
Journal of Computer and System Sciences 127 (2022) 53–65
Contents lists available at ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

Polynomially ambiguous probabilistic automata on restricted

languages

Paul C. Bell

School of Computer Science and Mathematics, Byrom Street, Liverpool John Moores University, Liverpool, L3-3AF, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 18 June 2021
Received in revised form 5 January 2022
Accepted 9 February 2022
Available online 24 February 2022

Keywords:
Probabilistic finite automata
Ambiguity
Undecidability
Bounded language
Formal language theory

We consider the computability and complexity of decision questions for Probabilistic Finite
Automata (PFA) with sub-exponential ambiguity. We show that the emptiness problem
for strict and non-strict cut-points of polynomially ambiguous commutative PFA remains
undecidable, implying that the problem is undecidable when inputs are from a letter
monotonic language. We show that the problem remains undecidable over a binary input
alphabet when the input word is over a bounded language, in the noncommutative case.
In doing so, we introduce a new technique based upon the Turakainen construction of
a PFA from a Weighted Finite Automaton which can be used to generate PFA of lower
dimensions and of sub-exponential ambiguity. We also study freeness/injectivity problems
for polynomially ambiguous PFA and study the border of decidability and tractability for
various cases.
© 2022 The Author. Published by Elsevier Inc. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Probabilistic Finite Automata (PFA) are a simple yet expressive model of computation, obtained by extending Nondeter-
ministic Finite Automata (NFA) so that transitions from each state (and for each input letter) form probability distributions.
As input letters are read from some alphabet �, the automaton transitions among states according to these probabilities.
The probability of a PFA P accepting a word w ∈ �∗ is given by the probability of the automaton being in one of its final
states, denoted fP (w) = xT Mw1 Mw2 · · · Mwk y, where x represents the initial state, y represents the final state and each
Mwi is a row stochastic matrix representing the transition probabilities for letter wi ∈ �.

The PFA model has been studied extensively over the years, ever since its introduction by Rabin [1]; for example see
[2] for a survey of 416 research papers related to PFA in the eleven years since their introduction to just 1974. They have
been used to study Arthur-Merlin games [3], space bounded interactive proofs [4], quantum complexity theory [5], the joint
spectral radius and semigroup boundedness [6], Markov decision processes and planning questions [7], and text and speech
processing [8] among many other applications.

There are a variety of interesting questions that one may ask about PFA. A central question is the emptiness problem for
cut-point languages; given some probability λ ∈ [0, 1], does there exist a finite input word whose probability of acceptance is
greater than λ (i.e. does there exist w ∈ �∗ such that fP (w) > λ, see Section 2.2). This problem is known to be undecidable
[9], even for a fixed number of dimensions and for two input matrices [10,11]. A second natural question is the freeness
problem (or injectivity problem) for PFA, studied in [12] - given a PFA P over alphabet � determine whether the acceptance
function fP (w) is injective (i.e. do there exist two distinct words with the same acceptance probability).

E-mail address: p.c.bell@ljmu.ac.uk.
https://doi.org/10.1016/j.jcss.2022.02.002
0022-0000/© 2022 The Author. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jcss.2022.02.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcss.2022.02.002&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:p.c.bell@ljmu.ac.uk
https://doi.org/10.1016/j.jcss.2022.02.002
http://creativecommons.org/licenses/by/4.0/

P.C. Bell Journal of Computer and System Sciences 127 (2022) 53–65
When studying the frontiers of decidability of a problem, there are two competing objectives, namely, determine the
most general version of the problem which is decidable, and the most restricted specialization which is undecidable; the
latter being the main focus of this paper.

Various classes of restrictions may be studied for PFA, depending upon the structure of the PFA or on possible input
words. Some restrictions relate to the number of states of the automaton, the alphabet size and whether one defined
the PFA over the algebraic real numbers or the rationals. One may also study PFA with finite, polynomial or exponential
ambiguity (in terms of the underlying NFA), PFA defined for restricted input words (for example those coming from regular,
bounded or letter monotonic languages), PFA with isolated thresholds (a probability threshold is isolated if it cannot be
approached arbitrarily closely) and commutative PFA, where all transition matrices commute, for which cut-point languages
and non-free languages generated by such automata necessarily become commutative.

The cut-point emptiness problem for PFA is known to be undecidable for rational matrices [9], even over a binary
alphabet when the PFA has dimension 46 in [10]; later improved to dimension 25 [11]. The authors of [13] show that the
problem of determining if a threshold is isolated (resp. if a PFA has any isolated threshold) is undecidable and this was
shown to hold even for PFA with 420 (resp. 2354) states over a binary alphabet [10].

A natural restriction on PFA was studied in [14], where possible input words of the PFA are restricted to be from some
letter monotonic language of the form L = a∗

1a∗
2 · · ·a∗

k with each ai ∈ � (analogous to a 1.5 way PFA, whose read head
may “stay put” on an input word letter but never moves left). In other words, we ask if there exists some w ∈ L such
that fP (w) > λ. This restriction is inspired by the well-known property that many language-theoretic problems become
decidable or tractable when restricted to bounded languages, and especially letter monotonic languages [15]. Nevertheless,
the emptiness problem for PFA on letter monotonic languages was shown to be undecidable for high (but finite) dimensional
matrices over the rationals via an encoding of Hilbert’s tenth problem on the solvability of Diophantine equations and the
utilization of Turakainen’s method to transform weighted integer automata to probabilistic automata [16].

The authors of [17] recently studied decision problems for PFA of various degrees of ambiguity in order to map the
frontier of decidability for restricted classes of PFA. The degree of ambiguity of a PFA is a structural property, giving an
indication of the number of accepting runs for a given input word and it can be used to give various classifications of
ambiguity including finite, polynomial and exponential ambiguity (formal details are given in Section 2.3). The ambiguity
of a PFA is a property of the underlying NFA and is independent of the transition probabilities in so much as we only
need care if the probability is zero or positive. The degree of ambiguity of automata is a well-known and well-studied
property in automata theory [18]. The authors of [17] show that the emptiness problem for PFA remains undecidable even
for polynomially ambiguous automata (quadratic ambiguity), before going on to show PSPACE-hardness results for finitely
ambiguous PFA and that emptiness is in NP for the class of k-ambiguous PFA for every k > 0. The emptiness problem for
PFA was later shown to also be undecidable even for linearly ambiguous automata in [19].

A preliminary version of the present article appeared in [26].

1.1. Our contributions

In this paper, we show that the strict and nonstrict emptiness problems are undecidable even for polynomially ambigu-
ous commutative PFA when all matrices are rational. This implies that undecidability holds even when the input words come
from a letter monotonic language (since the order of input words is irrelevant, only the number of occurrences of each letter
is important). This combination of restrictions on the PFA significantly increases the difficulty of proving undecidability. The
study of PFA over letter monotonic languages is a particularly interesting intermediate model, lying somewhere between
single letter alphabets (equivalent to Skolem’s problem [20]) and PFA defined with multi-letter alphabets, for which most
decision problems are undecidable. We also show that the problem remains undecidable even for binary input alphabets,
although we only obtain the result for noncommutative PFA and when the input words are from bounded, rather than letter
monotonic, languages.

Theorem 1. The emptiness problem for polynomially ambiguous commutative probabilistic finite automata (and thus when inputs are
restricted to letter monotonic languages) is undecidable for strict/non-strict cut-points. The problem remains undecidable for a binary
alphabet if letter monotonic languages are replaced by bounded languages and we remove the commutativity restriction on the PFA.

We note a few difficulties with proving this result. Firstly, Post’s correspondence problem, whose variants are often used
for showing undecidability results in such settings, is actually decidable over letter monotonic languages [21].1 Secondly,
although other reductions of undecidable computational problems to matrices are possible, the standard technique of Tu-
rakainen (shown in [16]) to modify such matrices to stochastic matrices introduces exponential ambiguity (indeed all such
matrices are strictly positive, and thus we might think of such matrices as being maximally exponentially ambiguous).2 Finally,
we note that matrix problems for commutative matrices are often decidable; indeed there are polynomial time algorithms

1 Although it is undecidable in general (i.e., not over a letter monotonic language) with an alphabet with at least five letters [22].
2 This is due to an essential step of the Turakainen procedure that adds a positive constant offset to each element of every generator matrix, thus making

all matrices strictly positive [16].
54

P.C. Bell Journal of Computer and System Sciences 127 (2022) 53–65
for solving the orbit problem [23,24] and the vector reachability problem for commutative matrices [25]. Since the matrices
commute, it is the Parikh vector of letters of the input word which is important.

We use a reduction of Hilbert’s tenth problem and various new encoding techniques to avoid the use of Turakainen’s
method for converting from weighted to probabilistic automata, so as to retain polynomial ambiguity. We use some tech-
niques to move from non-strict to strict emptiness and to consider binary input alphabets. We then move on to the
freeness/injectivity problem to show the following two results.

Theorem 2. The injectivity problem for linearly ambiguous four state probabilistic finite automata is undecidable.

Theorem 3. The injectivity problem for linearly ambiguous three-state probabilistic finite automata, where inputs words are from a
given letter monotonic language, is NP-hard.

These results are proven via an encoding of the mixed modification PCP and our new encoding technique and the
injectivity problem for three state PFA over letter monotonic languages is NP-hard via an encoding of a variant of the subset
sum problem and a novel encoding technique.

