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This paper derives an explicit formula for a type
of fractional power series, known as a Puiseux
series, arising in a wide class of applied problems
in the physical sciences and engineering. Detailed
consideration is given to the gaps which occur in these
series (‘lacunae’); they are shown to be determined by
a number-theoretic argument involving the greatest
common divisor of a set of exponents appearing in the
Newton polytope of the problem, and by two number-
theoretic objects, called here Sylvester sets, which are
complements of Frobenius sets. A key tool is Faà di
Bruno’s formula for high derivatives, as implemented
by Bell polynomials. Full account is taken of repeated
roots, of arbitrary multiplicity, in the leading-order
polynomial which determines a fractional-power
expansion, namely the facet polynomial. For high
multiplicity, the fractional powers are shown to have
large denominators and contain irregularly spaced
gaps. The orientation and methods of the paper are
those of applications, but in a concluding section we
draw attention to a more abstract approach, which is
beyond the scope of the paper.

1. Introduction
An approximation method which finds wide application
in the physical sciences and engineering is ‘balancing
as many terms as possible at leading order’. Formally,
it is called the method of dominant balances (or
distinguished limits), and is expounded in many survey
articles and texts on mathematical methods [1–5].
Examples of its use in fluid dynamics, acoustics, and
structural vibrations, for example, may be found in
[6–10]. To describe the method, let us suppose that a
polynomial relation P (x1, . . . , xd) = 0 is known to hold
between d real or complex quantities x1, . . . , xd, where
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Figure 1. A facet and vertex in d-dimensional exponent space. The facet is the convex hull of A(1), . . . , A(p), with

coordinate vectors a(1), . . . , a(p), and the vertex is B, with coordinate vector b. The facet is a surface of dimension

d− 1, with boundary determined by a subset of A(1), . . . , A(p), so that the figure as a whole is a d-dimensional pyramid.

|x1| � 1. Full use is assumed to have been made of dynamical similarity, so that all variables
and coefficients are dimensionless, i.e. are pure numbers. In applications, a distinction is made
between state variables and parameters; here, a uniform notation x1, . . . , xd encompasses both,
and x1 would be a ‘small parameter’ or the reciprocal of a ‘large parameter’. We consider just one
polynomial relation, though the method may be extended to a set of simultaneous polynomial
relations. The polynomial may be of high degree in any or all of x1, . . . , xd, and d may be large.

The aim of the investigation is to exploit the smallness of |x1| in determining the dependence
of xd on x1, . . . , xd−1. Let us write the polynomial relation as P (x) = 0, with x= (x1, . . . , xd),
and put |x1|= η� 1. The idea of the method of dominant balances is to introduce scalings |xj | ∼
ηγj , and determine the exponents γj so that as many terms as possible in P (x) have the same
order of magnitude, as measured by their power of η, while the remaining terms involve only
higher powers of η. Here γ1 = 1 by definition. This gives an approximation procedure, in which
at first only the largest terms in order of magnitude are retained, and then systematically the other
terms, to give a series expansion of xd in powers of η. The result is a fractional power series. In
general, there are several dominant balances (many if d is large), giving different series expansions
corresponding to different scaling regimes of the roots of P (x) = 0.

As just described, the method is classical; indeed, it goes back to Newton. The leading order
terms of a dominant balance correspond to facets of the Newton polytope of P (x), defined in
a d-dimensional exponent space to be the convex hull of the d-tuples of exponents of the terms
in P (x); and the fractional power series obtained are Puiseux series for the roots of P (x) = 0 in
various asymptotic regimes. A copious literature exists on the subject, much of which cites [11].
Here, we address the two most basic questions which arise when using the method in practice.
The first is: which fractional powers actually occur in the complete series? This question is non-
trivial, because the exponents, arranged in increasing order, can form a highly irregular sequence
of fractions, with unpredictable gaps (‘lacunae’), and no obvious pattern. The second question
is: how does the form of the series change when the leading-order equation has repeated roots?
Examples show that the irregularities just mentioned, and the denominators of the exponents, can
become progressively greater as the multiplicity of a repeated root increases.

This paper answers both of the above questions, by giving explicit formulae for the complete
fractional power series. The formulae appear to be new, notwithstanding the literature just
mentioned, and they involve two number-theoretic objects which are complements of Frobenius
sets and which we call Sylvester sets. There is no formula for the size of a Frobenius set, or for the
distribution of its elements (except in a few special cases); i.e. its irregularity cannot be described



3

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

by a formula. Thus the reduction to an expression involving Frobenius or Sylvester sets is in
general the furthest one can go.

The structure of the paper is that in §§2–5 the theory is developed for a basic type of Newton
polytope, derived from one facet and one other point (called a vertex). In §6 the theory is
extended to allow for arbitrarily many vertices; this involves number-theoretic ideas, and is where
Frobenius and Sylvester sets enter. In §7, full numerical details are given for an example involving
a parametric family of octahedral Newton polytopes. The example is rich enough to demonstrate
all the possibilities which can occur, but simple enough that the calculations can be carried out
explicitly. Readers may find it helpful to refer forward on occasion to this example, as it illustrates
the definitions introduced in the paper, and may clarify the nature of the series we are aiming at.
Conclusions are presented in §8, together with brief mention of a more algebraic approach to the
work, which is beyond the scope of the paper.

2. Geometry of a facet and single vertex
Figure 1 shows schematically, in d-dimensional exponent space, the convex hull of p points
A(1), . . . , A(p) with coordinate vectors a(1), . . . , a(p), where p> d, lying in an affine hyperplane
of dimension d− 1, but in no subspace of lower dimension, together with a single point B with
coordinate vector b, not lying in the hyperplane. We assume that d> 2. The convex hull of the p
points is called the facet, and the single point B is called the vertex, so that the configuration
defines a d-dimensional pyramid in which the base (i.e. the facet) lies in the affine subspace
spanned by a(2) − a(1), . . . , a(p) − a(1). The corresponding polynomial equation is

p∑
i=1

αix
a(i) + βxb = 0, (2.1)

where the coefficients αi and β are non-zero scalars, and multi-indices are used for powers, so

that a(i) = (a
(i)
1 , . . . , a

(i)
d ) and xa

(i)

= x
a
(i)
1

1 . . . x
a
(i)
d

d . It is assumed that no positive power of any xj
is common to all the terms in (2.1), i.e. there is no root of the form xj = 0 for all values of the other
variables.

For definiteness, we assume that the facet hyperplane intersects the exponent axes at positive
values, and the vertex is on the opposite side of the hyperplane from the origin. Thus the relative
positions of the origin, the facet, and vertex are as shown in the figure, and the components of a
vector normal to the facet hyperplane, pointing into the half-space containing the vertex, are all
positive.

