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Abstract

The paper is concerned with development of the asymptotic formulation for surface wave field
induced by vertical surface stress under the effect of gravity in the short-wave region. The approach
relies on the methodology of hyperbolic-elliptic models for the Rayleigh wave and results in a regularly
perturbed hyperbolic equation on the surface acting as a boundary condition for the elliptic equation
governing decay over the interior. A special value of the Poisson’s ratio ν = 0.25 is pointed out, at
which the effect of gravity disappears at leading order.

1 Introduction

Surface waves have numerous engineering application, including seismology, aerospace, civil and structural
engineering, and more, see e.g. [1], [2],[3] and references therein. We also mention a recent substantial
interest in designing seismic meta-barriers and meta-surfaces, see e.g. [4], [5] and [6] to name a few.

After Lord Rayleigh’s seminal contribution [7], the area of surface waves has developed immensely,
taking into account various advanced properties of material, see e.g. [8], [9] and [10] among many more
contributions.

An important sub-area of studies of elastic surface waves is related to accounting for the effect of
gravity, starting from the early contributions of Bromwich[11] and Love [12], where gravity is treated as
a body force. The approach in the influential work [13] assumes that gravity creates a hydrostatic initial
stress, see also [14], extending the consideration to Rayleigh-Lamb waves subject to gravity in an elastic
layer. Some of the more recent works on Rayleigh and Stoneley waves under the effect of gravity include
[15], [16], [17], [18] and [19], accounting for the effects of anisotropy, initial stress, vertical inhomogeneity
and magneto-elasticity.

The majority of the above cited publications are dealing with free surface, analysing the dispersive
properties of the wave. In the current paper, we consider a forced problem, aiming at incorporating the
effect of gravity within the methodology of explicit asymptotic models for Rayleigh wave fields induced
by surface loading, see [20] and references therein. These models are derived as slow-time perturbations
of surface waves of arbitrary profile, see e.g. [21] and [22], and hence benefit from reduction of the
vector problem in elasticity to a scalar problem for one of the wave potentials. The described model
typically contains an elliptic equation governing decay over the interior, along with a hyperbolic equation
on the surface, acting as a boundary condition for the elliptic equation. Recent developments of this
methodology include incorporation of anisotropy [23], [24], pre-stress [25], as well as development of
composite plate models [26] and refined second-order model [27], along with treatment of Rayleigh-type
waves on a coated half-space with Dirichlet type boundary condition and ideal contact on the interface
[28], and with Neumann type boundary condition and sliding contact on the interface [29].

In the current paper, we are starting from the dispersion relation for a Rayleigh wave under the
effect of gravity. The consideration is performed under plane-strain assumption. Introducing a small
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parameter, we notice that the equations of motion are weakly coupled, and derive both exact dispersion
relation (confirming the result in [14]), along with its three-term approximation. Then, we establish a
slow-time perturbation procedure for the forced problem with prescribed surface stresses. Contrary to
previous contributions dealing with effective boundary conditions, see e.g. [30], which did not affect the
perturbation analysis of wave equations of motion, the aforementioned weak coupling caused by gravity
leads to a novel form of two-termed solutions. Consequently, the analysis of boundary conditions implies
a regularly perturbed hyperbolic equation on the surface, by means of a pseudo-differential operator. This
result is formally similar to that in [28] for a Rayleigh-type wave on a coated half-space with a clamped
surface, although the non-uniform nature of the asymptotic approximation in [28] due to presence of
thickness resonant frequencies for a coating layer is certainly not the feature of the current manuscript.

The paper is organised as follows. The problem is formulated in Section 2, and a dispersion relation
and its three-term approximation are discussed in Section 3. Then, the hyperbolic-elliptic formulation for
the Rayleigh wave field induced by surface loading under the effect of gravity is derived. The dependence
of the coefficient at the pseudo-differential operator in the perturbed wave equation on the surface on the
material parameters is studied, and a special value of the Poisson’s ratio (ν = 0.25) at which the effect
of gravity disappears, is pointed out. Finally, generalisations to 3D are discussed.

