74,75 Retrospective cohort studies

show that peritoneal UF capacity decreases well before the

clinical manifestations of EPS, which may present after

dialysis has been stopped. Progressive membrane fibrosis,

therefore, seems to be a risk factor for EPS as in these

individuals there is a progressive reduction of OCG prior

to the development of the condition.55,56,63,75,76 Based on

these observations, a progressive and excessive decline in

OCG (e.g. loss of sodium sieving or sodium dip) might

be used as an independent predictor for the risk of

EPS.55–57,75,76 At a structural level, this functional defect

can be linked to specific alterations of the collagen matrix

in the peritoneal interstitium of patients with EPS, includ-

ing increased density of collagen fibres, whereas AQP-1

expression remains unchanged.56 These observations are

supported by predictions from the serial three-pore mem-

brane/fibre matrix and the distributed model for peritoneal

transport. These models predict that interstitial fibrosis

constitutes an additional resistance to water transport, out-

side the capillary wall, or a mechanical barrier limiting the

penetration of glucose around peritoneal capillaries,

thereby reducing the OCG across the capillary wall.56,21

Progressive fibrosis. Prolonged exposure to PD solutions, pos-

sibly exacerbated by episodes of peritonitis, causes sus-

tained inflammation and progressive damage to the

peritoneal membrane, which undergoes angiogenesis, hya-

linizing vasculopathy and fibrosis.77–82 These morphologic

alterations have been associated with increased PSTR and

UF failure,77,78 thereby constituting a major barrier to long-

term PD, through an increased risk of technique failure,

morbidity (including increased risk of EPS) and mortality.

The role of peritonitis in developing EPS is less clear,

partly because it often precludes long-term PD. It should

be pointed out that the morphological features of EPS are

different to those of progressive fibrosis, characterized by

inflammation, fibrin deposition and expression of throm-

bospondin83 and that there is no role for routine peritoneal

biopsy in the prediction of this condition.84

A full discussion of the cellular and molecular

mechanisms of peritoneal fibrosis is beyond the remit of

this guideline. Extracellular matrix-producing myofibro-

blasts play a role, although controversy still exists about

their origin, with potential sources including local

resident fibroblasts, bone morrow-derived pericytes,

mesothelial-to-mesenchymal transition and endothelial-

to-mesenchymal transition.85,86 The local production of

pro-inflammatory (e.g. IL-6, TNF-a, MCP-1), proangio-

genic (e.g. VEGF) and profibrotic (e.g. TGF-beta, CTGF,

PDGF) molecules raises the possibility of using biomarkers

to assess this process, but so far their validation is insuffi-

cient to recommend their use in clinical practice.57,87–91

Overview of the available membrane
function tests and what they measure

Over the years, a number of membrane functions tests have

been developed to investigate peritoneal membrane dys-

function. The first test to provide clinical useful informa-

tion was pioneered by Twardowski in 1987 and is called the

PET.46,92 A number of modifications of this test have

evolved and been combined with additional measures,

some primarily for research purposes for which they remain

very important. These are summarized in Table 3. For

everyday clinical purposes, this guidance is based on the

PET, that is, the estimation of PSTR at 4 h and the UF
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capacity, and the 1 h sodium dip, tests for which the clinical

evidence is greatest.

Measuring PSTR: The Peritoneal Equilibration Test,
PET (underpins guideline 2a)

Standard PET (4-h exchange). The detailed procedure for

undertaking a PET is shown in Online Supplement Appen-

dix 3. This may be performed using either a 2.27% glucose/

2.5% dextrose exchange as originally described by Twar-

dowski46,92 or a 3.86% glucose/4.25% dextrose

exchange.1,51,97 The primary result is expressed as the

4-h D/P creatinine ratio; additional results often include

4-h dialysate:0-h dialysate glucose, and UF volume (see

next section on UF capacity). There is no meaningful dif-

ference in the estimation of PSTR (specifically D/P creati-

nine at 4 h) between the different glucose

concentrations.44,98–101 Indeed, differences such as there

are, are within the reproducibility of the test, typically a

ratio value of 0.1, which is no greater than the between–

centre variation in this measurement already referred to.