(a) The scaling determined by a facet
Our starting-point is that |x1| � 1, and we seek powers of x1, . . . , xd so that the facet terms in
(2.1), i.e. the terms with coefficients αi, have the same order of magnitude, and thereby form
a dominant balance. In the geometric approach which follows, it is convenient to write these
powers in homogeneous form, by taking

x2 ∝ x
m2/m1

1 , . . . , xd ∝ x
md/m1

1 , (2.2)

i.e.

x
1/m1

1 ∝ x1/m2

2 ∝ · · · ∝ x1/md

d , (2.3)

in which the mj are positive real numbers to be determined, up to an arbitrary multiplicative
factor, with only their ratios of significance. With this scaling, the facet terms are proportional to
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powers of x1 with exponents

a
(i)
1 +

m2

m1
a
(i)
2 + · · ·+ md

m1
a
(i)
d (i= 1, . . . , p). (2.4)

The facet terms are said to be balanced if these exponents are equal, i.e.

m · a(1) =m · a(2) = · · · =m · a(p), (2.5)

wherem= (m1, . . . ,md). In our use of vector and matrix algebra, vectors are regarded as column
vectors, and the scalar product is represented by a dot. On writing (2.5) in the equivalent form

m · (a(2) − a(1)) = · · · =m · (a(p) − a(1)) = 0, (2.6)

a geometrical result emerges, that for the facet terms to be in balance, the vector m must be
perpendicular to the facet. The homogeneous form of the exponents in (2.2) corresponds to the
fact that applying a positive scalar factor to m does not alter its direction, so that it remains
perpendicular to the facet. The fact that the numbers mj are all positive corresponds to the
assumed orientation of the facet hyperplane and that m points towards the half-space containing
the vertex.

In the three-dimensional case d= 3, the vectorm is proportional to the vector area of a triangle
formed by three points chosen from among a(1), . . . , a(p). Three such points can always be found,
by our assumption that the facet does not lie in any subspace of lower dimension than d− 1, and
without loss of generality the three points may be labelled a(1), a(2), a(3), so that

m = a(1) ∧ a(2) + a(2) ∧ a(3) + a(3) ∧ a(1). (2.7)

In d dimensions, we may likewise, after relabelling if necessary, take a(1), . . . , a(d) to be linearly
independent (recall that p> d), and construct a d× d matrix A from their transposes. Then (2.5) is

Am= λe, (2.8)

where λ 6= 0 is the common value of the scalar products, and e is a d× 1 column vector of 1’s.
Thus

m=
λ adj(A)e

det(A)
∝ adj(A)e ∝

B11

· · ·
Bd1

+ · · · +

B1d

· · ·
Bdd

 , (2.9)

where B = (Brs) = adj(A), the adjugate of A. For d= 3, the three vectors on the right-hand side
of (2.9) are the vector products in (2.7).

(b) The vertex
On applying the scaling (2.2) to the vertex term βxb in (2.1), the exponent of x1 becomes

b1 +
m2

m1
b2 + · · ·+ md

m1
bd, (2.10)

or equivalently (m · b)/m1. Let us now divide every term in (2.1) by a common power of x1, in
which the exponent is the common value (2.4) obtained when m satisfies (2.5). Then the facet
terms all become of order one, and the vertex term becomes of order xc1, where, by (2.10) and
(2.5), the exponent c may be written in any of the equivalent ways

c=
m · (b− a(1))

m1
= · · · = m · (b− a(p))

m1
. (2.11)

A crucial point here is that c > 0, by our assumption that the vertex is on the opposite side of the
facet hyperplane from the origin. This follows by interpreting (2.11) as projections, taking account
of the direction of m.
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In three dimensions, expression (2.7) for m suggests that a(1), a(2), a(3) is a convenient basis
for exponent space. Let square brackets denote the scalar triple product, so that [a(1)a(2)a(3)], for
example, denotes a 3× 3 determinant, and let e(1) = (1, 0, 0). Then

m · a(1) =m · a(2) =m · a(3) = [a(1)a(2)a(3)], (2.12)

and with components defined by

b= λ1a
(1) + λ2a

(2) + λ3a
(3), e(1) = µ1a

(1) + µ2a
(2) + µ3a

(3), (2.13)

we obtain at once

m · b= (λ1 + λ2 + λ3)[a
(1)a(2)a(3)], m1 =m · e(1) = (µ1 + µ2 + µ3)[a

(1)a(2)a(3)], (2.14)

so that
c=

λ1 + λ2 + λ3 − 1

µ1 + µ2 + µ3
. (2.15)

From (2.13) we also obtain the components as determinant ratios λ1 = [b a(2)a(3)]/[a(1)a(2)a(3)],
etc, and hence the alternative form

c=
[b a(2)a(3)] + [a(1)b a(3)] + [a(1)a(2)b] − [a(1)a(2)a(3)]

[e(1)a(2)a(3)] + [a(1)e(1)a(3)] + [a(1)a(2)e(1)]
. (2.16)

All the determinants have integer entries. Expression (2.16) is used in the example in §7, because
it gives very simply the dependence of c on b.

The result of the scaling is that the facet terms form a dominant balance for equation (2.1),
because the vertex term βxb is smaller than every facet term by a relative amount of order
|x1|c, with c given by the positive rational number (2.11), or (2.16) when d= 3. This provides
the groundwork for a fractional power series solution of (2.1), which we start to construct in the
next section. In figure 1, the exponent c is the distance in the 1-direction from the vertex B to
the hyperplane containing the facet. If the expansion were in powers of x2, for example, then
c would be the corresponding distance in the 2-direction. The authors have determined how
the formulae in the paper are transformed under a non-singular linear transformation of the
variables x1, . . . , xd, so that c becomes the distance measured in an arbitrary direction, but we
do not present this theory here.

3. Derivation of the facet equation
Our aim is to find a series expansion of xd in the scaling regime (2.2), and the form of the scaling
suggests that we use the quantities x2/x

m2/m1

1 , . . . , xd/x
md/m1

1 . Accordingly, we define scaled
versions (s1, . . . , sd−1) of (x1, . . . , xd−1) by

xj = sjx
mj/m1

1 (j = 1, . . . , d− 1) (3.1)

and seek a fractional power series for xd in the form

xd = sdx
md/m1

1 + · · · (|x1| � 1), (3.2)

where sd and all subsequent terms of the series are to be found. From (3.1), we have s1 = 1

by definition, but it is convenient notationally to include s1 in subsequent formulae. Note that
s1, . . . , sd−1 are to be regarded as given, but not sd. It is not possible to say at the outset what
powers of x1 will occur in the series (3.2); they must be determined as part of finding the solution
of (2.1), in conjunction with finding the coefficient of each power of x1 which occurs.

The reason for using the scaled variables sj rather than the original variables xj is that they
are all of order one, so that any set of terms involving x1 and the sj can be arranged in order of
magnitude simply according to the powers of x1 they contain. Thus (3.2) is to be regarded as a
series in powers of x1 in which the exponents steadily increase, and the coefficients are functions
of s1, . . . , sd−1. Note also that the ratios (m2/m1, . . . ,md/m1) are to be regarded as given; they
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are determined by (2.9), based on the facet geometry of figure 1 and §2. Only with these exponents
do we balance as many terms as possible at leading order, i.e. ensure that all of the facet terms are
in balance, and not just some of them. Finally, note that the use of the variables sj is a means to
an end; any formula in s1, . . . , sd−1 and x1 may be written ultimately in terms of x1, . . . , xd−1 by

substituting sj = xj/x
mj/m1

1 (j = 1, . . . , d− 1), so that (3.2) gives a well-ordered series expression
for a solution xd of (2.1) in which each term of the series is a function of x1, . . . , xd−1.