In Section 2, we define some results and notations from linear algebra that will be required, as well as some properties
of probabilistic finite automata and define Hilbert’s Tenth Problem which we later use in the main reduction. Section 3
contains the main theoretical contribution, showing the proof of Theorem 1. The undecidability of injectivity for linearly
ambiguous PFA (Theorem 2) and the NP-hardness of injectivity for letter monotonic languages (Theorem 3) is then shown
in Section 4. We conclude with some open problems.

2. Preliminaries

2.1. Linear algebra

Given A = (aij) ∈ F�×� and B ∈ Fn×n , we define the direct sum A ⊕ B and Kronecker product A ⊗ B of A and B by:

A ⊕ B =
[

A 0m,n

0n,m B

]
, A ⊗ B =

⎡
⎢⎢⎢⎣

a11 B a12 B · · · a1m B
a21 B a22 B · · · a2m B

...
...

...

am1 B am2 B · · · amm B

⎤
⎥⎥⎥⎦ ,

where 0i, j denotes the zero matrix of dimension i × j. Note that neither ⊕ nor ⊗ are commutative in general. For two
vectors u = (u1, . . . , um)T ∈ Fm and v = (v1, . . . vn)T ∈ Fn then we define u ⊕ v = (u1, . . . , um, v1, . . . , vn)T ∈ Fm+n by a
minor abuse of notation. Given a finite set of matrices G = {G1, G2, . . . , Gm} ⊆ Fn×n , 〈G〉 denotes the semigroup generated
by G . We will use the following notations:

m⊕
j=1

G j = G1 ⊕ G2 ⊕ · · · ⊕ Gm,

m⊗
j=1

G j = G1 ⊗ G2 ⊗ · · · ⊗ Gm

Given a matrix G ∈ Fn×n , we inductively define G⊗k = G ⊗ G⊗(k−1) ∈ Fnk×nk
for k > 0 with G⊗0 = 1 as the k-fold

Kronecker power of G . Similarly, G⊕k = G ⊕ G⊕(k−1) ∈ Fnk×nk for k > 0 with G⊕0 being a zero dimensional matrix. The
rationale for the base cases is that G ⊗ G⊗0 = G ⊗ 1 = G and that G ⊕ G⊕0 = G as expected.

The following properties of ⊕ and ⊗ are well known and will all be useful later.

Lemma 4. Let A, B, C, D ∈ Fn×n. We note that:

• Associativity - (A ⊗ B) ⊗ C = A ⊗ (B ⊗ C) and (A ⊕ B) ⊕ C = A ⊕ (B ⊕ C), thus A ⊗ B ⊗ C and A ⊕ B ⊕ C are unambiguous.
• Mixed product properties: (A ⊗ B)(C ⊗ D) = (AC ⊗ B D) and (A ⊕ B)(C ⊕ D) = (AC ⊕ B D).
• If A and B are stochastic matrices, then so are A ⊕ B and A ⊗ B.
• If A, B ∈ Fn×n are both upper-triangular then so are A ⊕ B and A ⊗ B.

See [27] for proofs of the first three properties of Lemma 4. The fourth property follows directly from the definition of
the Kronecker sum and product and is not difficult to prove.

2.2. Probabilistic Finite Automata (PFA)

A Probabilistic Finite Automaton (PFA) A with n states over an alphabet � is defined as A = (x, {Ma|a ∈ �}, y) where
x ∈ Rn is the initial probability distribution; y ∈ {0, 1}n is the final state vector and each Ma ∈ Rn×n is a (row) stochastic
55

P.C. Bell Journal of Computer and System Sciences 127 (2022) 53–65
matrix. A row stochastic matrix is a nonnegative matrix where each row forms a probability distribution (i.e., the values
in each row are nonnegative and sum to 1). For a word w = w1 w2 · · · wk ∈ �∗ , we define the acceptance probability
fA : �∗ →R of A as:

fA(w) = xT Mw1 Mw2 · · · Mwk y,

which denotes the acceptance probability of w .3 If all transition matrices {Ma|a ∈ �} commute, then the PFA is called a
commutative PFA.

For any λ ∈ [0, 1] and PFA A over alphabet �, we define a cut-point language to be: L≥λ(A) = {w ∈ �∗| fA(w) ≥ λ}, and
a strict cut-point language L>λ(A) by replacing ≥ with >. The (strict) emptiness problem for a cut-point language is to
determine if L≥λ(A) = ∅ (resp. L>λ(A) = ∅).

Let �� = {x1, x2, . . . , x�} be an �-letter alphabet for some � > 0. A language L ⊆ �∗
� is called a bounded language if

and only if there exist words w1, w2, . . . , wm ∈ �+
� such that L ⊆ w∗

1 w∗
2 · · · w∗

m . A language L is called letter monotonic if
there exist letters u1, u2, . . . , um ∈ �� such that L ⊆ u∗

1u∗
2 · · · u∗

m . One thus sees that letter monotonic languages are more
restricted than bounded languages. We will be interested in PFA which are defined over a bounded language or a letter
monotonic language L, whereby all input words necessarily come from L. In this case a cut-point language for a PFA
A over bounded/letter monotonic language L and a probability λ ∈ [0, 1] is defined as L≥λ,L(A) = {w ∈ L| fA(w) ≥ λ};
similarly for nonstrict cut point languages. We may then ask similar emptiness questions for such languages, as before.

We also study the freeness/injectivity problem for PFA. Given a PFA A over alphabet �, determine whether the acceptance
function fA(w) is injective (i.e. do there exist two distinct words with the same acceptance probability). Such problems can
readily be studied when the input words are necessarily derived from a bounded or letter monotonic language.

2.3. PFA ambiguity

The degree of ambiguity of a finite automaton is a structural parameter, roughly indicating the number of accepting runs
for a given input word [18]. We here define only those notions required for our later proofs, see [18] for full details of these
notions and a thorough discussion.

Let w ∈ �∗ be an input word of an NFA N = (Q , �, δ, Q I , Q F), with Q the set of states, � the input alphabet, δ ⊂
Q ×� × Q the transition function, Q I the set of initial states and Q F the set of final states. For each (p, w, q) ∈ Q ×�∗ × Q ,
let daN (p, w, q) be defined as the number of all paths for w in N leading from state p to state q. We define δ∗ =
{(p, w, q) ∈ Q × �∗ × Q |daN (p, w, q) = 0} as a transition on words (noting that δ = δ∗ ∩ Q × � × Q) and we rename δ∗
by δ.

The degree of ambiguity of w in N , denoted daN (w), is defined as the number of all accepting paths for w . The degree
of ambiguity of N , denoted da(N) is the supremum of the set {daN (w)|w ∈ �∗}. N is called infinitely ambiguous if
da(N) = ∞, finitely ambiguous if da(N) < ∞, and unambiguous if da(N) ≤ 1. The degree of growth of the ambiguity of
N , denoted deg(N) is defined as the minimum degree of a univariate polynomial h with positive integral coefficients such
that for all w ∈ �∗ , daN (w) ≤ h(|w|) if such a polynomial exists, or infinity otherwise. If such a polynomial does not exist,
then we say the PFA has exponential ambiguity (i.e., non-polynomial ambiguity).

The above notions relate to NFA. We may derive an analogous notion of ambiguity for PFA by considering an embedding
of a PFA P to an NFA N with the property that for each letter a ∈ �, if the probability of transitioning from a state i to state
j is nonzero under P , then there is an edge from state i to j under N for letter a. The degree of (growth of) ambiguity of
P is then defined as the degree of (growth of) ambiguity of N .

We may use the following notions to determine the degree of ambiguity of a given NFA (and thus a PFA by the embed-
ding discussed above) A as is shown in the theorem which follows. A state q ∈ Q is called useful if there exists an accepting
path which visits q. See Fig. 1 for examples.
EDA - There is a useful state q ∈ Q such that, for some word v ∈ �∗ , daA(q, v, q) ≥ 2.
IDAd - There are useful states r1, s1, . . . , rd, sd ∈ Q and words v1, u2, v2, . . . , ud, vd ∈ �∗ such that for all 1 ≤ λ ≤ d, rλ and
sλ are distinct and (rλ, vλ, rλ), (rλ, vλ, sλ), (sλ, vλ, sλ) ∈ δ and for all 2 ≤ λ ≤ d, (sλ−1, uλ, rλ) ∈ δ.

Theorem 5 ([28,29,18]). An NFA (or PFA) A having the EDA property is equivalent to it being exponentially ambiguous. For any d ∈N ,
an NFA (or PFA) A having property IDAd is equivalent to deg(A) ≥ d.

Clearly, if N agrees with IDAd for some d > 0, then it also agrees with IDA1, . . . , IDAd−1. One must be careful with these
notions of ambiguity when considering NFA/PFA A, where inputs are restricted to a bounded language L. In such cases, the
above criteria do not suffice to determine the ambiguity of A, since the number of paths must be determined not over �∗ ,
but over words from L. Of course, the degree of ambiguity of A cannot increase by restricting to a bounded input language,
but it may decrease.