In choosing which glucose strength to use for the PET,

the pros and cons are outlined in Table 4. Broadly, the

advantages of using 2.27% glucose/2.5% dextrose are that

clinical validation with large registry studies is much

stronger whereas the use of higher glucose concentration

enables the combined estimate of PSTR with the sodium

dip at 1 h and the maximal UF capacity, strengthening the

diagnostic value of the test (see section underpinning

guideline 4). Evidence from our survey of practice in

China, South America and in the PDOPPS and Bio-PD

study suggests that despite the ISPD guidance in 2000

recommending that the stronger glucose strength be

used, this has not been adopted (see Online Supplement

Appendix 2).

Due to its prognostic value, it is recommend that the

PET is undertaken in all patients early in the course of PD

(between 6 weeks and 3 months).47,102 The reason for this

is that there are significant earlier changes PSTR (in either

direction, but more commonly an increase in PSTR).

Given the known centre effects on the measurement, one

of the advantages in screening all patients at this standar-

dized time is that the mean value for the population can be

established. PSTR is normally distributed with a very

reproducible standard deviation (0.12) across different

studies. It is also reproducible within the individual with

a coefficient of variation of <10% within a month of test-

ing. There is no evidence of the benefit of repeat testing

Table 3. Summary of different peritoneal function tests and the membrane characteristics they measure.

Membrane test

Membrane
characteristic

Classic PET46 Modified PETa (SPA)93 Mini-PETb Double mini-PET43
Personal dialysis capacity test

(PDC)94

2.27% 3.86% 3.86% 1.36% and 3.86% Multiple

4 h 4 h 1 h 2 � 1 h 24 h

Solute transfer Yes Yes Yes (at 1 h) Yes (at 1 h) Yes (expresses this as diffusion
distance (A0/Dx))

Ultrafiltration
capacity

Yes Yes Yes (at 1 h)

Sodium dip (free
water transport)

Yes Yes Yes (Also calculates
the proportion of
UF via AQP and
small pores)

Osmotic
conductance

Yes Yes (Calculates the UF capacity
for glucose, LpS)

Net fluid
reabsorption

Yes (This is possible because it
includes a long exchange)

Effective lymphatic
reabsorption

Yes (Calculated from
instilled macromolecule)

Protein Clearance Yes (Uses proteins of
different molecular
weights)

Yes (Measures large pore flux
(JVL))

PET: peritoneal equilibration test; UF: ultrafiltration; AQP: aquaporins.
aThe modified PET, also known as the Standard Permeability Analysis (SPA)93 when measurement of peritoneal proteins and large-molecular weight
markers are included, can be combined with the mini-PET by doing a temporary drain at 1 h.

bThe modified PET with a temporary drain at 1 h can be combined with the first part of the double mini-PET, as can the mini-PET be combined with the
classic PET, referred to the sPET,95,96 to get a complete data set (these combinations will take 5 h in total). The PDC requires specific software and a
complex regime to gain all the information, so is rarely used.94
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(although a significant number of centres will do this at

least on an annual basis), but given that it is clear that

PSTR can change over time it is appropriate to repeat the

test to explain a clinical change – for example a worsening

in fluid status or an apparent change in UF. Whereas long-

term treatment with PD is associated with increased

PSTR, this is not discriminatory when predicting the

development of EPS.55,88

Interpretation of and mitigation of fast PSTR
(underpins guideline 2b)

As already discussed, a faster PSTR is associated with

higher mortality and hospitalization risk in PD (see Table

5). The hazard ratio for overall mortality risk is 1.11 (1.05,

1.17) for every 0.1 higher D/P creatinine ratio.106 This is

thought to be due to in part to the important effects faster

PSTR has on the net achieved UF volume. The mechanism

is due to the combination of less actual UF (early loss of

glucose gradient)107 and increased time for fluid reabsorp-

tion once the osmotic gradient has dissipated

(disproportionately greater with fast PSTR).108 There is

also a risk of underestimating the problem in continuous

ambulatory peritoneal dialysis (CAPD) patients, as bags are

typically overfilled (to account for evaporation and the

flush-before-fill procedure), which might – unless sub-

tracted – lead to a significant overestimate in actual UF

of 400–800 mL per day.109,110

Other than using dialysate with higher glucose concen-

tration, two rational approaches to the problem are to (a)

shorten the length of dwell with fluid reabsorption and (b)