Instead of (3.2), let us write

xd = sdx
md/m1

1 (1 + z). (3.3)

Here |z| � 1, and the task is to find the fractional power series of z. Substitution of (3.3) into (2.1)
leads us to define the facet polynomial

F (sd) =

p∑
i=1

αis
a
(i)
1

1 . . . s
a
(i)
d

d (3.4)

and the vertex polynomial

G(sd) =−βsb11 . . . s
bd
d , (3.5)

in terms of which (2.1) becomes, exactly,

F (sd(1 + z)) =G(sd(1 + z))xc1, (3.6)

with c as defined in (2.11). Here sd(1 + z) denotes multiplication, not a function. This equation
for z is the main equation used henceforth in solving (2.1). It will be called the facet equation,
because its left-hand side, involving F , is specific to the facet with which we started. To clarify the
notation, F and G in (3.4) and (3.5) are regarded as functions of the single argument sd, in which
s1, . . . , sd−1 and the coefficients αi and β held fixed as known constants. The form of (3.6) lends
itself to an iterative method, as we shall see in the next section.

4. Solution of the facet equation

(a) Leading-order terms
In the facet equation (3.6), we have c > 0 and z is to be found as a series of positive fractional
powers of x1. On putting x1 = 0, we obtain

F (sd) = 0, (4.1)

where F (sd) is the facet polynomial defined by (3.4). Thus (4.1) is of degree maxi(a
(i)
d ) in sd, and

this is positive, since otherwise we would have a(i)d = 0 for all i, and the normal to the facet would
be parallel to the d-axis in figure 1, contradicting our orientation assumption. Hence sd cannot be
absent from (4.1). Note also that sd 6= 0, since otherwise (3.3) would imply that xd is identically
zero, in contradiction to our assumption in §2 that the original equation (2.1) does not have any
positive powers of a single variable common to all the terms. Equation (4.1) is fully scaled, in that
it only involves order-one quantities. Thus for our purposes, we regard it as not capable of further
approximation, so that, except in low-order cases, it must be solved numerically.

Higher-order equations are obtained by writing sd(1 + z) = sd + sdz and expanding F and G
in (3.6) as Taylor series in sdz about the point sd, henceforth regarded as a known root of (4.1).
This gives

sdF
′z +

1

2
s2dF

′′z2 +
1

6
s3dF

(3)z3 + · · ·=
(
G+ sdG

′z +
1

2
s2dG

′′z2 + · · ·
)
xc1, (4.2)

in which F (sd) = 0 has been used on the left-hand side. Functions and their derivatives are
assumed evaluated at sd where this is clear. If the root sd of (4.1) has multiplicity n, then the
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complete set of conditions at sd is

F (0)(sd) = F (1)(sd) = · · ·= F (n−1)(sd) = 0, F (n)(sd) 6= 0, (4.3)

where n> 1 and F (0) ≡ F . In what follows, all formulae are given for arbitrary multiplicity n of
sd, and the case of a simple root is recovered by taking n= 1. Thus the leading terms of (4.2) give
sndF

(n)zn/n!'Gxc1, so that

z ' 1

sd

(
n!Gxc1
F (n)

) 1
n

. (4.4)

There are n choices for z, corresponding to the nth roots of unity, and the following analysis
applies to each of them. Note from (3.5) that if G(sd) = 0, then G is identically zero, and by (3.6)
the problem reduces to an equation in F . Henceforth, we therefore assume that G(sd) 6= 0.

(b) Derivation of the recursion relation
From (4.2), the series expansion of z may be written

z = z0δ(1 + z1δ + z2δ
2 + · · · ), (4.5)

where δ= x
c/n
1 and z0, z1, . . . are constants. The series is in integer powers of xc/n1 , i.e. is a Taylor

series in xc/n1 , and it begins with the first power. Here any of the possible values of xc/n1 may be
used; when x1 is real and positive (a common occurrence), the same can be assumed true of δ,
because c > 0 and n> 0. From (4.4), we already have the leading coefficient

z0 =
1

sd

(
n!G

F (n)

) 1
n

, (4.6)

with a suitable choice of nth root, and z1, z2, . . . are obtained by substituting (4.5) into (4.2),
followed by equating to zero the coefficients of successive powers of δ. The result is that for
k= 1, 2, . . ., the coefficient of δk gives an equation of the form

1

n!
sndF

(n)zn0 . nzk =Fk(z0, z1, . . . , zk−1), (4.7)

where the functions Fk are readily found by hand up to about k= 3, and by Maple or
Mathematica, for example, up to arbitrary k. Thus z1, z2, . . . , can be found recursively from what
is in effect a triangular system of equations. By (4.6), an equivalent way of writing (4.7) is

nGzk =Fk(z0, z1, . . . , zk−1). (4.8)

This is a practical form of the recursion equation, and for k= 1, 2, 3 gives

z1 =
sdz0
n

(
G′

G
− 1

n+ 1

F (n+1)

F (n)

)
, (4.9)

z2 =
sdz0z1
n

(
G′

G
− F (n+1)

F (n)

)
+
s2dz

2
0

2n

(
G′′

G
− 2

(n+ 1)(n+ 2)

F (n+2)

F (n)

)
− 1

2
(n− 1)z21 , (4.10)

z3 =
sdz0z2
n

(
G′

G
− F (n+1)

F (n)

)
+
s2dz

2
0z1
n

(
G′′

G
− 1

n+ 1

F (n+2)

F (n)

)
− 1

2
sdz0z

2
1
F (n+1)

F (n)

+
s3dz

3
0

6n

(
G(3)

G
− 6

(n+ 1)(n+ 2)(n+ 3)

F (n+3)

F (n)

)
− (n− 1)z1z2 −

1

6
(n− 1)(n− 2)z31 .

(4.11)

An important fact about (4.7) is that it is linear in zk, and moreover the factor multiplying zk
is always the same, i.e. is independent of k. Thus in solving (4.7) recursively, zero denominators
cannot occur (recall thatG(sd) 6= 0), and in fact the value of nwas defined so that F (n)(sd) 6= 0. In
the recursive solution of (4.7), an extra power of F (n)(sd) is introduced into the denominators
at each step, so that the combined term zkδ

k contains within it expressions proportional to
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{xc/n1 /F (n)(sd)}k. Thus if |x1|c/n is small enough compared with |F (n)(sd)|, then not only does
the series for z converge, but the convergence is rapid, by comparison with a geometric series.

We may also track the dependence of z0, z1, . . . on the coefficient β in the definition (3.5) of
G. From (4.6), we have z0 ∝ β1/n, and a feature of (4.9)–(4.11) is that β cancels from the ratios
G(m)/G. Thus (4.9) gives z1 ∝ β1/n, and then (4.10) gives z2 ∝ β2/n, and so on. This suggests
that zk ∝ βk/n for k= 1, 2, . . ., a result which is readily proved inductively from the Taylor series
equation (4.2) with ansatz (4.5). This relation implies that zk is proportional to an integer power
of β if k is a positive multiple of n, a fact we shall need later.

5. Bell symbols and the complete single-vertex series
The method of the previous section gives the early terms in the series for z. However, a more
powerful method is available, based on Faà di Bruno’s formula for an arbitrary derivative of the
composition of two functions, expressed in terms of Bell polynomials [12]. We now show that this
method generalises (4.9)–(4.11).