3 Some authors interchange the order of x and y and use column stochastic matrices, although the two definitions are trivially isomorphic.
56

P.C. Bell Journal of Computer and System Sciences 127 (2022) 53–65
q1

q0start

q2

0 : 1
2 1 : 1

2

{0,1} : 1
2

{0,1} : 1
3

{0,1} : 2
3

{0,1} : 1

q0start q1

a : 1
2

a : 1
2

a : 1

Fig. 1. The binary PFA on the left has polynomial (quadratic) ambiguity since it does not satisfy condition EDA. Its transition matrices are upper-triangular;
no transition leads from q j to qi with i < j. The unary PFA on the right satisfies EDA and thus it has exponential ambiguity.

As an example, if an NFA N has property EDA, then there exist three words w1, w2 and w3, as well as a useful state
q such that w1 w2 w3 is an accepting word and daN (q, w2, q) ≥ 2, thus w1 w2 w3 has at least two distinct accepting runs.
However, this implies that daN (w1 wk

2 w3) ≥ 2k and thus w1 wk
2 w3 has at least 2k accepting runs. Now, if we are given

some bounded language L such that w1 w2 w3 ∈L and daN (q, w2, q) ≥ 2 then the same implication is not possible, unless
w2 ∈ � is a single letter, otherwise there is no guarantee that w1 wk

2 w3 ∈ L. Nevertheless, in the results of this paper we
will use the standard definitions of ambiguity since the distinction is not relevant in our results as will become clear (and
especially in Theorem 1 for the results on commutative PFA).

We note the following trivial lemma, which will be useful later.

Lemma 6. Probabilistic finite automata defined over upper-triangular matrices are polynomially ambiguous.

Proof. Immediate from Theorem 5 and property (EDA), since a PFA defined over upper-triangular matrices clearly does not
have property (EDA). This is since a transition matrix (for a letter ‘a’) which is upper-triangular only defines transitions of
the form δ(i, a) = j where i ≤ j and thus the states visited for any run are monotonically nondecreasing. �
2.4. Reducible undecidable problems

Our main result, Theorem 1 uses a reduction of Hilbert’s tenth problem: does there exist an algorithm to determine if, for
an arbitrary integer polynomial P (n1, n2, . . . , nk) with k variables, there exist x1, x2, . . . , xk ∈Z such that: P (x1, x2, . . . , xk) =
0? It is well known that this may be reduced to a problem in formal power series. It was shown in [30, p. 73] that the
above problem can be reduced to that of determining for a Z-rational formal power series S ∈Z〈〈A〉〉, whether there exists
any word w ∈ A∗ such that (S, w) = 0, see [30] for details. The undecidability of this problem was shown in 1970 by
Y. Matiyasevich (building upon work of Davis, Putman, Robinson and others). For details, see the excellent reference [31].
We may, without loss of generality, restrict solutions to be over natural numbers [31, p. 6].

3. Cut-point languages for polynomially ambiguous commutative PFA

It was proven in [14] that the emptiness problem is undecidable for probabilistic finite automata even when input words
are given over a letter monotonic language, i.e., given a PFA P , a cutpoint λ ∈ [0, 1] and a letter monotonic language L, it is
undecidable to determine if {w ∈ L| fP (w)�λ} is empty for � ∈ {≤, <, >, ≥}. The constructed PFA of [14] has exponential
ambiguity, due to the well-known Turakainen conversion of arbitrary integer matrices into stochastic matrices [16]. Here,
we show that the emptiness problem for PFA over letter monotonic languages can also be achieved even when all matrices
have polynomial ambiguity by a modified Turakainen procedure. In fact we show that the emptiness problem for PFA with
commuting transition matrices is undecidable, and thus only the number, rather than the order, of the input letters matter
(i.e. the input word’s Parikh vector).

The following property of the Kronecker product will also be required for the proof of Theorem 1.

Lemma 7. Let A1, . . . , A� ∈ Fn×n. For any index sequence (i1, j1), . . . , (i�, j�) ∈ [1, n] × [1, n], there exist 1 ≤ i, j ≤ n� such that:

�∏
m=1

(Am)im, jm =
(

�⊗
m=1

Am

)
i, j

Proof. The proof proceeds by induction. For the base case when � = 1, we just set (i, j) = (i1, j1) and we are done. Assume
that the result holds for some � −1, then for sequence (i1, j1), (i2, j2), . . . , (i�−1, j�−1) there exist 1 ≤ i′, j′ ≤ n�−1 such that:
57

P.C. Bell Journal of Computer and System Sciences 127 (2022) 53–65
�−1∏
m=1

(Am)im, jm =
(

�−1⊗
m=1

Am

)
i′, j′

By the definition of Kronecker product:

((
�−1⊗
m=1

Am

)
⊗ A�

)
ni′+i�,nj′+ j�

=
�−1∏
m=1

(Am)im, jm × (A�)i�, j�

as required. �
Note that we can of course work out the particular value of i and j, but in general the formula for i, j does not have a

nice form when � > 2, and anyway will not be necessary for us, so we settle for an existential proof of such i and j (which
can be easily computed if necessary).

3.1. Proof of Theorem 1

Proof. We begin with a proof sketch. We use a reduction of Hilbert’s tenth problem to show our undecidability result. We
first modify the Diophantine equation P (x1, . . . , xt) = 0 to P h(x0, x1, . . . , xt) = 0 such that P h is nonnegative and homo-
geneous (each term having the same degree), which is required for later technical reasons. We then denote P h as a sum
of r terms P h(x0, . . . , xt) = ∑r

j=1 T j(x0, . . . , xt). For each term T j , we define a set of t + 1 integer matrices, correspond-

ing to a t + 1-letter weighted finite automaton4 defined by (u′
j, {X j,�|0 ≤ � ≤ t}, v j) such that (u′

j)
T Xx0

j,0 Xx1
j,1 · · · Xxt

j,t v ′
j =

T j(x0, x1, . . . , xt). We show how to convert each such weighted automata into a polynomially ambiguous probabilistic au-
tomata with commuting transition matrices. We then show how to combine these PFA into a larger PFA which encapsulates
the sum of terms, and thus the polynomial P h and define a suitable cutpoint λ and letter monotonic language L such that
the non-strict emptiness problem for this PFA is undecidable. We give a technique to obtain the result for strict emptiness
and then conclude by considering a binary alphabet and bounded languages.
Encoding Hilbert’s tenth problem to weighted finite automata - We begin by encoding an instance of Hilbert’s tenth prob-
lem into a set of integer matrices. Let P (x1, x2, . . . , xt) = 0 be a Diophantine equation where x j ∈ N for each 1 ≤ j ≤ t .
Determining if there exists a solution to this equation over the naturals is undecidable [31]. Homogenisation of polynomials
is a well known technique, as is used for example in the study of Gröbner bases [32], which allows us to convert such a
Diophantine equation to P h(x0, x1, x2, . . . , xt) = 0 with a new dummy variable x0 such that P h is a homogeneous polynomial
(each term having the same degree d) and for which P h(x0, x1, . . . , xt) = P (x1, x2, . . . , xt) when x0 = 1. We thus assume a
homogeneous Diophantine equation P h(x0, x1, . . . , xt) = 0 with implied constraint x0 = 1 which will be dealt with later.
Furthermore, we assume that P h gives nonnegative values, which may be assumed by redefining P h = (P h)2, which clearly
does not affect whether a zero exists for such a polynomial.

Notice that given A =
(

1 1
0 1

)
, then Ak =

(
1 k
0 1

)
. We will generalise this property to a set of t + 1 matrices

A0, A1, . . . , At ∈ Z(t+3)×(t+3) so that given any tuple (x0, x1, x2, . . . , xt), then xi appears as an element on the superdiag-
onal of Ax0

0 Ax1
1 · · · Axt

t for each 0 ≤ i ≤ t . We will also have the property that each Ai has the same row sum of 2 for every
row, which will be useful when we later convert to stochastic matrices.

We define each matrix Ai for 0 ≤ i ≤ t + 1 in the following way:

Ai =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 δ0,i 0 · · · 0 0 1 − δ0,i
0 1 δ1,i · · · 0 0 1 − δ1,i
0 0 1 · · · 0 0 1 − δ2,i
...

...
...

. . .
...

...
...

0 0 0 · · · 1 δt,i 1 − δt,i
0 0 0 · · · 0 1 1
0 0 0 · · · 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ N(t+3)×(t+3), (1)

where δ�,i ∈ {0, 1} is the Kronecker delta (thus δi,i = 1 and δ�,i = 0 for � = i). We also denote J = At+1, noting that this is
the matrix (1) when all δ�,i have the value 0. Notice then that every row sum of Ai and J is 2. The overall structure of each
Ai is retained under matrix powers and it is easy to see that:

4 For our purposes here, a weighted finite automaton (WFA) is similar to a PFA, without the stochastic restriction on transition matrices and the initial
vector, with transition matrices and initial/final vectors over the rationals.
58

P.C. Bell Journal of Computer and System Sciences 127 (2022) 53–65
Ak
i =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 kδ0,i 0 · · · 0 0 2k − kδ0,i − 1
0 1 kδ1,i · · · 0 0 2k − kδ1,i − 1
0 0 1 · · · 0 0 2k − kδ2,i − 1
...

...
...

. . .
...

...
...

0 0 0 · · · 1 kδt,i 2k − kδt,i − 1
0 0 0 · · · 0 1 2k − 1
0 0 0 · · · 0 0 2k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈N(t+3)×(t+3) (2)

All row sums of Ak
i are 2k and exactly one element of the superdiagonal is equal to k, with all other elements on the

superdiagonal (excluding that on row t + 2) zero. Taking powers of Ai will allow us to choose any nonnegative value of
variable xi . Note that J k has the same form as the matrix of (2) with all δ�,i = 0 and acts as a kind of identity matrix, (in
its upperleft block) while retaining the 2k row sum.

