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Using large random permutations to partition permutation classes

Christian Bean

Department of Computer Science

Reykjavik University

email: christianbean@ru.is

and

Émile Nadeau

Department of Computer Science

Reykjavik University

email: emile19@ru.is

and

Jay Pantone

Department of Mathematical and Statistical Sciences

Marquette University

email: jay.pantone@marquette.edu

and

Henning Ulfarsson

Department of Computer Science

Reykjavik University

email: henningu@ru.is

(Received: March 31, 2022, and in revised form May 15, 2022.)

Abstract. Permutation classes are sets of permutations de�ned by the absence of certain substructures. In some

cases permutation classes can be decomposed as unions of subclasses. We use combinatorial speci�cations automatically

discovered by Combinatorial Exploration: An algorithmic framework for enumeration, Albert et al. 2022, to uniformly

generate large random permutations in a permutation class, and apply clustering methods to partition them into inter-

esting subclasses. We seek to automate as much of this process as possible.

Mathematics Subject Classi�cation(2020). 05A05.

Keywords: permutation pattern, random sampling, clustering

1 Introduction

Examples of characterizing discrete objects by the absence of substructures abound in mathematics,
e.g., graphs missing certain minors, types of polyominoes without given subsets, and the focus of this
article, sets of permutations de�ned by the avoidance of patterns. We will consider permutations from
two viewpoints, the one-line notation where a permutation of length n is written as a word π1π2 · · ·πn
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indicating that π maps i to πi, and from a graphical perspective where we place a dot at (i, πi) in the
Cartesian plane. Consider for example the permutation π = 463125, which maps 1 to 4, 2 to 6, etc;
shown in Figure 1. We say that a permutation π contains another permutation p (as a pattern) if we

Figure 1: A graph of the permutation 463125.

can �nd a subsequence in the word π1π2 · · ·πn, that is order-isomorphic to p. More precisely there
is a subsequence πi1 , . . . , πik , the same length as p, such that when we replace the smallest entry in
πi1 · · ·πik with 1, the next smallest with 2, etc., we obtain p. Our example permutation π = 463125
contains p = 132 as can be seen from the subsequence 465 which becomes 132 when 4 is replaced with
1, 5 replaced with 2 and 6 with 3. When a permutation π does not contain a pattern p we say that π
avoids p. The permutation π = 463125 avoids p = 4321.

Figure 2: The permutation 463125 with a circled occurrence of the pattern 132.

Several natural sets of permutations can be described by the patterns they avoid. First we de�ne
Av(P ) as the set of permutations that avoid every pattern in the set P . For example Av(132, 231)
is the set of permutations that avoid 132 as well as the pattern 231. We call sets of permutations
de�ned in this manner permutation classes. Note that they are closed downwards, in the sense that if
π belongs to the class then so do all of its patterns.

To name some notable examples we recall that stack-sortable permutations form the class Av(231),
permutations sortable by two queues (in parallel) form Av(321), the permutations in Av(1324, 2143)
are in correspondence with smooth Schubert varieties, and permutation classes (avoiding too many
patterns to list here) appear in some models of genome rearrangements.

When we have chosen a particular permutation class to study, the �rst question is typically its
enumeration, by which we mean how many permutations of length n lie in the class. The answer
is often expressed as a generating function, e.g., for the stack-sortable permutations, Av(231), the
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enumeration is given by the (ordinary) generating function of the Catalan numbers

1−
√
1− 4x

2x
= 1 + x+ 2x2 + 5x3 + 14x4 + 42x5 + · · · .

In some cases only recurrences are known, and in others only a �nite piece of the enumeration sequence
is known, such as for the infamous Av(1324).1

When the class is studied further we often want to know how a large permutation in the class
behaves, or if there is some average behavior the class displays. A successful answer to those questions
sometimes involves breaking the class into smaller, easier to understand, subclasses (sometimes, but
not always, de�ned by the avoidance of additional patterns). This is the focus of the present article,
in particular trying to experimentally guess these subclasses, and to automate as much of the process
as possible.

Recently Albert et al. [2] introduced an automatic method to �nd combinatorial speci�cations for
permutation classes, which can then be turned into systems of equations giving the enumeration of the
classes. These speci�cations can in many cases be used to generate large permutations in the classes
uniformly at random. We point the reader to Albert et al. [2] for formal de�nitions of speci�cations and
how they are used for random generation, focusing here on how we can use random large permutations
to understand the classes.

2 Average behaviour and heatmaps

By taking several permutations from the same class, and overlaying their graphs, we get a �heatmap�
of the class. Consider for example Av(321, 2143), �rst enumerated by West [4], see also Atkinson [3].
The heatmap is shown in Figure 3.