2 Statement of the problem

Consider an elastic, isotropic, compressible half-space occupying the domain −∞ < x1, x3 < ∞ and
x2 ⩾ 0, along with the influence of gravity. Throughout this paper, a plane-strain assumption is adopted,
for which u3 = 0, um = um(x1, x2, t), m = 1, 2. We focus our attention on surface wave field induced by
the prescribed loading on the surface x2 = 0, with P = P (x1, t) and Q = Q(x1, t) being its vertical and
horizontal components, respectively, see Fig. 1.

Figure 1: Schematics of an elastic half-space with gravity

The equations of motion accounting for the effect of gravity are given by [13], see also [17] and [16]

σ11,1 + σ12,2 + ρg u2,1 = ρ u1,tt,

σ21,1 + σ22,2 − ρg u1,1 = ρ u2,tt,
(2.1)

where ρ is volume mass density, σmn and um (m,n = 1, 2) are stress and displacement components, g is
acceleration of gravity, and comma indicates differentiation with respect to appropriate spatial or time
variable. The constitutive relations for an isotropic elastic solid are taken in conventional form

σmn = λ δmn (u1,1 + u2,2) + µ (um,n + un,m) , (2.2)

see e.g. [31], where λ and µ are the Lamé elastic moduli. The boundary conditions at the surface x2 = 0
are

σ12 = −Q, and σ22 = −P. (2.3)

The displacements can be expressed in terms of Lamé elastic potentials ϕ and ψ as

u1 = ϕ,1 − ψ,2, u2 = ϕ,2 + ψ,1. (2.4)
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In view of (2.2) and (2.4), equations (2.1) may be rewritten in terms of the wave potentials as

ϕ,11 + ϕ,22 −
1

c21
ϕ,tt = − g

c21
ψ,1,

ψ,11 + ψ,22 −
1

c22
ψ,tt =

g

c22
ϕ,1,

(2.5)

with boundary conditions (2.3) taking the form

2ϕ,12 + ψ,11 − ψ,22 = −Q
µ
,(

κ2 − 2
)
ϕ,11 + κ2 ϕ,22 + 2ψ,12 = −P

µ
,

(2.6)

where

κ =
c1
c2
, and c1 =

√
λ+ 2µ

ρ
, c2 =

√
µ

ρ
,

with c1 and c2 denoting the longitudinal and shear wave speeds, respectively.

3 Dispersion relation

Let us first derive the dispersion relation, assuming P = Q = 0. The wave potentials are sought for in
the form

ϕ = f1 (x2) e
ik(x1−ct), ψ = f2 (x2) e

ik(x1−ct), (3.1)

where k and c denote wave number and phase speed, respectively.
On inserting (3.1) into (2.5), we obtain

f1,22 − k2 α2 f1 = −ik2κ−2 ε f2, f2,22 − k2β2 f2 = ik2 ε f1, (3.2)

where

α =

√
1− c2

c21
, β =

√
1− c2

c22
, ε =

g

k c22
. (3.3)

It is observed from (3.2), that for a range of wave numbers satisfying k ≫ ρg/µ, or, equivalently,
ε ≪ 1, equations of motion are weakly coupled, which motivates a perturbation approach which will be
established later.

Equations (3.2) may then be rearranged as a single fourth order ODE. For example, expressing f2
from the first of the equations (3.2) and substituting it into the second one, we deduce

f1,2222 − k2
(
α2 + β2

)
f1,22 + k4

(
α2 β2 − ε2κ−2

)
f1 = 0, (3.4)

The solutions for fm, (m = 1, 2), decaying away from the surface x2 = 0, can be written in the form

f1 = A1 e
−kq1 x2 +A2 e

−kq2 x2 , f2 = γ1A1 e
−kq x2 + γ2A2 e

−kq2 x2 (3.5)

where A1, A2 being arbitrary constants, with

qm =

√√√√α2 + β2 + (−1)m
√

(α2 − β2)
2
+ 4ϵ2κ−2

2
, (3.6)

and

γm =
i κ2

ε

(
q2m − α2

)
, m = 1, 2. (3.7)
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On inserting (3.5) and (3.1) into the traction-free boundary conditions (2.6) with P = Q = 0, we arrive
at

2∑
m=1

[
2i qm +

(
1 + q2m

)
γm

]
Am = 0,

2∑
m=1

[(
1− q2m

)
κ2 + 2 (i γm qm − 1)