Notice that for 0 ≤ i, j ≤ t + 1 with i + 1 = j, then Ai A j = A j Ai , i.e. these matrices commute (similarly for J = At+1).
This follows since in a product Ai A j , the main diagonal is always 1 excluding the bottom right element (which is always 4)
because the matrices are upper triangular. Since i + 1 = j, if we exclude the right column and bottom row, (Ai)1..t+2,1..t+2 =
Ii ⊕ A ⊕ It−i with I� the �-dimensional identity matrix and A ∈N2×2 defined as before. We also have that (A j)1..t+2,1..t+2 =
I j ⊕ A ⊕ It− j . In this case Ai A j and A j Ai have the same upper left block, i.e.,

(Ai A j)1..t+2,1..t+2 = (A j Ai)1..t+2,1..t+2 = Ii ⊕ A ⊕ I j−i−2 ⊕ A ⊕ It− j.

Since the right column preserves row sums then matrices Ai and A j commute so long as i + 1 = j. We note that
Ai and Ai+1 do not commute however. Therefore, in order to get commutative matrices, we may instead use matrices
A0, A2, . . . , A2t, A2t+2 = J . This requires an increase of dimension to N(2t+3)×(2t+3) . We proceed with the proof using non-
commuting A0, . . . , At+1 for ease of exposition, noting that we will later map A� ∈ N(t+3)×(t+3) to A2� ∈ N(2t+3)×(2t+3) to
obtain commutativity of these matrices. We now show how to compute terms of P h .

We may write P h(x0, x1, . . . , xt) =∑r
j=1 T j(x0, x1, . . . , xt), where T j denotes the j’th term of P h , with P h having r terms.

Since P h is a homogeneous polynomial, each term has the same degree d. We may thus write each term as:

T j(x0, x1, . . . , xt) = c j R j(x0, x1, . . . , xt), (3)

with c j ∈Z and R j(x0, x1, . . . , xt) =∏t
�=0 x

r j,�
� with r j,� ≥ 0 and

∑t
�=0 r j,� = d. For convenience, we define a d-dimensional

vector s j =⊕t
�=0 �⊕r j,� ∈ [0, t]d . Recall that the direct sum of vectors gives a vector so s j is a monotonically nondecreasing

sequence of vectors with integer � appearing r j,� times for 0 ≤ � ≤ t , i.e.,

s j = (
0, . . . ,0︸ ︷︷ ︸

r j,0

,1, . . . ,1︸ ︷︷ ︸
r j,1

, . . . , t, . . . , t︸ ︷︷ ︸
r j,t

)T ∈ [0, t]d

For example, if t = 3, d = 5 and T j(x0, x1, x2, x3) = 6x0x2
1x2

3, then R j(x0, x1, x2, x3) = x1
0x2

1x0
2x2

3 and thus s j = (0, 1, 1, 3, 3)T ∈
[0, 3]5. By s j[i] we denote the i’th element of vector s j .

We now define t + 1 matrices corresponding to term T j :

X j,i =
i−1⊗
�=0

J⊗r j,� ⊗ A
⊗r j,i

i ⊗
t⊗

�=i+1

J⊗r j,� ,

where 0 ≤ i ≤ t . The dimension of such matrices is (t + 3)d × (t + 3)d since each submatrix has dimension (t + 3) × (t + 3)

and we take the d-fold Kronecker product. Similarly, we see that the row sum of each X j,i is 2d since the row sum of each
Ai and J is 2 and we take a d-fold Kronecker product. Clearly then, by the mixed product property (see Lemma 4):

Xk
j,i =

i−1⊗
�=0

(J k)⊗r j,� ⊗ (Ak
i)

⊗r j,i ⊗
t⊗

�=i+1

(J k)⊗r j,� ,

for any k ≥ 0. In the example when r j,0 = 1, r j,1 = 2, r j,2 = 0, and r j,3 = 2, then X j,1 = J⊗1 ⊗ A⊗2
1 ⊗ J⊗0 ⊗ J⊗2 = J⊗1 ⊗

A⊗2
1 ⊗ J⊗2. We then see that Xk

j,1 = (J k)⊗1 ⊗ (Ak
1)

⊗2 ⊗ (J k)⊗2.
Now, we see that:

Xx0
j,0 Xx1

j,1 · · · Xxt
j,t =

t∏
i=0

⎛
⎝ i−1⊗

�=0

(J xi)⊗r j,� ⊗ (Axi
i)⊗r j,i ⊗

t⊗
�=i+1

(J xi)⊗r j,�

⎞
⎠ (4)

=
d⊗(

Dx0
�,0 Dx1

�,1 · · · Dxt
�,t

)
, (5)
�=0

59

P.C. Bell Journal of Computer and System Sciences 127 (2022) 53–65
where D�,i ∈ { J , Ai} for 0 ≤ i ≤ t . The derivation of Eqn. (5) from Eqn. (4) follows by the mixed product property of the
Kronecker product (Lemma 4). For each product Dx0

�,0 Dx1
�,1 · · · Dxt

�,t , we see that D�,s j [�] = As j [�] and D�, j = J for all 0 ≤ j ≤ d

with j = s j[�]. To continue our running example of s j = (0, 1, 1, 3, 3)T ∈ [0, 3]5, we see that:

Xk0
j,0 = Ak0

0 ⊗ (J k0)⊗2 ⊗ (J k0)⊗0 ⊗ (J k0)⊗2

Xk1
j,1 = J k1 ⊗ (Ak1)⊗2 ⊗ (J k1)⊗0 ⊗ (J k1)⊗2

Xk2
j,2 = J k2 ⊗ (J k2)⊗2 ⊗ (Ak2)⊗0 ⊗ (J k2)⊗2

Xk3
j,3 = J k3 ⊗ (J k3)⊗2 ⊗ (J k3)⊗0 ⊗ (Ak3)⊗2

Note that in each ‘column’ of the Kronecker product above, we have exactly one Ai matrix, with the other elements J
matrices. Then we see that, assuming matrices {Ai |1 ≤ i ≤ t} ∪ J commute (e.g. by using our previous mapping to increase
the dimension of each Ai which we now assume), then by the mixed product property of Kronecker products:

Xk0
j,0 Xk1

j,1 Xk2
j,2 Xk3

j,3 = (Ak0
0 J k1+k2+k3) ⊗ (Ak1

1 J k0+k2+k3)⊗2 ⊗ (Ak3
3 J k0+k1+k2)⊗2

Back to the more general case since now {Ai |1 ≤ i ≤ t} ∪ J commute, we may thus rewrite (5) as:

Xx0
j,0 Xx1

j,1 · · · Xxt
j,t =

d⊗
�=0

(
A

xs j [�]
s j [�] J

xs j [�]
)

, where xs j [�] =
∑

0≤q≤t
q =s j [�]

xq (6)

By Lemma 7, we see that some element of Xx0
j,0 Xx1

j,1 · · · Xkt
j,t is thus equal to R j(x0, x1, . . . , xt), since there is an element

on the superdiagonal of A
xs j [�]
s j [�] J

xs j [�] , namely (A
xs j [�]
s j [�] J

xs j [�])s j [�],s j [�]+1, equal to xs j [�] for each 0 ≤ � ≤ d. Let us assume that
R j(x0, x1, . . . , xt) appears at row i1 and column i2. Now, we may define a vector u′

j = c jei1 and v ′
j = ei2 where c j is the

coefficient of term T j as in Eqn. (3) and ei1 , ei2 ∈Z(2t+3)d
are standard basis vectors. We may now see that:

(u′
j)

T Xx0
j,0 Xx1

j,1 · · · Xxt
j,t v ′

j = c j R j(x0, x1, . . . , xt) = T j(x0, x1, . . . , xt) (7)

In order to derive the sum of the r such terms
∑r

j=1 T j(x0, x1, . . . , xt), we will utilise the direct sum. For 0 ≤ � ≤ t , we
define Y ′

� by:

Y ′
� =

r⊕
j=1

X j,� ∈Nr(2t+3)d×r(2t+3)d

Defining u′′ = ⊕r
j=1u′

j and v ′′ = ⊕r
j=1 v ′

j (recalling from Section 2.1 that the direct sum of vectors is a vector), we now
have a weighted finite automaton (u′′, {Y ′

�|0 ≤ � ≤ t}, v ′′) such that:

P h(x0, x1, . . . , xt) = u′′ T (Y ′
0)

x0(Y ′
1)

x1 · · · (Y ′
t)

xt v ′′

We now work to show how this can be converted to a probabilistic finite automaton, while retaining polynomial ambiguity
and the commutativity of all matrices.
Encoding to a probabilistic finite automaton - We first modify each Y ′

� so that they are row stochastic. We recall that the
row sum of each A� and J is 2. Therefore, the row sum of each X j,� is 2d , since X j,� is a d-fold Kronecker product of Ai

and J matrices. Then the row sum of each Y ′
� is also 2d since direct sums do not modify the row sum. We thus see that

Y� = 1
2d Y ′

� is row stochastic.
We now consider the coefficients of each term. We previously defined u′

j by u′
j = c jei1 and we may consider taking

the Kronecker sum of each u′
j before normalising the resulting vector (normalising according to L1 norm). We face an issue

however, since some coefficients c j may be negative and thus the resulting vector is not stochastic (it must be nonnegative).
Fortunately we may modify a technique utilised by Bertoni [33] to solve this issue. Given a PFA for which uT X v = λ ∈ [0, 1],
then by defining v ′ = 1 − v where 1 is the all-one vector of appropriate dimension (i.e. swapping between final and non-final
states), then uT X v ′ = 1 − λ ∈ [0, 1].