to use a solution that does not lose its efficacy during a long

exchange, that is, a polyglucose solution (icodextrin) by

achieving colloidal osmosis. Automated peritoneal dialysis

(APD) can be used to shorten the dwell length for part of

the day, and there is non-randomized observational data

that indicate some mitigation of the mortality risk.45,103,111

When combined with a dry day strategy, which is possible

when there is residual kidney function present, this might

be sufficient. However, the risk of fast PSTR was not fully

mitigated by the use of APD in the largest (North Amer-

ican) study looking at this.45 This could mean that the

Table 4. Comparison of the use of middle and high strength glucose when undertaking a 4-h Peritoneal Equilibration Test.

2.27% glucose/2.5% dextrose 3.86% glucose/4.25% dextrose

Clinical measurement Solute transfer rate Equivalent Equivalent
UF capacity Potentially less discriminatory Potentially more discriminatory
Free water transport Cannot estimate Estimated from the sodium dip at 1 h
Catheter flow

dysfunction
Equivalent Equivalent

Clinical use PROS Estimates suggest that over 90% units
worldwide use this concentration
routinely. Provides sufficient information
to guide the majority of prescription
decisions. Reflects everyday practice

Allows better diagnosis of membrane
dysfunction in combination with a 1 h
sodium dip.

CONS Lacks diagnostic value for membrane
dysfunction

Requires availability of solution with this
tonicity (some countries this is an
issue)

Does not reflect everyday practice
Clinical validation

(Survival,
technique failure
and hospitalization)

Solute transfer rate Very high – given that most studies reporting
clinical associations use this strength.
Faster solute transfer rate indicates
higher mortality and hospitalization risk

Likely high – no reason to think this is
different to 2.27/2.5%, but no
supporting evidence.

UF capacity Data on survival and technique failure shows
no clear relationship. More frequent
hospitalizations when UFC < 200 mL

No data on survival, technique failure or
hospitalization

Free water transport Cannot estimate No data on survival, technique failure or
hospitalization

Clinical validation
(Ultrafiltration
insufficiency)

Solute transfer Identifies poor ultrafiltration that should
respond to prescription interventions

Identifies poor ultrafiltration that should
respond to prescription interventions

UF capacity Cut-off <100 mL based on small and large
data sets

Cut-off of <400 mL based on small data
sets

Free water transport Cannot estimate Identifies ultrafiltration failure that will
not respond to prescription
interventions and membrane injury
that is a risk for EPS

UF: ultrafiltration; EPS: encapsulating peritoneal sclerosis.
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problem of fluid reabsorption in the long day dwell was not

being addressed or that there is some other explanation for

the association between PSTR and mortality, such as other

unknown determinants (e.g. genetic factors) or increased

peritoneal protein losses (see later). It is possible that very

slow PSTR is associated with worse outcomes on APD;111

the reason for this is not certain but could reflect poor

solute clearance (e.g. sodium or phosphate) especially if

used with a dry day. It should be emphasized that provided

the choice is available, most can be treated with either

CAPD or APD according to lifestyle references, provides

care is taken to ensure that significant fluid reabsorption is

not occurring.

There is substantial evidence that using icodextrin in the

long exchange avoids the prolonged fluid reabsorption

phase that occurs with glucose-based solutions, even up

to 16 h,112 so increasing net UF which then translates into

an improvement in fluid status.113,114 Cochrane reviews

and a recent enriched meta-analysis of trials that includes

unpublished registration studies show that icodextrin does

increase net UF, especially in those with faster PSTR and

that it reduces episodes of fluid overload.115–117 There is no

impact on technique survival and a marginal benefit on

patient survival (based on small numbers of events – hence

the grading of this recommendation).

Measuring UF capacity (underpins guideline 3)

The previous ISPD guideline on assessing membrane func-

tion1 focused on using the UF capacity to define UF failure.

While this updated guideline recognizes the literature on

which this was based, it has de-emphasized its significance

for three reasons. First, the emphasis of this guideline is to

identify membrane dysfunction as a relative problem rather

than failure as a binary event using an absolute cut-off

value. This recognizes the fact that these measures are all,

in truth, continua and do not represent clear cut ‘disease’

entities. People come in different shapes, sizes and with

varying behaviours. Some will need more UF to maintain

health and well-being, others will wish to use less glucose.