]
Am = 0,

(3.8)

from which the dispersion relation follows as the solvability condition

2iq1 +
(
1 + q21

)
γ1

2iq2 + (1 + q22) γ2
=

(
1− q21

)
κ2 + 2 (i γ1 q1 − 1)

(1− q22)κ
2 + 2 (i γ2 q2 − 1)

. (3.9)

Note that an identical dispersion relation has been obtained in [14] (cf. Eq. (21) in the cited paper).
Assuming ε≪ 1, the dispersion relation (3.9) may be expanded,

R0 +R1 ε+R2 ε
2 +O

(
ε3
)
= 0, (3.10)

where the leading order

R0 =
(
1 + β2

)2 − 4αβ, (3.11)

is associated with the classical Rayleigh wave equation, and the corrector terms are given by

K1 =
4
(
1− αβ κ2

)
κ2 (α+ β)

, (3.12)

and

K2 =
1

κ2 (α2−β2)
2

[
2(α4+β4)

αβ
− 12αβ+α2

(
β2(2κ2− 1)+1

)
−κ2−β4

(
κ2− 2

)
+3β2+3

]
. (3.13)
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Figure 2: Dispersion relation (3.9) (solid line) and its approximation (3.10) (dashed line) for the Young’s
modulus E = 2 · 1011 Pa, volume mass density ρ = 8 · 103 kg/m3 and the Poisson’s ratio (a) ν = 0.2 and
(b) ν = 0.3.
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The exact secular relation (3.9) and its asymptotic approximation (3.10), illustrating dependence of
the dimensionless phase speed C = c/cR on ε, are depicted by the solid and dashed blue lines, respectively,
in Fig. 2, for the Young’s modulus E = 2 · 1011 Pa, volume mass density ρ = 8 · 103 kg/m3 and two
values of the Poisson’s ratio, namely (a) ν = 0.2 and (b) ν = 0.3. It may be seen from the latter that the
three-term approximation (3.10) works well for ε≪ 1 corresponding to the short-wave region k ≫ ρg/µ.
Another distinct feature is a maximum at the Rayleigh wave speed in the short-wave limit k → ∞ (or
ε → 0) in Figure 2(a) and a local minimum at the same point in Figure 2(b), which clearly indicates
dependence of the type of extremum on the Poisson’s ratio. Indeed, as will be shown later, the the
local maximum in the short-wave limit occurs for 0 < ν < 0.25, whereas local minimum corresponds to
0.25 < ν < 0.5.

4 Asymptotic formulation for the Rayleigh-type wave

Now, we proceed with derivation of an asymptotic model for surface waves induced by applied surface
loading (P ̸= 0, Q ̸= 0), with the effect of gravity incorporated. Let us introduce the scaling

ξ =
x1 − cR t

L
, η =

x2
L

τ =
ϵ cR
L

t, (4.1)

where L and cR are a typical wave length and the Rayleigh wave speed, respectively, where ϵ is the small
parameter,

ϵ =
g L

c22
≪ 1, (4.2)

which may be interpreted physically as the short-wave domain, in which the phase velocity of the studied
wave is close to cR, the classical Rayleigh wave speed.

Then, equations (2.5) and boundary conditions (2.6) become

ϕ,ηη + α2
R ϕ,ξξ + 2ϵ

(
1− α2

R

)
ϕ,ξτ − ϵ2

(
1− α2

R

)
ϕ,ττ = −ϵ κ−2 ψ,ξ,

ψ,ηη + β2
R ψ,ξξ + 2ϵ

(
1− β2

R

)
ψ,ξτ − ϵ2

(
1− β2

R

)
ψ,ττ = ϵ ϕ,ξ,

(4.3)

and

2ϕ,ξη + ψ,ξξ − ψ,ηη = −L
2Q

µ
,

(
κ2 − 2

)
ϕ,ξξ + κ2ϕ,ηη + 2ψ,ξη = −L

2 P

µ
at η = 0,

(4.4)

where

αR =

√
1− c2R

c21
, and βR =

√
1− c2R

c22
. (4.5)

Expanding the wave potentials ϕ and ψ as asymptotic series

ϕ =
1

ϵ

(
ϕ(0) (ξ, η, τ) + ϵ ϕ(1) (ξ, η, τ) + ...