Let us define u j = |c j |ei1 , which is similar to u′
j defined previously, but using the absolute value of the corresponding

coefficient. Now, since each X j,� has a row sum of 2d and u j is of length |c j | (L1 norm), then Eqn. (7) can be adapted to
the following:
60

P.C. Bell Journal of Computer and System Sciences 127 (2022) 53–65
(u j)
T Xx0

j,0 Xx1
j,1 · · · Xxt

j,t(1 − v j) = |c j|2d(x0+x1+...+xt) − |c j|R j(x0, x1, . . . , xt)

= |c j|2d(x0+x1+...+xt) + T j(x0, x1, . . . , xt) (8)

Let us assume, without loss of generality, that we have arranged the terms of P h such that those terms with a positive
coefficient (positive terms) appear first, followed by those with a negative coefficient (negative terms). Since we have r
terms in P h , there exists some 1 ≤ r′ ≤ r such that we have r′ positive and r − r′ negative terms.

We define v = ⊕r′
j=1 v j ⊕⊕r

j=r′+1(1 − v j) ∈ {0, 1}r(2t+3)d
as the final vector, so that we take the Kronecker sum of all

final vectors, but we swap final and non-final states for the negative terms.
We now define the initial vector u, which must be a probability distribution. Let g = ∑r

j=1 |c j | be the sum of absolute
values of coefficients and define u = 1

g

⊕r
j=1 u j ∈ [0, 1]r(2t+3)d

. Note that u is stochastic (a probability distribution).
We now see that:

uT Y0Y x1
1 · · · Y xt

t v (9)

=
∑r′

j=1 u j

(⊗d
�=0 A

xs j [�]
s j [�] ⊗ J

xs j [�]
)

v j +∑r
j=r′+1 u j

(⊗d
�=0 A

xs j [�]
s j [�] ⊗ J

xs j [�]
)

(1 − v j)

g2d(1+x1+···+xt)

Here we used the definition of matrices Yi and Eqn. (6) to rewrite the expressions for X j,0 · · · X j,t . Notice that the power
of Y0 (i.e. x0) is set at 1, since that constraint is required by the conversion from a standard Diophantine polynomial to a
homogeneous one as explained previously. Now, using Eqn. (7) and Eqn. (8), we can rewrite Eqn. (9) as:∑r′

j=1 T j(1, x1, . . . , xt) +∑r
j=r′+1

(|c j|2d(1+x1+...+xt) + T j(1, x1, . . . , xt)
)

g2d(1+x1+···+xt)
(10)

=
∑r

j=r′+1 |c j|
g

+
∑r′

j=1 T j(1, x1, . . . , xt) +∑r
j=r′ T j(1, x1, . . . , xt)

g2d(1+x1+···+xt)
(11)

= g′

g
+ P h(1, x1, . . . , xt)

g2d(1+x1+···+xt)
, (12)

where g′ =∑r
j=r′+1 |c j |. We therefore define P = (u, {Ya|a ∈ �t}, v) and �t = {0, 1, . . . , t} as our PFA, with letter monotonic

language L = 01∗2∗ · · · t∗ and λ = g′
g ∈ [0, 1] ∩Q as the cut-point. There exists some word w = 01x1 2x2 · · · txt ∈ L such that

fP (w) ≤ λ if and only if P h(1, x1, x2, . . . , xt) = 0. To see this, assume that P h(1, x1, x2, . . . , xt) = 0, then Eqn. (12) says that
uT Y0Y x1

1 · · · Y xt
t v = g′

g . For the other direction, Eqn. (12) implies that uT Y0Y x1
1 · · · Y xt

t v > g′
g if P h(1, x1, x2, . . . , xt) = 0 since

P h is a nonnegative polynomial as defined.
Therefore the non-strict emptiness problem for P is undecidable on letter monotonic languages. Since P is upper-

triangular, then it is polynomially ambiguous. We note the surprising fact that all generator matrices are in fact commutative
(each X j,i is commutative and direct sums do not affect commutativity), which leads to the undecidability of non-strict cut-
points for polynomially ambiguous PFA defined over commutative matrices. In this case, the order of the input word is
irrelevant, only the Parikh vector of alphabet letters is important. To remove the constraint on using letter ‘0’ once, we may
redefine u = uY0 and L = 1∗2∗ · · · t∗ to remove Y0 and all constraints on L. The result now holds for commutative PFA as
required.

We have shown the undecidability of emptiness of {w : fP (w) ≤ λ and w ∈ L}. It remains to show how to modify the
PFA so that we obtain undecidability for inequalities ≥, <, and >, and when the alphabet is binary (but then over a bounded
language rather than letter monotonic language and for non-commuting matrices).
Emptiness for strict cutpoints is undecidable - Let us first prove that determining the emptiness of {w : fP (w) < λ and w ∈
L} is undecidable; i.e. the strict emptiness problem. We proceed with a technique inspired by [34]. Notice that for all w ∈ L,
then fP (w) is of the form:

g′

g
+ P h(1, x1, . . . , xt)

g2d(1+x1+···+xt)
= λ + P h(1, x1, . . . , xt)

g2d|w| , (13)

as can be seen from (12), where λ = g′
g ∈ Q ∩ [0, 1] and P h(1, x1, . . . , xt) ∈ N , since P h is nonnegative and Diophantine.

Therefore fP (w) ≤ λ if and only if fP (w) < λ + 1
g2d|w| . Let us adapt P in the following way. We add three new states,

denoted q0, qF and q∗ . State q0 is a new initial state which, for any input letter, has probability 1
2r of moving to each of the

r initial states of P and probability 1
2 to move to new state qF . Recall that P has r initial states, one for each term. State

qF is a new final state that remains in qF for any input letter with probability 1 − 1
g2d and moves to a new non accepting

absorbing sink state q∗ with probability 1
d . Let us denote the new PFA P< . We now see that for any a ∈ �t :
g2

61

P.C. Bell Journal of Computer and System Sciences 127 (2022) 53–65
fP<(aw) = 1

2
fP (w) + 1

2

(
1 − 1

g|w|2d|w|

)
If there exists some word w1 ∈L such that fP (w1) ≤ λ then fP (w1) = λ and thus:

fP<(aw1) = 1

2
λ + 1

2

(
1 − 1

g|w1|2d|w1|

)
<

1

2
(λ + 1).

For any w2 ∈L such that fP (w2) > λ then fP (w2) ≥ λ + 1
g2d|w2 | by (13). Thus:

fP<(aw2) ≥ 1

2

(
λ + 1

g2d|w2|

)
+ 1

2

(
1 − 1

g|w2|2d|w2|

)
>

1

2
(λ + 1).

Therefore determining if there exists w ∈ A such that fP<
(w) < 1

2 (λ + 1), i.e. the strict emptiness problem for P< on
cutpoint 1

2 (1 + λ) with letter monotonic language L, is undecidable as required. Note that the modifications to P retain
polynomial ambiguity since q0 has no incoming edges, qF has only one outgoing edge (to q∗) and one self loop and q∗ has
no outgoing edges other than a self loop, therefore property EDA does not hold. We may also see that commutativity of the
PFA is unaffected since P< is identical to P except for adding three new states, each of which behave identically for all
input letters.

Finally, let P≥ be a PFA identical to P except that all final states and non-final states are interchanged. Clearly then
fP = 1 − fP≥ and thus since emptiness of {w : fP (w) ≤ λ and w ∈ L} is undecidable, we see that emptiness of {w :
fP≥ (w) ≥ λ and w ∈ L} is also undecidable. To see that fP = 1 − fP≥ retains polynomial ambiguity, note that the only
change is to the final state vector. The introduction of states q0, qF and q∗ cannot lead to a violation of the EDA property
since q0 has no incoming transitions, q∗ only has a self loop and qF has a self loop and a transition to q∗ and thus there
cannot be two distinct transitions from qF back to itself. A similar idea shows undecidability for inequality >, mutatis
mutandis.
Binary alphabets and bounded languages - We conclude this section by showing the undecidability of emptiness of poly-
nomially ambiguous PFA over a binary alphabet and bounded languages (i.e., for a PFA defined on two letters, where the
input words can come from a defined bounded language). To do so, we utilise a modification of a standard trick. Let
P≥ = (u, {Ya|a ∈ �t}, v) as above, where the dimension of the vectors (and square matrices) is ς = r(2t + 3)d . Let Ik denote

the k × k identity matrix for k > 0. Define Y = Y0 ⊕ Y1 ⊕ · · · ⊕ Yt and Z =
(

0 Itς

Iς 0

)
so that Y , Z ∈Q(t+1)ς×(t+1)ς and let

u′ = (uT , 0, . . . , 0)T and v ′ = (v T , 0, . . . , 0)T , with u′, v ′ ∈Q(t+1)ς . It is not difficult to verify that Zt+1 = I(t+1)ς and:

Z i Y Zt+1−i = Yi ⊕ Yi+1 ⊕ · · · ⊕ Yt ⊕ Y0 ⊕ · · · Yi,

where 0 ≤ i ≤ t , thus we permute the blocks of Y . Any product containing at least one Y factor thus has a top left ς × ς

block of either the zero matrix or some Yi . For any matrix Yi1 · · · Yip ∈ 〈Y0, . . . , Yt〉, there exists a matrix in 〈Y , Z〉 where
Yi1 · · · Yip appears as the top left block, specifically:

Z i1 Y Zt+1−i1 · Z i2 Y Zt+1−i2 · · · Z ip Y Zt+1−ip

Since only the first ς elements of u′ and v ′ are nonzero, then:

u′ T Z i1 Y Zt+1−i1 · Z i2 Y Zt+1−i2 · · · Z ip Y Zt+1−ip v ′ = uT Yi1 · · · Yip v

If the top left ς × ς block of some F ∈ 〈Y , Z〉 is zero, then clearly u′ T F v = 0. Notice that Y and Z are stochastic
matrices (though no longer commutative) and remain polynomially ambiguous (since only the product of the top left
blocks of Y , Z is important given that u′, v ′ are only nonzero for their first ς elements and the top left blocks are
upper triangular), therefore the strict emptiness problem for P ′ = (u′, {Y , Z}, v ′) is undecidable over bounded language
L′ = (z0 yzt+1)∗(z1 yzt)∗ · · · (zt yz1)∗ with y mapping to Y and z mapping to Z . �
4. Injectivity problems for polynomially ambiguous PFA

We now study the injectivity of acceptance probabilities of polynomially ambiguous PFA. The next result begins with an
adapted proof technique from [14], where the undecidability of the injectivity problem (called the freeness problem in [14],
although we here rename it injectivity) was shown for exponentially ambiguous PFA over five states. We show that the
injectivity problem remains undecidable even when the PFA is polynomially ambiguous and over four states by using our
new encoding technique (avoiding the Turakainen procedure which increases the matrix dimensions by two and generates
an exponentially ambiguous PFA). We will require the following undecidable problem for our reduction, which is a variant
of the famous Post’s Correspondence Problem (PCP).
62

P.C. Bell Journal of Computer and System Sciences 127 (2022) 53–65
Problem 8 (Mixed Modification PCP (MMPCP)). Given a binary alphabet �2, a finite set of letters � = {s1, s2, . . . , s�}, and a
pair of homomorphisms h, g : �∗ → �∗

2, the MMPCP asks to decide whether there exists a word w = x1 . . . xk ∈ �+, xi ∈ �

such that:

h1(x1)h2(x2) . . .hk(xk) = g1(x1)g2(x2) . . . gk(xk),

where hi, gi ∈ {h, g}, and there exists at least one j such that h j = g j .

Theorem 9. [35] - The Mixed Modification PCP is undecidable for |�| ≥ 9.

4.1. Proof of Theorem 2

Proof. Let � = {x1, x2, . . . , xn−2} and � = {xn−1, xn} be distinct alphabets and h, g : �∗ → �∗ be an instance of the mixed
modification PCP. The naming convention will become apparent below. We define two injective mappings α, β : (� ∪�)∗ →
Q by:

α(xi1 xi2 · · · xim) = �m
j=1i j(n + 1) j−1,

β(xi1 xi2 · · · xim) = �m
j=1i j(n + 1)− j,

where α(ε) = β(ε) = 0 and each 1 ≤ i j ≤ n. Thus α represents xi1 xi2 · · · xim as a reverse (n + 1)-adic number and β repre-
sents xi1 xi2 · · · xim as a fractional number (0.xi1 xi2 · · · xim)(n+1) (e.g. if n = 9, then x1x2x3 is represented as α(x1x2x3) = 32110
and β(x1x2x3) = 0.12310, where subscript 10 denotes base 10). Note that ∀w ∈ (� ∪ �)∗, α(w) ∈N and β(w) ∈ [0, 1) ∩Q.
It is not difficult to see that ∀w1, w2 ∈ (� ∪ �)∗, (n + 1)|w1|α(w2) + α(w1) = α(w1 w2) and (n + 1)−|w1|β(w2) + β(w1) =
β(w1 w2).

Define γ ′′ : (� ∪ �)∗ × (� ∪ �)∗ →Q3×3 by:

γ ′′(u, v) =
⎛
⎝(n + 1)|u| 0 α(u)

0 (n + 1)−|v| β(v)

0 0 1

⎞
⎠ .

It is easy to verify that γ ′′(u1, v1)γ
′′(u2, v2) = γ ′′(u1u2, v1 v2), i.e., γ ′′ is a homomorphism.

Let G′′ = {γ ′′(xi, g(xi)), γ ′′(xi, h(xi))|xi ∈ �, 1 ≤ i ≤ n − 2}, S ′′ = 〈G′′〉, ρ ′′ = (1, 1, 0)T and τ ′′ = (0, 0, 1)T . Assume that
there exist M1 = Gi1 Gi2 · · · Git ∈ 〈G′′〉 and M2 = G j1 G j2 · · · G jt′ ∈ 〈G′′〉 such that t = t′ or else at least one Gip = G jp where
1 ≤ p ≤ t and λ = ρ ′′ T M1τ

′′ = ρ ′′ T M2τ
′′ (i.e., M1 and M2 are generated in two different ways). We see that:

λ = ρ ′′ T M1τ
′′ = α(xi1 xi2 · · · xit) + β(f1(xi1) f2(xi2) · · · ft(xit)),

λ = ρ ′′ T M2τ
′′ = α(x j1 x j2 · · · x jt′) + β(f ′

1(x j1) f ′
2(x j2) · · · f ′

t′(x jt′)),

where each f i, f ′
i ∈ {g, h}. Since α(w) ∈ N and β(w) ∈ (0, 1) ∩ Q, ∀w ∈ (� ∪ �)∗ , injectivity of α and β implies

that if ρ ′′ T M1τ
′′ = ρ ′′ T M2τ

′′ , then t = t′ and ik = jk for 1 ≤ k ≤ t . Furthermore, if ρT M1τ = ρT M2τ , we have that
β(f1(xi1) f2(xi2) · · · ft(xit)) = β(f ′

1(xi1) f ′
2(xi2) · · · f ′

t (xit)) and since at least one f p = f ′
p for 1 ≤ p ≤ t by our above as-

sumption, then this corresponds to a correct solution to the MMPCP instance (h, g). On the other hand, if there does
not exist a solution to (h, g), then β(f1(xi1) f2(xi2) · · · ft(xit)) = β(f ′

1(xi1) f ′
2(xi2) · · · f ′

t (xit)), and injectivity of β implies that
ρ ′′ T M1τ

′′ = ρ ′′ T M2τ
′′ .

We now use our new technique to encode such matrices and vectors to a linearly ambiguous four state PFA. We first
define a mapping γ ′ : (� ∪ �)∗ × (� ∪ �)∗ →N3×3 to make all matrices be nonnegative integral:

γ ′(u, v) = (n + 1)|v|γ ′′(u, v) =
⎛
⎝(n + 1)|u|+|v| 0 (n + 1)|v|α(u)

0 1 (n + 1)|v|β(v)

0 0 (n + 1)|v|

⎞
⎠ ∈N3×3

We next define the following morphism γ : (� ∪ �)∗ × (� ∪ �)∗ →Q4×4 to make all such matrices be row stochastic:

γ (u, v) = (n + 1)−k

⎛
⎜⎜⎝

(n + 1)|u|+|v| 0 (n + 1)|v|α(u) δ1

0 1 (n + 1)|v|β(v) δ2

0 0 (n + 1)|v| δ3
0 0 0 δ4

⎞
⎟⎟⎠ ,

where δ j ∈N are chosen so that the row sum of each row of γ (u, v) is (n + 1)k for some k. Any sufficiently large k can be
used so long as each row has the same sum (n + 1)k and thus γ (u, v) becomes row stochastic. We use the same k value
for all matrices of G which we define as G = {γ (xi, g(xi)), γ (xi, h(xi))|xi ∈ �, 1 ≤ i ≤ n − 2}, so that S = 〈G〉, and finally
ρ = (1, 1, 0, 0)T and τ = (0, 0, 1, 0)T are the initial and final state vectors respectively.
63

P.C. Bell Journal of Computer and System Sciences 127 (2022) 53–65
Note that the PFA defined by P = (ρ, G, τ) has linear ambiguity which we now prove. Let � be the input alphabet for
P . For a PFA to have quadratic ambiguity it should satisfy the IDA2 property as shown in §4 of [18]. This would imply that
there exist useful states r1, s1, r2, s2 ∈ {1, 2, 3, 4} and words v1, u2, v2 ∈ �∗ with r1 = s1 and r2 = s2 such that the following
transitions are present (i.e., these transitions have nonzero probability):

(r1, v1, r1), (r1, v1, s1), (s1, v1, s1), (s1, u2, r2),

(r2, v2, r2), (r2, v2, s2), (s2, v2, s2). (14)

The only useful states of P for each letter (those leading to the final state 3) are {1, 2, 3}. If r1 is state 1 then s1 is state 3
but state 3 does not transition to any other useful state. A similar reasoning holds if r1 is state 2 or 3 and thus IDA2 does
not hold and P has only linear ambiguity.