Second, the measurement of UF capacity (which is

included in the PET, see also Table 2) while very simple

is open to a high degree of error, especially when there is

any degree of catheter dysfunction, or as in some people the

pelvic sump volume of undrained fluid is high or variable.

Accurate measurement of this residual volume is not easy

in routine practice. Third, it has little diagnostic value.

Nevertheless, measuring UF capacity is very simple

and thus an excellent screening tool. Insufficient UF

should be suspected when the net UF from a 4-h PET

is <400 mL (3.86% glucose/4.25% dextrose) or <100

mL (2.27% glucose /2.5% dextrose). With the excep-

tion of the large North American study,45 the number

of patients with UF failure in the studies upon which

these values are obtained are quite small (<100 in

total) but they are well characterized.51,92,97 Mem-

brane dysfunction should always be considered in any-

one who is struggling to maintain adequate fluid

status.

Measuring sodium sieving/sodium dip (underpins
guideline 4a)

The detailed procedure for undertaking a measurement

of the sodium dip, including the measurement of dia-

lysate sodium, is shown in Online Supplement Appen-

dix 3. The sodium dip during a high concentration

3.86% glucose/4.25% dextrose exchange is maximal

between 1 h and 2 h of the exchange and represents

the rapid influx of free water into the peritoneal cavity

via AQPs. The test is undertaken at 1 h so as to mini-

mize the amount of sodium diffusion through the small

pores, but it should be understood that this will occur,

and more so when PSTR is at the higher end. Dialysate

sodium should be measured using the indirect electrode

method.118

Table 5. Adverse outcomes associated with faster PSTR.

Outcomes Source
Number

of patients
Adjusted relative risk (95% CI)

per 0.1 increase in D/P creatinine

All-cause mortality Brimble meta-analysis 2006103 19 studies, includes CANUSA
study, Stoke Study,104 EAPOS and ANZDATA Registry.

6648 1.15 (1.07–1.23)

Global Fluid Study 2013 (10 centres from UK, Korea and
Canada)42
Incident cohort 499 1.12 (0.98–1.23)
Prevalent cohort 307 1.18 (1.003–1.41)

Davita database 2015 (764 US centres)45 10,142 1.07 (1.02–1.13)
Technique Failure

(death censored)
Brimble KS meta-analysis 2006 6 studies 5104 1.18 (0.96–1.46)
Davita database 10,142 1.01 (0.98–1.05)

Hospitalization Davita database 2015 10,142 1.05 (1.03–1.06)

CANUSA: Canada–USA Study105; ANZDATA: Australia New Zealand Registry50; EAPOS: European Automated Peritoneal Dialysis Outcomes Study
(Anuric Patients)12; PSTR: peritoneal solute transfer rate; CI: confidence interval; D/P: dialysate to plasma.
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The sodium dip is expressed as the absolute fall in the

dialysate sodium concentration from baseline, [Naþ]t ¼ 0�
[Naþ]t¼ 60 min.

It can also be expressed as the sodium sieving ratio: 1 �
([Naþ]t¼ 60 min/[Naþ]t ¼ 0.

It should be noted that the initial dialysate sodium dif-

fers according to the manufacturer and solution type, rang-

ing between 131 mmol/L and 134 mmol/L.

The normal range for sodium dip, established from a

cohort of 758 incident patients, is 9 mmol/L, interquartile

range 6–11 mmol/L.53 This is equivalent to a sodium siev-

ing ratio of approximately 0.07, range 0.055–0.085.

Interpreting sodium sieving/dip (underpins
guideline 4b)

The sodium dip can be considered as an indirect assessment

of FWT.43,76,119 It will be affected by the PSTR to some

extent, in that this is associated with more rapid diffusion of

sodium and less efficient UF, but it does provide the clin-

ician with additional information. The sodium dip is effec-

tively lost in the presence of severe UF insufficiency120,121

and a progressive decline in the sodium dip over some

years is a better discriminator for subsequent UF failure

than the longitudinal change in PSTR.73 In several studies,

the progressive reduction in the sodium dip was also a

better discriminator of those patients who were more likely

to go on to develop EPS.55,56,76 These studies identified a

sodium dip �5 mmol/L or a sodium sieving ratio of

<0.03 as high risk for EPS.