)
,

ψ =
1

ϵ

(
ψ(0) (ξ, η, τ) + ϵ ψ(1) (ξ, η, τ) + ...

)
.

(4.6)

Not surprisingly, the leading order problem for the equations of motion (4.3) gives solutions as harmonic
functions in the first two arguments

ϕ(0) = ϕ(0) (ξ, αRγ, τ) , ψ(0) = ψ(0) (ξ, βRγ, τ) . (4.7)
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Substitution of the latter into the leading order boundary conditions and using the properties of harmonic
functions, we have

2αR ϕ
(0)
,ξξ +

(
1 + β2

R

)
H

(
ψ
(0)
,ξξ

)
= 0,(

1 + β2
R

)
ϕ
(0)
,ξξ + 2βRH

(
ψ
(0)
,ξξ

)
= 0,

(4.8)

where H denotes the Hilbert transform. The solvability of (4.8) implies the classical Rayleigh equation(
1 + β2

R

)2 − 4αR βR = 0. (4.9)

In addition, it follows that the leading order potentials are related through Hilbert transform, as noted
earlier by [21], see also [20], i.e.

ψ(0)(ξ, βRη, τ) = ϑH
(
ϕ(0)(ξ, βRη, τ)

)
, ϕ(0)(ξ, αRη, τ) = −ϑ−1 H

(
ψ(0)(ξ, αRη, τ)

)
, (4.10)

with constant ϑ defined by

ϑ =
2αR

1 + β2
R

=
1 + β2

R

2βR
. (4.11)

At next order, we have from (4.3)

ϕ(1),ηη + α2
R ϕ

(1)
,ξξ = −2

(
1− α2

R

)
ϕ
(0)
,ξτ − κ−2 ψ

(0)
,ξ ,

ψ(1)
,ηη + β2

R ψ
(1)
,ξξ = −2

(
1− β2

R

)
ψ
(0)
,ξτ + ϕ

(0)
,ξ ,

(4.12)

The structure of the corrector terms ϕ(1) and ψ(1) may be presented as

ϕ(1) = ϕ(1,0) + η ϕ(1,1) + ϕ(1,2), and ψ(1) = ψ(1,0) + η ψ(1,1) + ψ(1,2), (4.13)

where ϕ(1,0) = ϕ(1,0) (ξ, αR η, τ) and ψ(1,0) = ψ(1,0) (ξ, βR η, τ) are arbitrary plane harmonic functions in
the first two arguments. Using the Cauchy-Riemann identities, for the functions ϕ(1,1) = ϕ(1,1) (ξ, αR η, τ)
and ψ(1,1) = ψ(1,1) (ξ, βR η, τ) we deduce

ϕ(1,1) = −1− α2
R

αR
H

(
ϕ(0),τ

)
, ψ(1,1) = −1− β2

R

βR
H

(
ψ(0)
,τ

)
, (4.14)

whereas for ϕ(1,2) = ϕ(1,2) (ξ, βR η, τ) and ψ
(1,2) = ψ(1,2) (ξ, αR η, τ)

ϕ
(1,2)
,ξ =

1

κ2 (β2
R − α2

R)
ψ(0), ψ

(1,2)
,ξ =

1

β2
R − α2

R

ϕ(0). (4.15)

At next order, the boundary conditions (4.4) become

2ϕ
(1)
,ξη + ψ

(1)
,ξξ − ψ(1)

,ηη = −L
2Q

µ
,

(
κ2 − 2

)
ϕ
(1)
,ξξ + κ2 ϕ(1),ηη + 2ψ

(1)
,ξη = −L

2P

µ
.

(4.16)

Employing (4.13), (4.14) and (4.15), and applying Hilbert transform to the first equation, we infer

2αR ϕ
(1,0)
,ξξ +

(
1 + β2

R

)
H

(
ψ
(1,0)
,ξξ

)
=

(
1− β4

R

βR
− 2(1− α2

R)

αR

)
ϕ
(0)
,ξτ

−1 + α2
R + κ−2(1 + β2

R)

β2
R − α2

R

H
(
ϕ
(0)
,ξ

)
− L2 H (Q)

µ
,

(
1 + β2

R

)
ϕ
(1,0)
,ξξ + 2βRH

(
ψ
(1,0)
,ξξ

)
=

(
1− β4

R

β2
R

− 2(1− β2
R)

)
ϕ
(0)
,ξτ

− 4αR(1 + κ2β2
R)

κ(1 + β2
R)(β

2
R − α2

R)
H

(
ϕ
(0)
,ξ

)
+
L2 P

µ
.