Figure 3: A heatmap of Av(321, 2143) made by overlaying 500 permutations of length 100 from the
class.

We might wonder whether the heatmap conveys a good description of random permutations in the
class. However, when we view individual permutations this does not appear to be the case. Two such
permutations are shown in Figure 4.

If more permutations from the class are examined, they always seem to be of the two �types� shown
in Figure 4. We therefore turn to clustering methods, which �rst require that we de�ne a distance

1Technically, recurrences are known, but no polynomial-time algorithm is known to generate the enumeration.
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Figure 4: Two permutations of length 100 from Av(321, 2143).

between two permutations. Preferrably this distance should be small for permutations with graphs
that look similar. We start by treating each permutation as a vector (π1, π2, . . . , π100). Then for two
permutations π and σ, for each point (i, σi) we record the distance to the nearest (in the Euclidean
distance) point (j, πj) of π. Let d be the maximum of these point di�erences. Then the distance
between π and σ is 1/(1 + d).

Next, we choose a clustering method, opting for spectral clustering. Passing our set of 100 permu-
tations through this proceedure gives two clusters with the heatmaps in Figure 5.2

Figure 5: Heatmaps of the two clusters of Av(321, 2143).

This seems to better capture what we expect after having seen individual permutations from the
class.

3 Describing the clusters

We now turn to the question describing the clusters we found in the previous section. Again we use
computer experimentation to try and see if these are perhaps best described in terms of the avoidance

2The metric is designed to capture when a point in a permutation is close to some point in another permutation,

without requiring the points to have the same index or height in the permutations. The formula for the metric and

the clustering method is the result of experimentation with several alternatives applied to the permutation class studied

here, as well as others. Also, we choose to cluster into two subsets, because experiments revealed that it gave better

results than more subsets.
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of patterns. To that end, for a �xed pattern p we take 100 subsequences from each of the permutations
in a cluster, and record how many of these subsequences are occurrences of p. We scale this statistic
by the number of permutations in the cluster.

We apply this to all patterns p up to and including length 4. For most patterns the scores are
similar between the clusters, but two patterns stand out: For 3142 the score is 0.0 for cluster 1, vs. 6.2
for cluster 2. Similarly for 2413 the score is 6.3 for cluster 1, vs. 0.0 for cluster 2. We can therefore
hope that the two clusters we found can be described as Av(321, 2143, 3142) and Av(321, 2143, 2413).
Their heatmaps are shown in Figure 6.

Figure 6: The two subclasses of Av(321, 2143).

Judging solely from the heatmaps of these subclassses, compared with the heatmaps of the clusters
we would tend to think that we have broken the full class Av(321, 2143) into two subclasses that
capture the behaviour we are trying to understand.

Using the PermPal website (https://permpal.com/), released with the paper Albert et al. [2]
we can see that in terms of enumeration we are extremely close, in the following sense: There are no
permutations in the class, outside of the two subclasses, and the number of permutations in intersection
of the two subclasses grows polynomially vs. exponentially in the full class.3

In the �nal section we suggest alternative methods to describing the clusters of permutation classes
when we are not as successful as for the class investigated here.

4 Looking back at the permutations

The so-called 2x4 classes, permutation classes avoiding two patterns of length 4, have been intensily
studied over the last few decades. For each of them a heatmap is provided at PermPal.com. Some,
such as Av(1324, 3412), have heatmaps indicating the class can be clustered like we did above. See
Figure 7.

However, carrying out the analysis as we did above does not appear to be su�cient, in the sense
that, although visually we seem to be able to describe the clusters with the avoidance of extra patterns,
enumeratively we both miss permutations in the class, and the intersection of the subclasses is larger
than we would prefer, in the sense that their number grows exponentially.

3This can be seen from the generating functions of the full class, the subclasses, and their intersection, which can be

found by searching on the website.

https://permpal.com/
https://permpal.com/perms/search_params/?list_of_lengths_of_basis=4%2C4
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Figure 7: A heatmap of Av(1324, 3412) from PermPal.com created from 1,000,000 permutations of
length 300 sampled uniformly at random.

Figure 8: Two permutations of length 100 from Av(1324, 3412).

An alternative would be taking a closer look the large permutations in the class to understand the
clusters better, and consider them from the perspective of monotone grid classes. This would involve
trying to split the permutations into rectangular regions containing only increasing, or decreasing
subsequences of points.

In fact, the enumeration of Av(1324, 3412) was �rst done by Albert, Atkinson and Brignall [1] by
careful case-by-case analysis over several pages, leading to a clustering of the class into two subsets
described by monotone grid classes. We could potentially automate this step by guessing the monotone
grid classes from the large permutations.
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