Assume that there exist M1 = Gi1 · · · Git ∈ 〈G〉 and M2 = G j1 · · · G jt′ ∈ 〈G〉 such that t = t′ or else at least one Gip = G jp

for 1 ≤ p ≤ t and λ = ρT M1τ = ρT M2τ . We see that:

λ = ρT M1τ = (n + 1)−kt
(
α(xi1 xi2 · · · xit) + β(f1(xi1) f2(xi2) · · · ft(xit))

)
,

λ = ρT M2τ = (n + 1)−kt′ (α(x j1 x j2 · · · x jt′) + β(f ′
1(x j1) f ′

2(x j2) · · · f ′
t′(x jt′))

)
,

where each f i, f ′
i ∈ {g, h}. If t = t′ , then the same argument as previously shows that ik = jk for 1 ≤ k ≤ t . If t = t′ , assume

without loss of generality that t′ < t . In this case we see that:

(n + 1)−kt′′ (α(xi1 · · · xit) + β(f1(xi1) · · · ft(xit))
)= α(x j1 · · · x jt′) + β(f ′

1(x j1) · · · f ′
t′(x jt′)),

where t′′ = t − t′ . This is a contradiction however since the number of nonzero digits (where a digit is understood base
(n + 1) here) in the left hand side of this expression is exactly 2t , and the number of digits in the right expression is
2t′ < 2t . Note that the multiplication by (n + 1)−kt′′ does not alter the number of nonzero digits, it is only a right shift of
all digits, kt′′ times. Thus, since the left and right sides have a different number of nonzero digits they cannot be equal and
thus t = t′ as required. �
4.2. Proof of Theorem 3

Proof. We use a reduction from the equal subset sum problem, defined thus: given a set of positive integers S =
{x1, x2, . . . , xk} ⊆ N , do there exist two disjoint nonempty subsets S1, S2 ⊆ S such that

∑
�∈S1

� = ∑
m∈S2

m? This prob-
lem is known to be NP-complete [36]. Note that although there is a requirement that the sets S1 and S2 be disjoint, this is
not crucial so long as S1 = S2 (since if some element x j is in both S1, S2, then the equality also holds when x j is removed
from both sets). We may therefore require that S1 = S2, with both nonempty such that the sum of elements of each set is
identical. We define the set of matrices M = {Ai, Bi |1 ≤ i ≤ k} ⊆Q3×3 in the following way:

Ai = 1

xi + 1

⎛
⎝1 xi 0

0 1 xi
0 0 xi + 1

⎞
⎠ , Bi = 1

xi + 1

⎛
⎝1 0 xi

0 1 xi
0 0 xi + 1

⎞
⎠

Note that Ai and Bi are row stochastic. Let u = (1, 0, 0)T be the initial probability distribution, v = (0, 1, 0)T be the fi-
nal state vector and let P = (u, {Ai, Bi}, v) be our PFA. Define letter monotonic language L = (a1|b1)(a2|b2) · · · (ak|bk) ⊆
a∗

1b∗
1a∗

2b∗
2 · · ·a∗

k b∗
k and define a morphism ϕ : {ai, bi |1 ≤ i ≤ k}∗ → {Ai, Bi |1 ≤ i ≤ k}∗ as ϕ(ai) = Ai and ϕ(bi) = Bi . Now, for a

word w = w1 w2 · · · wk ∈ L, note that w j ∈ {a j, b j} for 1 ≤ j ≤ k. Define that v(ai) = xi and v(bi) = 0. In this case, we see
that (due to the structure of Ai and Bi):

uT ϕ(w1 w2 · · · wk)v = 1∑k
j=1(x j + 1)

k∑
�=1

v(w�)

Note of course that the factor 1∑k
j=1(x j+1)

is the same for any w ∈ L.

Assume then that there exist two words α, β ∈ L with α = β such that uT ϕ(α)v = uT ϕ(β)v (i.e. assume that P is not
injective). Then

∑k
�=1 v(α�) = ∑k

i∈S1
xi = ∑k

i∈S2
xi = ∑k

�=1 v(β�), where S1 = {xi; |α|ai > 0} and S2 = {xi; |β|ai > 0}. This is
true if and only if the instance S of the equal subset sum problem has a solution as required (note that only the empty set
has a sum of zero which has unique representation b1 · · ·bk).

To show that P is linearly ambiguous, we prove it does not satisfy the IDA2 property [18], i.e., there do not exist useful
states r1, s1, r2, s2 ∈ {1, 2, 3, 4}, words v1, u2, v2 ∈ �∗ with r1 = s1 and r2 = s2 such that the transitions given in Eqn. (14)
are present.

The only useful states of P for each letter (those leading to the final state 2) are {1, 2}. There is no transition from state
2 to 1 thus r1 = 1, s1 = 2 which constrains r2 = 2 and s2 = 2 which contradicts r2 = s2 and thus P does not have quadratic
ambiguity. �
64

P.C. Bell Journal of Computer and System Sciences 127 (2022) 53–65
5. Conclusion

There are a variety of open problems remaining. For example, does Theorem 1 still hold for quadratic ambiguity, when
taken alongside the other constraints (letter monotonic language and commutative matrices). Another direction is to improve
the complexity lower bound of Theorem 3 to show it is either PSPACE-hard, EXPSPACE-hard or undecidable, under the same
constraints as in the theorem statement.

CRediT authorship contribution statement

Paul C. Bell: Conceptualization, Formal analysis, Investigation, Methodology, Writing – original draft, Writing – review &
editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgments

We thank the referees for their very useful comments on this manuscript which helped to improve the presentation and
give more formal details of some proofs.

References

[1] M.O. Rabin, Probabilistic automata, Inf. Control 6 (1963) 230–245.
[2] R.G. Bukharaev, Probabilistic automata, J. Math. Sci. 13 (3) (1980) 359–386.
[3] L. Babai, S. Moran, Arthur–Merlin games: a randomized proof system, and a hierarchy of complexity classes, J. Comput. Syst. Sci. 36 (1988) 254–276.
[4] A. Condon, R.J. Lipton, On the complexity of space bounded interactive proofs, in: Proceedings of the 29th Annual Symposium on Foundations of

Computer Science (FOCS), 1989, pp. 462–467.
[5] A. Yakaryilmaz, A.C. Say, Unbounded-error quantum computation with small space bounds, Inf. Comput. 209 (6) (2011) 873–892.
[6] V. Blondel, J. Tsitsiklis, The boundedness of all products of a pair of matrices is undecidable, Syst. Control Lett. 41 (2) (2000) 135–140.
[7] V. Blondel, J.N. Tsitsiklis, A survey of computational complexity results in systems and control, Automatica 36 (2000) 1249–1274.
[8] M. Mohri, F. Pereira, M. Riley, Weighted finite-state transducers in speech recognition, Comput. Speech Lang. 16 (1) (2002) 69–88.
[9] A. Paz, Introduction to Probabilistic Automata, Academic Press, 1971.

[10] V. Blondel, V. Canterini, Undecidable problems for probabilistic automata of fixed dimension, Theory Comput. Syst. 36 (2003) 231–245.
[11] M. Hirvensalo, Improved undecidability results on the emptiness problem of probabilistic and quantum cut-point languages, in: SOFSEM 2007: Theory

and Practice of Computer Science, in: Lecture Notes in Computer Science, vol. 4362, 2007, pp. 309–319.
[12] P.C. Bell, S. Chen, L.M. Jackson, Scalar ambiguity and freeness in matrix semigroups over bounded languages, in: Language and Automata Theory and

Applications, in: LNCS, vol. 9618, 2016, pp. 493–505.
[13] A. Bertoni, G. Mauri, M. Torelli, Some recursively unsolvable problems relating to isolated cutpoints in probabilistic automata, in: Automata, Languages

and Programming, vol. 52, 1977, pp. 87–94.
[14] P.C. Bell, V. Halava, M. Hirvensalo, Decision problems for probabilistic finite automata on bounded languages, Fundam. Inform. 123 (1) (2012) 1–14.
[15] E. Charlier, J. Honkala, The freeness problem over matrix semigroups and bounded languages, Inf. Comput. 237 (2014) 243–256.
[16] P. Turakainen, Generalized automata and stochastic languages, Proc. Am. Math. Soc. 21 (1969) 303–309.
[17] N. Fijalkow, C. Riveros, J. Worrell, Probabilistic automata of bounded ambiguity, in: 28th International Conference on Concurrency Theory (CONCUR),

2017, 19.
[18] A. Weber, H. Seidl, On the degree of ambiguity of finite automata, Theor. Comput. Sci. 88 (2) (1991) 325–349.
[19] L. Daviaud, M. Jurdzinski, R. Lazic, F. Mazowiecki, G.A. Pérez, J. Worrell, When is containment decidable for probabilistic automata?, in: International