(a) The facet equation
We begin by writing the facet equation (3.6) in the form

F (u) =G(u) δn, (5.1)

where δ= x
c/n
1 as before, and u is to be found as the series expansion

u= u(δ) = u0 + u1δ +
1

2!
u2δ

2 + · · · . (5.2)

Thus un = u(n)(0), and since u= sd(1 + z) we have from (4.5) the identification

u0 = sd, u1 = sdz0,
uk
k!

= sdz0zk−1 = u1zk−1 (k> 2), (5.3)

or equivalently

sd = u0, z0 =
u1
sd
, zm =

1

(m+ 1)!

um+1

u1
(m> 1). (5.4)

Hence u-coefficients may be converted to z-coefficients, and vice versa. The aim of this and the
following sub-sections is to derive the recursion relation (5.25) for u2, u3, . . ., from which the
complete series (5.2) may readily be calculated.

Substitution of (5.2) into F (u), making use of (4.3) and Faà di Bruno’s formula [12], gives the
expansion

F (u) =
1

n!
δn
〈n
1

〉
F (n) +

1

(n+ 1)!
δn+1

(〈n+ 1

2

〉
F (n) +

〈n+ 1

1

〉
F (n+1)

)
+

1

(n+ 2)!
δn+2

(〈n+ 2

3

〉
F (n) +

〈n+ 2

2

〉
F (n+1) +

〈n+ 2

1

〉
F (n+2)

)
+ · · · , (5.5)

in which the derivatives of F are evaluated at u= u0, corresponding to δ= 0, i.e. z = 0 by (4.5),

and angle-bracket expressions of the general form
〈r
k

〉
are functions of u1, . . . , uk involving Bell

polynomials which we define shortly. There can be no confusion here with Euler symbols, which
have the same notation. In the general term of order δn+m in (5.5), note that um+1 occurs only
in the term proportional to F (n), while um occurs only in the terms proportional to F (n) and
F (n+1), and so on down to u1, which can occur in all of the terms. This fact is crucial in what
follows. Note also that u0 does not occur in any of the angle-bracket expressions, but only as the
argument of F and its derivatives.
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(b) The Bell symbol and its properties

The expressions
〈r
k

〉
are defined in terms of the partial exponential Bell polynomials

Br,s(u1, u2, . . . , ur−s+1) by 〈r
k

〉
=Br,r−k+1(u1, u2, . . . , uk), (5.6)

where r> 1 and 16 k6 r. All the properties of Bell polynomials which we use may be found
in [12,13]. Indices such as r, k, s,m, . . . are assumed to be non-negative integers. The form (5.6),
with the emphasis on simple labelling of the arguments rather than on the degree, appears to

be new, and we shall call
〈r
k

〉
the Bell symbol. It is homogeneous of degree r − k + 1. The early

symbols, i.e. for k not too large, are〈r
1

〉
= ur1,

〈r
2

〉
=
(r
2

)
ur−21 u2,

〈r
3

〉
=
(r
3

)
ur−31 u3 + 3

(r
4

)
ur−41 u22, (5.7)

〈r
4

〉
=
(r
4

)
ur−41 u4 + 10

(r
5

)
ur−51 u2u3 + 15

(r
6

)
ur−61 u32, (5.8)

〈r
5

〉
=
(r
5

)
ur−51 u5 + 5

(r
6

)
ur−61 (3u2u4 + 2u23) + 105

(r
7

)
ur−71 u22u3 + 105

(r
8

)
ur−81 u42, (5.9)

and the late symbols, i.e. for k at its largest allowed values for given r, are

〈 r

r − 2

〉
=

1

3!

r−2∑
l=1

(r
l

)
ul

(
r−1−l∑
s=1

(r − l
s

)
usur−l−s

)
, (5.10)

〈 r

r − 1

〉
=

1

2!

r−1∑
l=1

(r
l

)
ulur−l =

r!

2!

r−1∑
l=1

ul
l!

ur−l
(r − l)! ,

〈r
r

〉
= ur. (5.11)

In using (5.7)–(5.9), note that the Bell symbol
〈r
k

〉
is defined only for r> k, and binomial

coefficients of the form
( r

k + s

)
on the right are zero for k + s > r; this is taken care of by such

relations as 1/(r − s− k)! = 0 for k + s > r when all quantities are integers [14], or by the formula(r
k

)
= (r)k/k!, where (r)k denotes the falling factorial r(r − 1) · · · (r − k + 1).

(c) Recursion relation in Bell symbol form
Analogously to (5.5), we have

δnG(u) = δnG+
1

1!
δn+1

〈1
1

〉
G(1) +

1

2!
δn+2

(〈2
2

〉
G(1) +

〈2
1

〉
G(2)

)
+

1

3!
δn+3

(〈3
3

〉
G(1) +

〈3
2

〉
G(2) +

〈3
1

〉
G(3)

)
+ · · · , (5.12)

where the pattern of Bell symbols is that of (5.5) but with n= 1. Hence equating successive powers
δn, δn+1, . . . in the facet equation (5.1) gives

1

n!

〈n
1

〉
F (n) =G, (5.13)

1

(n+ 1)!

(〈n+ 1

2

〉
F (n) +

〈n+ 1

1

〉
F (n+1)

)
=

1

1!

〈1
1

〉
G(1), (5.14)

1

(n+ 2)!

(〈n+ 2

3

〉
F (n) +

〈n+ 2

2

〉
F (n+1) +

〈n+ 2

1

〉
F (n+2)

)
=

1

2!

(〈2
2

〉
G(1) +

〈2
1

〉
G(2)

)
,

(5.15)
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and so on. These equations can be written in matrix form involving the lower triangular matrices

〈n
1

〉
〈n+ 1

2

〉 〈n+ 1

1

〉
〈n+ 2

3

〉 〈n+ 2

2

〉 〈n+ 2

1

〉
...

. . .


,



1〈1
1

〉
0〈2

2

〉 〈2
1

〉
0

...
. . .


(5.16)

and the diagonal matrices

diag

(
1

n!
,

1

(n+ 1)!
, . . .

)
, diag

(
1,

1

1!
,
1

2!
, . . .

)
, (5.17)

but this representation will not be used here because for our purposes the unknowns lie in the
matrices themselves rather than the column vectors (F (n), F (n+1), . . .) and (G,G(1), . . .). From
(5.13) we obtain 〈n

1

〉
=
n!G

F (n)
, or

1

F (n)
=

〈n
1

〉
n!G

, (5.18)

and for n> 1 and m> 1 the subsequent equations give

〈n+m

m+ 1

〉
=
(n+m

m+ 1

)〈n
1

〉 m∑
l=1

〈m
l′

〉(G(l)

G
− cl

′

nm
F (n+l)

F (n)

)
. (5.19)

Here l= 1, 2, . . . ,m is an increasing index, and l′ =m,m− 1, . . . , 1 is a decreasing index, defined
by l′ =m+ 1− l. The coefficient cl

′
nm is given by

cl
′

nm =
1(n+m

m

)
(n+m

l′

)
〈n
1

〉〈m
l′

〉 . (5.20)

(d) Recursion relation in Taylor coefficient form
The next stage is to extract the variable um+1 from the left-hand side of (5.19), because the right-
hand side involves only u1, . . . , um and the result will be a recursion relation for um+1. It is

convenient to define a reduced Bell symbol
〈r
k

〉′
to denote what is left in

〈r
k

〉
when the term

containing uk removed. From (5.6)–(5.9), this gives〈r
1

〉
= ur1 +

〈r
1

〉′
,

〈r
k

〉
=
(r
k

)
ur−k1 uk +

〈r
k

〉′
(k> 2), (5.21)

where
〈r
1

〉′
= 0,

〈r
2

〉′
= 0, and, perhaps unexpectedly,

〈r
r

〉′
= 0. Note that

〈r
k

〉′
can depend only

on u1, . . . , uk−1. Some other reduced symbols are〈r
3

〉′
= 3
(r
4

)
ur−41 u22,

〈r
4

〉′
= 10

(r
5

)
ur−51 u2u3 + 15

(r
6

)
ur−61 u32, (5.22)

and 〈 r

r − 1

〉′
=

1

2!

r−2∑
l=2

(r
l

)
ulur−l =

r!