In interpreting the sodium dip, it is important to recog-

nize that it indicates a reduction in FWT for whatever rea-

son. It is not simply a measure of AQP expression as FWT

may be impeded by other mechanisms, most notably the

development of progressive fibrosis and damage to the

capillaries affecting barrier function.32,56 At the start of

PD, it may reflect other mechanisms of intrinsic membrane

function. There is insufficient evidence to recommend

sodium dip measurement as a matter of routine in all people

on long-term dialysis. However, in line with ISPD gui-

dance, staying on PD long-term should always be consid-

ered carefully for many reasons, of which membrane

function may be one, and the pros and cons interpreted in

the context of competing risks.75,122

Peritoneal protein loss and other aspects of
membrane function (underpins guideline 5)

(1) Peritoneal protein loss

Pathophysiology and measurement of protein clearance. As

already discussed, macromolecules mainly cross the

peritoneal capillaries via convection through large pores

(25–30 nm) with the primary drivers for the rate of perito-

neal protein loss being the transcapillary hydrostatic pres-

sure gradient and the number of large pores available for

transport.123 The precise nature of the ‘large’ pores has

been debated, but they do not appear to represent a charge

selective barrier or be due to transcellular transport by

intracellular vesicles.124 In other vascular beds, large pore

numbers are increased in the presence of inflammation,123

so it would be anticipated that patients with fast PSTR also

have high protein losses – and this is indeed the case.125

However, it is not quite this simple as albumin, which

represents about half of peritoneal protein losses is also

able to pass through small pores,34 which are also associ-

ated with inflammation. In fact, intraperitoneal IL-6 con-

centration is associated with peritoneal protein losses

independently from PSTR, so it would seem that both are

important.125 Interestingly, peritoneal protein loss is also

associated with comorbidity and this has led to the idea that

it also reflects systemic endothelial dysfunction. There is

indeed strong evidence for endothelial dysfunction in PD

patients126 with a significantly greater systemic transcapil-

lary escape.127 However, this seems to be associated with

markers of endothelial barrier function (one possible can-

didate being damage to the endothelial glycocalyx) rather

than systemic inflammation, which in multivariable models

is clearly not associated with peritoneal protein loss.125

Hydrostatic back-pressure in patients with right-sided heart

failure has also been proposed as a possible mechanism.128

It is important to say something about how peritoneal

protein loss is measured and whether it is expressed as total

loss or clearance as these are reported differently. Protein

loss is the direct measurement of dialysate protein, typi-

cally over 24 h (expressed in mg or g/d), whereas the clear-

ance would be this value divided by the serum total protein

(expressed as per unit time, such as mL/min, or L/week). If

serum total protein is not available, the corrected serum

albumin/0.4783 has been used.29 It should be remembered

when interpreting peritoneal protein losses that other fac-

tors will be important – for example systemic inflammation

with suppressed albumin synthesis which will affect pro-

tein losses. Equally, higher peritoneal protein losses will

exacerbate hypoalbuminemia.

Clinical significance of peritoneal protein losses. A number of

studies have found that higher peritoneal protein loss is

associated with lower survival,129–132 although this is

not a universal finding,125,126,133 more cardiovascular

events134,135 and higher peritonitis risk.136 Most of these

studies adjust for PSTR, which, as already mentioned, is

strongly associated with protein loss, primarily through the

mechanism of local, but not systemic, inflammation.125

A low serum albumin is an important predictor of survival

in both peritoneal and haemodialysis patients137 and it may

be that peritoneal protein losses are contributing to this

association, although this is likely to be dominated by the

associations with comorbidity and systemic inflammation,

which when fully adjusted for negate the direct association

with survival.125 Overall, there is significant uncertainty in

the interpretation and value of peritoneal protein clearance
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in routine clinical measurement, so it cannot be recom-

mended at this point.

(2) Intraperitoneal pressure and lymphatic

reabsorption

Net UF according to the TPM (see Figure 1) will be

affected by the transcapillary hydrostatic pressure gradient.