Colloquium on Automata, Languages, and Programming (ICALP), 2018, 121.
[20] M. Hirvensalo, A. Yakaryilmaz, Decision problems on unary probabilistic and quantum automata, CoRR, arXiv:1610 .01397, 2016.
[21] V. Halava, J. Kari, Y. Matiyasevich, On post correspondence problem for letter monotonic languages, Theor. Comput. Sci. 410 (2009) 30–32.
[22] T. Neary, Undecidability in binary tag systems and the post correspondence problem for five pairs of words, in: STACS15, 2015, pp. 649–661.
[23] V. Chonev, J. Ouaknine, J. Worrell, On the complexity of the orbit problem, J. ACM 63 (3) (2016) 1–18.
[24] R. Kannan, R.J. Lipton, Polynomial-time algorithm for the orbit problem, J. ACM 33 (4) (1986) 808–821.
[25] L. Babai, R. Beals, J.-Y. Cai, G. Ivanyos, E.M. Luks, Multiplicative equations over commuting matrices, in: Proc. of the Seventh Annual ACM-SIAM Sym-

posium on Discrete Algorithms, SODA 96, 1996.
[26] P.C. Bell, Polynomially ambiguous probabilistic automata on restricted languages, in: 46th International Colloquium on Automata, Languages and Pro-

gramming (ICALP 2019), vol. 105, 2019, pp. 1–14.
[27] R.A. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1991.
[28] O. Ibarra, B. Ravikumar, On sparseness, ambiguity and other decision problems for acceptors and transducers, in: Proc. STACS 1986, vol. 210, 1986,

pp. 171–179.
[29] C. Reutenauer, Propertiétés arithmétiques et topologiques de séries rationnelles en variables non commutatives, Thèse troisième cycle, Université Paris

VI, 1977.
[30] A. Salomaa, M. Soittola, Automata-Theoretic Aspects of Formal Power Series, Springer-Verlag, 1978.
[31] Yu. Matiyasevich, Hilbert’s Tenth Problem, MIT Press, 1993.
[32] J. Buresh-Oppenheim, M. Clegg, R. Impagliazzo, T. Pitassi, Homogenization and the polynomial calculus, Comput. Complex. 11 (3–4) (2002) 91–108.
[33] A. Bertoni, The solution of problems relative to probabilistic automata in the frame of the formal language theory, in: GI - 4. Jahrestagung, 1974,

pp. 107–112.
[34] H. Gimbert, Y. Oualhadj, Probabilistic automata on finite words: decidable and undecidable problems, in: International Colloquium on Automata,

Languages and Programming (ICALP 2010), vol. 2, 2010, pp. 527–538.
[35] J. Cassaigne, J. Karhumäki, T. Harju, On the decidability of the freeness of matrix semigroups, Int. J. Algebra Comput. 9 (3–4) (1999) 295–305.
[36] H.J. Woeginger, Z. Yu, On the equal-subset-sum problem, Inf. Process. Lett. 42 (6) (1992) 299–302.
65

http://refhub.elsevier.com/S0022-0000(22)00016-2/bib10DBFDB995F519803C078128970B522Ds1
http://refhub.elsevier.com/S0022-0000(22)00016-2/bibD7F027FF5E3737234B5CC2449704023Es1
http://refhub.elsevier.com/S0022-0000(22)00016-2/bib95A61F52339FD283E3435ACF8843710Fs1
http://refhub.elsevier.com/S0022-0000(22)00016-2/bibAD169C8A642142C8898B5BEC84DC5154s1
http://refhub.elsevier.com/S0022-0000(22)00016-2/bibAD169C8A642142C8898B5BEC84DC5154s1
http://refhub.elsevier.com/S0022-0000(22)00016-2/bib3AB57FC42AC6EC94D955E08E171320C9s1
http://refhub.elsevier.com/S0022-0000(22)00016-2/bib669E5BCC01DC834A7B6B107DC1AEEB9Cs1
http://refhub.elsevier.com/S0022-0000(22)00016-2/bib2966650014BCC3BB31BDACC27CBAE0DBs1
http://refhub.elsevier.com/S0022-0000(22)00016-2/bib165EB19290746E9EC9C4949DCF8A9CD0s1
http://refhub.elsevier.com/S0022-0000(22)00016-2/bibBC6C09548F555712AB0EED5C2F94E829s1
http://refhub.elsevier.com/S0022-0000(22)00016-2/bib5929EFDB42C37CB08548E3C96025C2AEs1
http://refhub.elsevier.com/S0022-0000(22)00016-2/bibDA7ADAD09D946537E16CBE81A4825657s1
http://refhub.elsevier.com/S0022-0000(22)00016-2/bibDA7ADAD09D946537E16CBE81A4825657s1
http://refhub.elsevier.com/S0022-0000(22)00016-2/bibEA3F7F5010D55AC50FFCC4B9F208A921s1
http://refhub.elsevier.com/S0022-0000(22)00016-2/bibEA3F7F5010D55AC50FFCC4B9F208A921s1
http://refhub.elsevier.com/S0022-0000(22)00016-2/bibBA7F51BC99623AD25EFE16E213CB6969s1
http://refhub.elsevier.com/S0022-0000(22)00016-2/bibBA7F51BC99623AD25EFE16E213CB6969s1
http://refhub.elsevier.com/S0022-0000(22)00016-2/bib75ACD368417AD72870D554FCC22B41A2s1
http://refhub.elsevier.com/S0022-0000(22)00016-2/bib9F6C469304543057850C21748DD9F9D8s1
http://refhub.elsevier.com/S0022-0000(22)00016-2/bib8F210E68EB60F788C2180C07F077F28Cs1
http://refhub.elsevier.com/S0022-0000(22)00016-2/bib200B8C7DA2E4766B235C8673E80B9EBBs1
http://refhub.elsevier.com/S0022-0000(22)00016-2/bib200B8C7DA2E4766B235C8673E80B9EBBs1
http://refhub.elsevier.com/S0022-0000(22)00016-2/bib6B645EBE94B639840644E32C5EF5E55Ds1
http://refhub.elsevier.com/S0022-0000(22)00016-2/bibD200B6ACCFD3E8BD0DAB0FDA40EF2732s1
http://refhub.elsevier.com/S0022-0000(22)00016-2/bibD200B6ACCFD3E8BD0DAB0FDA40EF2732s1
http://refhub.elsevier.com/S0022-0000(22)00016-2/bib49BAA157CF0AA40055E324C95E7A2EB1s1
http://refhub.elsevier.com/S0022-0000(22)00016-2/bib953E6FBE077FC5D599B8920E040DF8A9s1
http://refhub.elsevier.com/S0022-0000(22)00016-2/bib2137B7CB28493D08C1CB4B70DB8D0399s1
http://refhub.elsevier.com/S0022-0000(22)00016-2/bib99FDFB158E3849130C8755C31AB5BD6Fs1
http://refhub.elsevier.com/S0022-0000(22)00016-2/bibC4547524BC4175906382355AA2A2F49Fs1
http://refhub.elsevier.com/S0022-0000(22)00016-2/bibE2138D79E7ABCF4CF07CD4C7AEAD47A6s1
http://refhub.elsevier.com/S0022-0000(22)00016-2/bibE2138D79E7ABCF4CF07CD4C7AEAD47A6s1
http://refhub.elsevier.com/S0022-0000(22)00016-2/bibB8BCC88320C24680214CAEC7D7D3B856s1
http://refhub.elsevier.com/S0022-0000(22)00016-2/bibB8BCC88320C24680214CAEC7D7D3B856s1
http://refhub.elsevier.com/S0022-0000(22)00016-2/bibC0DDF1B48875BD3EF2B3CFF7859CC67Es1
http://refhub.elsevier.com/S0022-0000(22)00016-2/bibF00F021B6A1310924BD05FD74EB57D66s1
http://refhub.elsevier.com/S0022-0000(22)00016-2/bibF00F021B6A1310924BD05FD74EB57D66s1
http://refhub.elsevier.com/S0022-0000(22)00016-2/bibD141EF853DC8E4DD5E10A382FA4C4966s1
http://refhub.elsevier.com/S0022-0000(22)00016-2/bibD141EF853DC8E4DD5E10A382FA4C4966s1
http://refhub.elsevier.com/S0022-0000(22)00016-2/bibD53AEB78ABC83A52AB8982F5C82A3D5Bs1
http://refhub.elsevier.com/S0022-0000(22)00016-2/bibA32AECC78337204E961144D94F926955s1
http://refhub.elsevier.com/S0022-0000(22)00016-2/bib90D515FAFCAAE4CEAD1D7D6CB19A9201s1
http://refhub.elsevier.com/S0022-0000(22)00016-2/bibD4B0695303DB77F63939B9C6158E72E3s1
http://refhub.elsevier.com/S0022-0000(22)00016-2/bibD4B0695303DB77F63939B9C6158E72E3s1
http://refhub.elsevier.com/S0022-0000(22)00016-2/bib856991AFFCB054B71C0BACEE4DB7D0FDs1
http://refhub.elsevier.com/S0022-0000(22)00016-2/bib856991AFFCB054B71C0BACEE4DB7D0FDs1
http://refhub.elsevier.com/S0022-0000(22)00016-2/bib5D851D09A2F06B1F6530E07522F3F6A7s1
http://refhub.elsevier.com/S0022-0000(22)00016-2/bib785C4D3D15C6317B0BA38413260FECD2s1

	Polynomially ambiguous probabilistic automata on restricted languages
	1 Introduction
	1.1 Our contributions

	2 Preliminaries
	2.1 Linear algebra
	2.2 Probabilistic Finite Automata (PFA)
	2.3 PFA ambiguity
	2.4 Reducible undecidable problems

	3 Cut-point languages for polynomially ambiguous commutative PFA
	3.1 Proof of Theorem 1

	4 Injectivity problems for polynomially ambiguous PFA
	4.1 Proof of Theorem 2
	4.2 Proof of Theorem 3

	5 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