2!

r−2∑
l=2

ul
l!

ur−l
(r − l)! . (5.23)

The most useful form of the above equations is〈n+m

m+ 1

〉
=
(n+m

m+ 1

)〈n
1

〉um+1

u1
+
〈n+m

m+ 1

〉′
(m> 1). (5.24)



11

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

Substitution of this expression into (5.19) gives

um+1

u1
=− 1〈n

1

〉
〈n+m

m+ 1

〉′
(n+m

m+ 1

) +
m+ 1

n

m∑
l=1

〈m
l′

〉(G(l)

G
− cl

′

nm
F (n+l)

F (n)

)
, (5.25)

with l′ and cl
′
nm defined as before. Recall that on the right-hand side here, the reduced symbol〈n+m

m+ 1

〉′
does not depend on um+1. The value of u1 is known from (5.18), since

〈n
1

〉
= un1 ; hence

u1 = (n!G/F (n))1/n, and so (5.25) gives all subsequent uk recursively. As in §4, the coefficient
β in the definition of G cancels out in terms of the form G(l)/G, and an inductive argument
using (5.25) shows that uk ∝ βk/n for k= 1, 2, . . ., equivalent to the previous relation zk ∝ βk/n.
Equation (5.25) is the main result of this section. It gives a practical way of calculating u2, u3, . . .
as far as required.

For small and medium m, the right-hand side of (5.25) may quickly be evaluated using the
formulae in (5.7)–(5.9) for the Bell symbols, and for arbitrary n and m the first few coefficients
cl

′
nm are

c1nm =
(n+m

m

)−1
, c2nm =

(n+m− 2

m− 2

)−1
=

(m− 2)!

(n+m− 1)m−2
, (5.26)

and

c3nm =
(n+m− 3

m− 3

)−1(1 + 3
4 (n+m− 3)u22/(u1u3)

1 + 3
4 (m− 3)u22/(u1u3)

)
. (5.27)

The recursion relation (5.25) then gives

u2
u1

=
2

n
u1

(
G′

G
− 1

n+ 1

F (n+1)

F (n)

)
, (5.28)

u3
u1

=
3

n

{
u2

(
G′

G
− F (n+1)

F (n)

)
+ u21

(
G′′

G
− 2

(n+ 2)2

F (n+2)

F (n)

)}
− 3

4
(n− 1)

u22
u21
, (5.29)

and

u4
u1

=
4

n

{
u3

(
G(1)

G
−
(
1 +

3n

4

u22
u1u3

)
F (n+1)

F (n)

)
+ 3u1u2

(
G(2)

G
− 1

n+ 1

F (n+2)

F (n)

)

+ u31

(
G(3)

G
− 6

(n+ 3)3

F (n+3)

F (n)

)}
− 2(n− 1)

u2u3
u21
− 1

2
(n− 1)(n− 2)

u32
u31
. (5.30)

When u1, u2, . . . are written in terms of z0, z1, . . . by means of (5.3), these expressions are found
to agree with (4.9)–(4.11). This is a powerful check of the formalism we have developed.

(e) Single-vertex series
The results of this section give a complete solution to the problem of finding the fractional
power-series solutions of the single-vertex equation (2.1), and we now summarise the main steps
involved. Each root sd of the facet equation (4.1) gives rise to a series of the form (5.2), where
δ= x

c/n
1 and c is determined by the geometrical argument leading to (2.11); the positive integer

n is the multiplicity of the root sd, and gives rise to n choices for δ, corresponding to the different
branches of xc/n1 , so that the total number of series obtained from all the roots sd is the degree
of the facet polynomial F (sd) defined in (3.4). The first two coefficients u0, u1, . . . in (5.2) are
given by u0 = sd and u1 = (n!G/F (n))1/n, evaluated at sd, and the remaining coefficients are
determined by the recursion relation (5.25), which we have been able to write compactly by
introducing a new notation, the Bell symbol, in Faà di Bruno’s formula (5.5) for an arbitrary
derivative of the composition of two functions.

The next stage is the multi-vertex extension of (2.1). This requires new ideas, because the
regularity of the series (5.2) is destroyed by the addition of extra vertices.
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6. Multi-vertex series

(a) Derivation of the facet equation
Instead of the single vertex B in figure 1, we now take q vertices B(1), . . . , B(q) with coordinate
vectors b(1), . . . , b(q). The configuration of facet plus vertices is represented by the polynomial
equation

p∑
i=1

αix
a(i) +

q∑
r=1

βrx
b(r) = 0, (6.1)

where the coefficients βr are non-zero scalars and xb
(r)

= x
b
(r)
1

1 . . . x
b
(r)
d

d ; as before, we assume that
the terms in (6.1) do not all contain a common monomial factor. The vertices are on the opposite
side of the facet hyperplane from the origin, so that the facet is part of the Newton polytope of of
(6.1).

There are now q vertex polynomials

Gr(sd) =−βrs
b
(r)
1

1 . . . s
b
(r)
d

d (r= 1, . . . , q), (6.2)

and the facet equation (5.1) becomes

F (u) =

q∑
r=1

Gr(u)x
cr
1 , (6.3)

where cr is defined by (2.11) with b(r) instead of b. The vectorsm and a(1), . . . , a(p) in (2.11) are the
same as before, because the facet polynomial F (sd) is unchanged by the addition of out-of-facet
vertices.

The exponents c1, . . . , cq are positive and rational. They have a greatest common divisor (gcd)
c defined so that cr = cgr where the gr are co-prime positive integers, i.e.

gcd(g1, . . . , gq) = 1. (6.4)

Although c is rational, it is not in general an integer, and it may have a large denominator. Without
loss of generality, we assume that c1 =minr(cr), so that g1 =minr(gr). As before, we take sd to
be a root of multiplicity n of the equation F (sd) = 0. We also define δ= x

c/n
1 , which reduces to the

previous definition when q= 1 because one may then take g1 = 1 and c= c1. With u= sd(1 + z)

as before, the facet equation (6.3) expressed in terms of δ is

F (u) =

q∑
r=1

Gr(u)δ
ngr =

{ q∑
r=1

Gr(u)δ
n(gr−g1)

}
δng1 . (6.5)

(b) Solution of the facet equation
The solution u of equation (6.5) has a series expansion

u= u(δ) = u0 + u1δ +
1

2!
u2δ

2 + · · · (6.6)

with δ as just defined. However, in general a very large number of the coefficients uk are zero,
with no obvious pattern. The aim of what follows is to determine which coefficients are non-zero.