In particular, there is concern that a high intraperitoneal

pressure will increase the amount of fluid reabsorption,

especially when the osmotic or oncotic pressure gradients

have dissipated. Some of this fluid will return to the peri-

toneal capillary circulation, driven by Starling’s forces

(especially likely when the PSTR is high),108 some will

be pushed into the extracellular space of the membrane and

subsequently find its way into the circulation via lympha-

tics. The precise route is unknown but can be inferred from

the disappearance rates of large exogenous or radiolabelled

molecules.107,108,123,93 It is not feasible to measure fluid

reabsorption via these two pathways in the routine clinical

setting, as it requires the more complex sPET (see Table 3).

Intraperitoneal pressure, however, can be easily mea-

sured using the peritoneal catheter, and there are several

studies showing that this increases in a linear fashion as the

volume of fluid placed in the peritoneal cavity is

increased138–140 with a normal range of 8–18 cm H2O when

supine. It has been suggested that a supine pressure above

this should be avoided, primarily to avoid the risks of leak

and hernia formation. It should be remembered, however,

that intraperitoneal pressure is very different in other situa-

tions (sitting, standing, coughing), so supine measurements

are likely of limited value.141 There is no strong evidence

that this affects other clinical outcomes or UF (except per-

haps in children)142 and it is not recommended as a routine

aspect of membrane function testing.

Resource implications and guidance for low resource
settings (underpins guideline 6)

Undertaking measurements of membrane function does not

come without resource implications. There is both a con-

sumable and a human resource cost – the latter being no

less important for the patient who has to give of their time

and the likely associated out of pocket expenses than for the

clinical staff time for undertaking a test. There has never

been a comprehensive health economic evaluation of the

value of membrane function testing, but in some resource

settings the cost has been shown to be prohibitive – equat-

ing to the cost of between 10 and 30 dialysis exchanges.143

In countries, such as the United States, over 90% of patients

starting PD are eventually treated with APD without regard

to PSTR. Indeed, there is no difference in the mean 4-h D/P

creatinine of patients treated with APD or CAPD.45 How-

ever, there is evidence that testing has an impact on pre-

scription practice – for example in the Global Fluid Study

APD was more likely to prescribed in the context of faster

PSTR42 and in the ANZDATA Registry the propensity to

prescribe icodextrin was greater in centres that routinely

measure membrane function.144

Whereas previous guidance and some authors have rec-

ommended regular routine testing of membrane func-

tion,2,145 at present the evidence to support this approach

is not available. Obtaining a baseline assessment is justified

on the basis of its strong association with clinical outcome,

implications for dialysis prescription and the value of hav-

ing a numerical baseline measure with which to compare

and interpret subsequent changes.

In resource settings where testing is not financially

viable, or restricted (e.g. during a pandemic), it is still

important that attention is paid to membrane function. A

simple 4-h measurement of UF capacity can be done as part

of the normal therapeutic schedule and fast PSTR can be

inferred from the excessive reabsorption of fluid when

using an overnight low-strength glucose. Whether routine

testing is in place or not, actual daily dialysis regimes

should be scrutinized to ensure that systematic fluid reab-

sorption is not happening, remembering that CAPD bags

are usually over-filled, and the prescription of glucose

titrated so as to avoid this.

Discussion

Given the long period of time since the last ISPD1 and

European guidance2 on membrane function testing, it is

useful to draw attention to the important differences in

recommendations introduced here. During this period, a

significant amount of epidemiological evidence has

accrued, and mechanisms of membrane injury are better

understood. We have sought to change the terminology and

definitions in a number of areas.

First, the term UF failure, which is pejorative, is

replaced by UF insufficiency which better describes the

problem. The former use implied a single process, with

an absolute cut-off value, whereas in reality the amount

of UF required will depend on other factors, such as resi-

dual kidney function, fluid intake and the willingness of

clinicians to prescribe, or people on dialysis to use higher

concentration glucose exchanges or polyglucose solution.

For this reason, we have moved away from defining UF

failure as a single metric obtained from the PET, changing

the role of measurement of UF capacity (guideline 3) to one

of a screening test. This should be combined with the other

clinical factors and more detailed diagnostic tests to inform

clinical decision-making.