(4.17)
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Then, the solvability of (4.17) gives at η = 0[
4αR βR −

(
1 + β2

R

)2]
ϕ
(1,0)
,ξξ = −L

2

µ

[
(1 + β2

R)P + 2βRH (Q)
]

−4B ϕ
(0)
,ξτ +

2

κ2(β2
R − α2

R)

[
2αR(1 + κ2β2

R)− βR
(
κ2(1 + α2

R) + 1 + β2
R

)]
H

(
ϕ
(0)
,ξ

)
,

(4.18)

where

B =
(
1− α2

R

) βR
αR

+
(
1− β2

R

) αR

βR
− 1 + β4

R (4.19)

is a known constant appearing in the hyperbolic-elliptic model for the Rayleigh wave (cf. Eq. (93) in
[20]). Since the L.H.S. in (4.18) vanishes due to (4.9), it transforms to

2ϕ
(0)
,ξτ + B

g
H

(
ϕ
(0)
,ξ

)
= −L

2βR
µB

[ϑP +H (Q)] , (4.20)

where

B
g
=

2
(
1− α2

R − αRβR(1− β2
R)

)
Bκ2(αR + βR)

. (4.21)

Returning to original variables and using the operator identity

2L−2ϵ ∂2ξτ = ∂2xx − c−2
R ∂2tt +O(ϵ2), (4.22)

along with the leading order approximation ϕ ∼ ϵ−1 ϕ(0), we may now represent (4.20) as a perturbed
hyperbolic equation on the surface x2 = 0,

ϕ,11 − c−2
R ϕ,tt +

g

c22
Bg H (ϕ,x) = − βR

µB
[ϑP +H (Q)] . (4.23)

Clearly, the regular perturbation term is associated with the effect of gravity and may be rewritten as a
pseudo-differential operator, namely

ϕ,11 − c−2
R ϕ,tt +

g

c22
B

g

√
−∂,11(ϕ) = − βR

µB
[ϑP +H (Q)] . (4.24)

The obtained equation (4.23) describes wave propagation on the surface x2 = 0 induced by prescribed
loading P,Q and serves as a boundary condition for the elliptic equation

ϕ,22 + α2
Rϕ,11 = 0, (4.25)

governing decay away from the edge. Once the boundary value problem (4.25), (4.23) is solved, shear
potential ϕ is found from (4.10) as a Hilbert transform, namely

ψ(x− cRt, βRx2) = ϑH (ϕ(x− cRt, βRx2)) . (4.26)

5 Discussion

In absence of surface loading (P = Q = 0) the obtained approximation (4.24) implies

ϕ,11 − c−2
R ϕ,tt +

g

c22
Bg

√
−∂,11(ϕ) = 0, (5.1)

with the corresponding dispersion relation taking the form

C =

√
1− Bg

K
, (5.2)
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where

K =
c22k

g
and C =

c

cR
(5.3)

are dimensionless wave number and speed, respectively.
The constant Bg corresponds to a leading order influence of gravity on surface wave propagation.

Indeed, approximation (5.2) necessitates consideration of the sign of the coefficient Bg defined by (4.21),
depending on the Poisson’s ratio, see Fig. 3 below.

��� ��� ��� ��� ��� ���

����

����

����

Bg

ν

Figure 3: Dependence of the coefficient Bg (4.21) on the Poisson’s ratio.