Our approach is first to give (6.5) a formally identical structure to the single vertex equation
(5.1) by writing it as

F (u) =G(u) δ̃n, (6.7)

where δ̃= δg1 = x
cg1/n
1 = x

c1/n
1 and

G(u) =G(u, δ) =

q∑
r=1

Gr(u)δ
n(gr−g1). (6.8)
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We now proceed in two stages. The first is to regard (6.7) as determining a series expansion in δ̃
of the form

u= ũ0 + ũ1δ̃ +
1

2!
ũ2δ̃

2 + · · · , (6.9)

in which the coefficients ũk depend on δ as a parameter, and ũ0 = u0. Thus the ũk are determined
by the formulae of §5, with

G(s) =

q∑
r=1

G
(s)
r (u)δn(gr−g1) (s= 0, 1, . . .), (6.10)

evaluated at u= u0 = sd. The second stage is to expand the ũk in powers of δ and group (6.9) into
increasing powers of δ, to obtain the series (6.6).

In carrying out the above procedure, the key question is: which powers of δ occur in the
coefficients ũk? To answer this question, it is convenient to define

ηr = δn(gr−g1) (r= 1, . . . , q). (6.11)

Here ηr = 1 for those r for which gr = g1, but this does not affect the argument which follows. An
inductive argument based on (5.25) shows that if k is a multiple of n, say k= lnwhere l= 0, 1, . . .,
then ũk is a polynomial of degree l in the ηr ; but if k is not a multiple of n, then all non-negative
powers of the ηr occur in ũk. This is a consequence of the observation made after (5.25) that
uk ∝ βk/n in the single-vertex problem, where β is the coefficient appearing in G in (3.5).

(c) Sylvester sets
We now determine the powers of δ appearing in ũk δ̃

k, first when k is a multiple of n, and second
when it is not, where n is the multiplicity of the root sd of the facet polynomial (3.4).

(i) Powers divisible by the multiplicity

We take k= ln where l= 0, 1, . . .. Then the powers of δ in uk δ̃
k are of the form

n
[
lg1 +

q∑
r=2

lr(gr − g1)
]

(6.12)

where the lr are non-negative integers satisfying
∑q
r=2 lr 6 l. Here the terms for which gr = g1

are zero. When q= 1, a sum over r from 2 to q is always taken to be zero. The total coefficient of
g1 in the expression in brackets is l −

∑q
r=2 lr > 0. It follows that the union over all l of powers

of the form (6.12) is {
n

q∑
r=1

lrgr : lr ∈N0

}
, (6.13)

where N0 is the set of non-negative integers, i.e. N0 =N ∪ {0}. Let us define the Sylvester set S by

S =Syl(g1, . . . , gq), (6.14)

where Syl denotes the set of linear combinations, with non-negative integer coefficients, of a set of
co-prime non-negative integers as arguments. Then (6.13) is the set nS, where a factor multiplying
a set is to be applied to all the elements of the set. Thus we have shown that, in the series (6.9), if
we retain all the terms ũk δ̃

k for which k is a multiple of n, and express them in terms of δ, then
the complete set of powers of δ occurring in these terms is nS, where S is the Sylvester set (6.14).

A Sylvester set is the complement in N0 of a Frobenius set, defined as the set of positive integers
which cannot be expressed as a linear combination of the type we have specified. The literature
on Frobenius sets is large: this area of mathematics began with [15], and the standard reference
is now [16]; two other relevant works are [17,18]. A Frobenius set is finite, and except in simple
cases (e.g. q= 2 or special functional forms of gr such as arithmetic or geometric progressions)
there is no formula for its size or the distribution of its elements, which is irregular. This means
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that the set S defined by (6.14) is irreducible, in the sense that we cannot hope in general to find a
simpler representation of it than the one given, and its elements do not have a pattern.

Since a Frobenius set is finite, it follows that a Sylvester set includes all the integers from some
point on. Thus although the early elements of S are irregular in their distribution and spacing,
the later elements are not only regular but complete, in that beyond a certain point there are no
more gaps.

(ii) Powers not divisible by the multiplicity

We now turn to the powers of δ appearing in ũk δ̃
k when k is not a multiple of n. These are of the

form

l′1g1 + n

q∑
r=2

lr(gr − g1), (6.15)

where l′1, l2, . . . , lq ∈N0, subject only to the restriction that l′1 is not a multiple of n. As before,
when q= 1, the sum over r is taken to be zero. The most general l′1 is of the form l1n+ t, where
l1 ∈N0 and t= 1, . . . , n− 1.

Therefore the set of powers (6.15) may be written

T = g1In−1 ⊕ nR, (6.16)

where In−1 = {1, 2, . . . , n− 1} andR is the Sylvester set

R=Syl(g1, g2 − g1, . . . , gq − g1). (6.17)

(In the special case n= 1 we define I0 = ∅, the empty set.) Thus in the series (6.9), if we retain all
the terms ũk δ̃

k for which k is not a multiple of n, then the complete set of powers of δ occurring
in these terms is T .

The symbol ⊕ denotes the Minkowski sum, i.e. all possible sums of an element of the first set
and an element of the second set. Note thatA⊕ B does not necessarily containA or B, and nA 6=
A⊕ · · · ⊕ A. IfA or B is the empty set, then so isA⊕ B. Thus the formulae in this subsection are
vacuous when n= 1, because then T = ∅. The Sylvester sets S andR satisfy the inclusion relation
S ⊆R, because the total multiple of g1 inR can be negative, so long as the sum of the coefficients
multiplying g1, . . . , gq is non-negative. In (6.16) we may extract a common factor a= gcd(n, g1).
On writing n= añ and g1 = ag̃1, this gives T = aT̃ , where

T̃ = g̃1In−1 ⊕ ñR. (6.18)

(iii) Complete set of powers

The set of powers of δ in the solution u of a problem of type (6.5) will be called a Puiseux set and
written

P =Pu(g1, . . . , gq|n). (6.19)

That is, if the series (6.9) is expanded into the form (6.6), then P is the set of integers k for which
the coefficient of δk is generically non-zero. Thus (i) and (ii) above establish the explicit formula

P = nS ∪ T = nS ∪ aT̃ = aP̃, (6.20)

where the reduced Puiseux set is defined by

P̃ = ñS ∪ T̃ . (6.21)

Equation (6.20) is the main result of the paper, and is believed to be new.

(d) Properties of Puiseux sets
Puiseux sets may be classified into three types, according to the values of n and a. The first type
is defined by n= 1, the second by n> 1, a= 1, and the third by n> 1, a> 1. We shall call these
simple, irreducible, and reducible Puiseux sets, respectively.
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(i) Simple Puiseux sets

These sets correspond to a simple root of the facet equation. Since n= 1, we have In−1 = ∅,
and so T = ∅, whence P = S =Syl(g1, . . . , gq). Although this appears elementary, recall that S
is in general a complicated object, because of the irregularity of a general Frobenius set based
on the q integers g1, . . . , gq . However, the irregularity ultimately disappears, because S includes
all the integers from some point on. Symbolically, we may write S L→N and P L→N, in which the
symbol L stands for ‘late terms’ or ‘late elements’. Generally, if A and B are any two infinite sets
of integers, the notationA L→B will be used to mean that if each set is arranged in non-decreasing
order, then from some point on the two sets have identical elements. If the set A is finite, it is
convenient to write A L→∅.