Second, we have changed the terminology from solute

transport to transfer. This decision was carefully consid-

ered by the guideline group and made for the following

reasons: It avoids the potential confusion that transport

implies an active process rather than passive diffusion, but

more importantly, on consultation, lay readers found this an

easier terminology to understand. Against this decision was

the entrenched use of the term solute transport, which will
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still have to be included in any future literature searches on

this subject. However, with the support of the PD commu-

nity and leading journals publishing on this topic it was felt

possible, along the same lines as the recent examples of

changes achieved with terminology such as acute kidney

injury and chronic kidney disease. We also removed any

references to low, high, fast or rapid categorization of

PSTR. This is a normally distributed, continuous variable

that cannot, due to the centre and country effects be neatly

divided into threshold values.

Third, whereas previous guidelines strongly advocated

the use of hypertonic glucose to undertake a PET, we chose

to be less prescriptive. This was in recognition of the fact

that the vast majority of testing worldwide employs glucose

at a concentration of 2.27% (dextrose 2.5%), as documen-

ted by our survey, and that a substantial amount of the

clinical epidemiological data that link the result of this test

to clinical outcomes uses this concentration. Our survey has

some limitations, not covering some parts of the world so

well (e.g. continental Europe, South Asia), but is sufficient

to push us towards a guideline that encompasses both glu-

cose concentrations. Nevertheless, centres should consider

switching to the stronger 3.86%/4.25% glucose/dextrose

solution and adding a 1 h sodium dip measurement, given

that this provides additional information.

Fourth, we added to this guideline advice on how to

assess the OCG to glucose. We have based this on measur-

ing the sodium dip, which is a surrogate of OCG that is far

easier to do than the various tests summarized in Table 3.

There is now more clinical data available linking this mea-

sure to outcomes, but we have limited its use to diagnostic

purposes rather than routine measurement until more data

becomes available. For the same reason, we have not advo-

cated regular routine PETs as the clinical value of this

approach is not yet clear and has the potential to divert

resources from more pressing concerns such as prevention

of peritonitis. However, repeat testing does clearly have

value in interpreting a clinical change or supporting a deci-

sion as to whether staying on long-term PD or switching to

haemodialysis is appropriate.

Fifth, we have linked the findings from membrane func-

tion tests both to their underlying pathophysiological

mechanisms and to the evidence of prescription interven-

tions designed to ameliorate the problem of membrane

dysfunction. We chose to use this term recognizing that

dysfunction does not necessarily relate to disease in the

conventional sense: the peritoneum was not evolved for

the purposes of PD. It is very much in the context of what

we are asking of the repurposed peritoneal membrane

(synonymous here with peritoneum), although it must also

be recognized that real pathological processes do occur in

response to dialysis, and observational data strongly link

this injury to a subsequent higher risk for EPS. The pathol-

ogy of this condition is different to progressive membrane

fibrosis which does not inevitably progress to EPS and it

should be emphasized that length of time on treatment

remains the strongest risk factor.122,146 It is also important

to take competing risks of death into account when asses-

sing EPS risk, as older, more comorbid individuals are far

more likely to die from non-EPS causes.122

Recommendations for future research

1. Development of new methodologies to predict,

identify or monitor membrane function or injury.

a. identification of genes associated with mem-

brane function that might enable genetic testing

and potentially molecular targets

b. Biomarkers. A number of candidate biomarkers

have been identified but to date these are not

sufficiently discriminatory to inform clinical

decision-making. Reliable biomarkers will

require external validation and the development

of reliable prognostic models.

c. more advanced mathematical models to under-

pin membrane function testing, for example,

detailed descriptions of icodextrin, macromole-

cular or trans-capillary aspects of membrane

function

d. less labour intensive methods of measuring

membrane function (e.g. determination of solute

transfer rates from ionic conductance).118

2. Evaluation of membrane function testing strategies.

a. Optimal timing and frequency of repeat testing

b. Evaluation of the patient experience, burden

and understanding of the purpose of membrane

function testing.

c. Health economic analyses of the resource

implications of membrane testing and their

trade off, recognizing different resource

settings

3. Therapeutic interventions to protect the peritoneal

membrane.

a. Trials of oral or dialysate additives that prevent

peritoneal inflammation or fibrosis

b. Novel dialysis solutions with lower toxicity

4. Solution or device development to optimize clinical

management

a. Solutions that reduce systemic side effects

(e.g. glucose)

b. Continuous dialysate flow or wearable

technologies
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