It may be observed from Fig. 3 that the coefficient Bg is positive for 0 ⩽ ν < 0.25 and negative for
0.25 < ν < 0.5. It is remarkable that Bg = 0 for the Poisson’s solid (ν = 0.25). In this case, the Rayleigh
equation takes a simpler form from (4.21) as

αRβRκ
2 = 1, or 1− c2R

2c22
=
c2
c1
, (5.4)

implying a well-known exact value for the Rayleigh speed

cR
c2

=

√
2− 2√

3
, (5.5)

see e.g. [32]. Moreover, this implies since the coefficient Bg vanishes at ν = 0.25, the known hyperbolic-
elliptic model for surface waves in absence of gravity [20] will be valid, with the effect of gravity seemingly
appearing only at higher order corrections. The peculiarity of the Poisson’s solid has already been noticed
by Love [12], who wrote that ”when the Poisson’s ratio of the material is 1

4 , the wave velocity is not affected
by gravity”. It is also observed from Fig. 4 that Bg tends to zero as ν → 0.5, however, treatment of
incompressibility constraint requires further investigation.

Let us now illustrate the approximation (5.2) of the dispersion relation (3.9), see Fig. 4. As we
know, the short-wave behaviour depends on the Poisson’s ratio. Hence, we are presenting variation of
the dimensionless phase speed C versus the dimensionless wave number K for three cases, namely for
(a) ν = 0.2, (b) ν = 0.25, and (c) ν = 0.3, with the Young’s modulus E = 2 · 1011 Pa, and volume mass
density ρ = 8 ·103 kg/m3. In these plots, solid curves indicate the exact dispersion relation (3.9), whereas
dashed lines correspond to the approximation (5.2). It can be clearly seen that in case of ν = 0.2 (Fig.
4(a)) the phase speed is monotonously increasing towards the Rayleigh wave speed at short wave limit.
At the same time, for ν = 0.3 (Fig. 4(c)) there is a decrease towards the Rayleigh wave speed in the
approximation, whereas the exact curve has a turning point (around K ≈ 15). As for the Poisson’s solid
when ν = 0.25 (Fig. 4(b)) it is seen that the exact curve is demonstrating a monotonic increase whereas
approximation is not capturing the effect of gravity, showing a non-dispersive behaviour, since in this
case Bg = 0. Apparently, the approximation for ν = 0.3 works slightly better compared to ν = 0.2.
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Figure 4: Dispersion relation (3.9) (solid line) and its approximation (5.2) (dashed line) for the Young’s
modulus E = 2 · 1011 Pa, volume mass density ρ = 8 · 103 kg/m3, and the Poisson’s ratio (a) ν = 0.2,
(b) ν = 0.25, and (c) ν = 0.3.

The consideration in this paper was carried out withint the framework of plane-strain regime, however,
a generalised 3D result can be predicted at least for the normal surface load. Applying the Radon integral
transform and following a procedure similar to that presented in [30], the 3D analogue of (4.24) on the
surface x3 = 0 could be derived in the form

∆2ϕ− c−2
R ϕ,tt +

g

c22
B

g

√
−∆2(ϕ) = −1 + β2

R

2µB
P, (5.6)

serving as a boundary condition for the 3D elliptic equation

ϕ,33 + α2
R ∆2ϕ = 0, (5.7)

where ∆2 = ∂211 + ∂222 is a 2D Laplacian in x1 and x2, for more details on 3D hyperbolic-elliptic models
for the Rayleigh wave see also [20].
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6 Conclusions

A hyperbolic-elliptic model for the Rayleigh wave field induced by surface loading, under the effect of
gravity, has been derived. The formulation is valid over the short wave region and includes an elliptic
equation for the longitudinal Lamé potential, describing decay over the interior, and a hyperbolic equation
on the surface, regularly perturbed by a pseudo-differential operator.

It was confirmed that for the Poisson’s ratio ν = 0.25 at leading order the effect of gravity vanishes,
which is important for a number of applications in civil engineering. In absence of surface loading, the
results were also compared to the exact dispersion relation. An insight into generalisation to 3D was also
presented.

The results could be further developed to surface-structure interaction and seismic metasurfaces, see
e.g. [33], [6], as well as provide a more realistic analytical solution for numerical modelling of seismic
metabarriers [34]. It would also be interesting to extend the results to coated structures, having impli-
cations for modelling thin layers on foundations, e.g. [35], as well as to derive a refined second-order
model for the Rayleigh wave under the effect of gravity. Other, less trivial generalisations are associated
with near-resonant solutions to mixed problems, complementing numerical solutions, see e.g. [36], as well
as considerations of magneto-elastic surface waves for solids in magnetic fields, with the latter possibly
allowing simpler experimental scenarios.
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