(ii) Irreducible Puiseux sets

The facet equation now has a multiple root (n> 1), but n and g1 are co-prime (a= gcd(n, g1) =

1). Thus the distinction between (P, T ,R) and (P̃, T̃ , R̃) disappears, and also nS ∩ T = ∅. No
element of T is divisible by n, and the late behaviour is

nS L→ nN, T L→N \ nN, P L→N. (6.22)

Thus although the early behaviour of P is very different from that for a simple root, the late
behaviour is the same.

(iii) Reducible Puiseux sets

Now a> 1 and n> 1, and the elements of (nS, nR,P, T ) are all divisible by a. We therefore work
with the reduced sets (ñS, ñR, P̃, T̃ ), in which n= añ and g1 = ag̃1. We always have ñS ∩ T̃ 6= ∅,
and hence nS ∩ T 6= ∅, in contrast to the irreducible case. The late behaviour of the reduced sets
is

ñS L→ ñN, T̃ L→N, P̃ L→N, (6.23)

and hence for the original sets

nS L→ nN, T L→ aN, P L→ aN. (6.24)

The relation P = nS ∪ T implies that P may be decomposed into the three disjoint sets nS ∩ T ,
nS \ T , and T \ nS. From (6.24), their late behaviour is

nS ∩ T L→ nN, nS \ T L→∅, T \ nS L→ aN \ nN. (6.25)

The second of these relations is the statement that nS \ T is finite; this set can never be empty,
because nS contains 0, but T does not. The third relation implies that T \ nS may or may not
be finite, according to whether a= n or a< n; both are possible, depending on whether ñ= 1 or
ñ > 1. The finite case occurs, for example, if n= 2 and g1 = 6, for which a= 2.

7. Example: a parametric family of octahedra
In figure 1 for three dimensions (d= 3) let us take a triangular facet, with A(1) in the (23) plane,
A(2) in the (31) plane, and A(3) in the (12) plane. The facet is otherwise arbitrary, i.e. is specified
by six integer parameters. We also place three vertices on the axes, i.e. B(1) on the 1 axis, B(2) on
the 2 axis,B(3) on the 3 axis; for the analysis of this paper, they must be on the opposite side of the
facet hyperplane from the origin. This gives three more integer parameters. Thus in the notation
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of (6.1), we obtain the polynomial

α1x
a
(1)
2

2 x
a
(1)
3

3 + α2x
a
(2)
1

1 x
a
(2)
3

3 + α3x
a
(3)
1

1 x
a
(3)
2

2 + β1x
b
(1)
1

1 + β2x
b
(2)
2

2 + β3x
b
(3)
2

3 = 0, (7.1)

for which the Newton polytope belongs to a nine-parameter family of octahedra. This is readily
checked visually, as there are eight triangular faces, namely A(1)A(2)A(3), B(1)B(2)B(3), and six
further faces connecting these two triangles.

We have found that the family (7.1) includes all the types of fractional power series which can
arise, and we regard it as a suitable canonical example for study. In this paper we have restricted
ourselves to series expansions in positive powers of x1, but this is purely for ease of exposition.
If b(1)1 , b(2)2 , and b

(3)
3 are allowed to take unrestricted positive integer values, then expansions in

negative powers of x1 also arise, for example when the points B(1), B(2), B(3) are on the side
of the facet hyperplane containing the origin. Moreover, degenerate cases can be studied, for
example if any or all of B(1), B(2), B(3) lie in the facet hyperplane.

In the notation of (6.1), we have

a(1) = (0, a
(1)
2 , a

(1)
3 ), a(2) = (a

(2)
1 , 0, a

(2)
3 ), a(3) = (a

(3)
1 , a

(3)
2 , 0), (7.2)

and b(r) = b
(r)
r e(r), where e(r) is a unit vector in the r-direction. Then by (2.16), the exponents in

(6.3) are

cr =
b
(r)
r
(
[e(r)a(2)a(3)] + [a(1)e(r)a(3)] + [a(1)a(2)e(r)]

)
− [a(1)a(2)a(3)]

[e(1)a(2)a(3)] + [a(1)e(1)a(3)] + [a(1)a(2)e(1)]
. (7.3)

Here the last determinant in the numerator has just two terms,

[a(1)a(2)a(3)] = a
(1)
2 a

(2)
3 a

(3)
1 + a

(1)
3 a

(2)
1 a

(3)
2 , (7.4)

and the other determinants have one term each, for example [e(3)a(2)a(3)] = a
(2)
1 a

(3)
2 and

[a(1)e(2)a(3)] =−a(1)3 a
(3)
1 .

To illustrate the theory in the paper, a suitable choice of (7.1) is

α1x2x
3
3 + α2x

3
1x

2
3 + α3x1x

3
2 + β1x

b
(1)
1

1 + β2x
b
(2)
2

2 + β3x
b
(3)
2

3 = 0, (7.5)

for which the direction (2.7) of the facet is m= (5, 8, 7) and

c1 =
5b

(1)
1 − 29

5
, c2 =

8b
(2)
2 − 29

5
, c3 =

7b
(3)
3 − 29

5
. (7.6)

Thus for B(1), B(2), B(3) to be on the opposite side of the facet hyperplane from the origin, the
smallest possible values of (b(1)1 , b

(2)
2 , b

(3)
3 ) are (6, 4, 5). A rich set of examples can be constructed

with b(1)1 , b(2)2 , and b(3)3 in this range, demonstrating all the possibilities listed in §6(d).

We shall analyse in detail just one example, (b(1)1 , b
(2)
2 , b

(3)
3 ) = (7, 6, 6), for which (c1, c2, c3) =

(6/5, 19/5, 13/5). Thus the greatest common divisor of the cr is c= 1/5, and we have cr = cgr with
(g1, g2, g3) = (6, 19, 13); by definition of c, we have gcd(g1, g2, g3) = 1. The last three terms of (7.5)
are β1x71 + β2x

6
2 + β3x

6
3. Since our notation is such that c1 =minr(cr), and hence g1 =minr(gr),

these terms would need to be re-labelled in general, but it is not necessary here.

The dominant-balance scaling relation (2.2) is xj ∝ x
mj/m1

1 , (j = 1, 2, 3), and since m=

(5, 8, 7), this gives x2 ∝ x
8/5
1 and x3 ∝ x

7/5
1 (the scaling for j = 1 is an identity). For the next stage,

it is essential to remember that the ultimate aim of the investigation is to obtain an expansion for
x3 in terms of x1 and x2 in the scaling regime represented by the dominant balance; the expansion
is to be for |x1| � 1. To this end, we define scaled quantities as follows. First, we put u= x3/x

7/5
1 ,

and aim to solve for u, an order-one quantity by construction. Second, we define s2 = x2/x
8/5
1 .

The point here is that if we work with s2 instead of x2, then in any expansion in powers of x1
the coefficients, which are now functions of s2, are all of order one, and therefore the expansion
is well-ordered. Without this scaling step, the expansion would be disordered, and so would
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not be useful. Third, we put s1 = 1. Strictly speaking, this is not necessary, but it is notationally

convenient to regard the definition sj = xj/x
mj/m1

1 as holding for j = 1 as well as j = 2, and then
necessarily s1 = 1.

On using the above definitions in (7.5) with (b
(1)
1 , b

(2)
2 , b

(3)
3 ) = (7, 6, 6), the result is

α1s2u
3 + α2s

3
1u

2 + α3s1s
3
2 = −β1s71x

6/5
1 − β2s62x

19/5
1 − β3u6x

13/5
1 . (7.7)

This is the facet equation (6.3), in which the facet polynomial is

F (u) = α1s2u
3 + α2s

3
1u

2 + α3s1s
3
2 (7.8)

and the vertex polynomials are

G1(u) =−β1s71, G2(u) =−β2s62, G3(u) =−β3u6. (7.9)

The next stage is to seek a series solution u of (7.7) in which the first term u0 is a root of the facet
polynomial, i.e. F (u0) = 0, and the series is in fractional powers of x1. Although (7.7) is a sextic
equation in u, the facet polynomial is only a cubic and so may be written exactly in the Taylor
series form

F (u) = F ′(u0)(u− u0) +
1

2
F ′′(u0)(u− u0)2 +

1

6
F (3)(u0)(u− u0)3, (7.10)

where

F ′(u0) = 3α1s2u
2
0 + 2α2s

3
1u0, F ′′(u0) = 6α1s2u0 + 2α2s

3
1, F (3)(u0) = 6α1s2. (7.11)

On casting the left-hand side of (7.7) into the form (7.10), it can be seen that the nature of the series
for u depends on the multiplicity n of the root u0, because this determines which derivative in
(7.10) is the first to be non-zero. The derivatives given in (7.11) show in detail how this multiplicity
depends on the coefficients of the facet polynomial, including the value of s2. The analysis of §6
shows that a suitable expansion variable is δ= x

c/n
1 = x

1/(5n)
1 , and then only integer powers of δ

occur in the series for u. Thus u has a Taylor series in δ, and it may be constructed explicitly by
means of the recursion relation (5.25).

We shall consider two cases in detail, the simple root (n= 1), for which F ′(u0) 6= 0, and the
double root (n= 2), for which F ′(u0) = 0, but F ′′(u0) 6= 0. In the first case, we put δ= x

1/5
1 , and

in the second case δ= x
1/10
1 , so that (7.7) becomes

α1s2u
3 + α2s

3
1u

2 + α3s1s
3
2 =

{
−β1s71δ6 − β2s62δ19 − β3u6δ13 (n= 1)

−β1s71δ12 − β2s62δ38 − β3u6δ26 (n= 2).
(7.12)

In both cases the expansion of u is of the form

u= u0 + u1δ +
1

2!
u2δ

2 + · · · , (7.13)

but the Puiseux sets are different. Recall that the Puiseux set P for the series solution (7.13) is the
set of integers s for which the coefficient of δs is generically non-zero; see the explicit formula
(6.20). The long-run properties of the constituent sets determining P are listed in (6.22)–(6.25).
In the next two subsections we give complete details for the two cases. The key parameters
are (n, g1), their greatest common divisor a= gcd(n, g1), and the reduced quantities (ñ, g̃1)

defined by n= añ1 and g1 = ag̃1. Recall that (g1, g2, g3) = (6, 19, 13), and N0 denotes the set of
non-negative integers (i.e. it includes 0).

(a) The simple root
We have n= 1, and so a= 1. The case is covered by §6d(i), and P = S =Syl(6, 19, 13). Thus P
is the set of all linear combinations of 6, 19, and 13 with non-negative integer coefficients, and
is the complement in N0 of the Frobenius set F =Fr(6, 19, 13). The first few elements of S are
{0, 6, 12, 13, 18, 19, 24, 25, . . .} and the last few elements of F are {. . . , 35, 40, 41, 46, 47, 53, 59}.
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Note that if the gr are not too small, it often happens that the early elements of S are quite sparse,
but the gaps decrease (though irregularly); conversely, the later elements of F tend to be sparse,
and this set is always bounded. Here, F contains 30 elements altogether, and the largest element,
i.e. the Frobenius number, is 59. Thus for n= 1, the series (7.13) contains all the powers of δ= x

1/5
1

from δ60 onwards, and does not contain the power δ59.
These results have been checked in Mathematica by substituting the series (7.13), up to the

term in δ80, into the first of equations (7.12), and using the inbuilt series commands to solve for
the coefficients up to u80. The non-zero coefficients match exactly those corresponding to the
Sylvester set. We suggest that this verification may serve a useful purpose in the development of
specialised computer algebra code in the area.

(b) The double root
Now n= 2, and so a= gcd(2, 6) = 2. This gives the more complex case §6d(iii), a reducible
Puiseux set, and (ñ, g̃1) = (1, 3). The set S is the same as for the single root, and T̃ , defined by
(6.18), contains all the integers from 33 onwards; it contains 15 integers less than this, beginning
with {3, 9, 10, 15, . . . , } and ending with {. . . , 28, 29, 30, 31}. The reduced Puiseux set P̃ , defined
by (6.21), contains all the integers from 21 onwards, and twelve integers less than this, from
{0, 3, 6, 9, 10, . . .} to {. . . , 17, 18, 19}. From (6.20), the Puiseux set is P = 2P̃ , which therefore
consists of all the even numbers from 42 onwards, together with twelve even numbers less than
this, beginning with {0, 6, . . .} and ending with {. . . , 36, 38}.

Let us check the last two of the relations (6.25). The first of these states that nS \ T is always
finite, and the second implies that T \ nS is finite if a= n, which is the case here, because a=
n= 2. We find that nS \ T contains 9 terms, namely {0, 12, 24, 26, 36, 38, 50, 52, 64}, and T \ nS
contains 21 terms, from {6, 18, 20, . . .} to {. . . , 94, 106, 118}, confirming the relations. The set nS ∩
T is infinite, because it must contain all the even numbers from some point on, in fact from 120

(it does not contain 118). This is in sharp contrast to the multiple-root case when n and g1 are
co-prime (a= 1), when necessarily nS ∩ T = ∅, as described in §6d(ii) for irreducible Puiseux sets.

These results too have been checked using a Mathematica code based on (7.13) and the second
of (7.12), but no theory. All the results are confirmed up to high order.

8. Conclusions and further work
The results in this paper have been derived by elementary methods starting from the original
polynomial equation, using an equal mix of geometry, algebra, and number theory. It has been
shown that with these methods, very complete results can be obtained for a single equation
of arbitrary degree, number of variables, and multiplicity at leading order. These results are
summarised in the explicit formulae (6.20)–(6.21) for the Puiseux set P and its reduced form P̃ ,
which encapsulate the work of the paper and are its most important result.

The method of dominant balances applies to many problems in mathematical physics,
including a wide range in both ordinary and partial differential equations [5,7]. A natural
extension of the results obtained here would be to a system of simultaneous polynomial
equations. However, this would almost certainly involve advanced methods from pure
mathematics which are beyond the scope of the paper. The algebraic geometry of the Newton
polytope, including its application to Puiseux expansions, has been developed extensively
starting from the seminal papers [19,20], and now includes the theory of tropical geometry
[21,22]. Our strategy has been to approach the area from the point of view of dominant balance
as developed in physical applications, demonstrating how to obtain the expansions using a
perturbation technique, but also drawing on some of the geometric ideas in these papers. We
see opportunities to combine our methods with computational algebra technology to further
contribute to, and perhaps help unify, a branch of symbolic-numerics of considerable scientific
importance.
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