
Linear and nonlinear wave propagation in

coated or uncoated elastic half-spaces

By Y.B. Fu

Department of Mathematics, Keele University, Staffordshire ST5 5BG, UK

In these lectures, we discuss the following three closely related topics.

(i) Unification of different methods for deriving evolution equations for surface

acoustic waves. Early studies on nonlinear surface acoustic waves were thwarted

by very complicated derivation of evolution equations. Worse still, different

methods seemed to have given different evolution equations. Later on, it be-

came known that all these methods except one yield the same evolution equa-

tion, but even at the time when we started to prepare the current lecture notes,

there still existed a method that does not agree with the other methods. Such

a situation is unsatisfatory since each method has some following. The pur-

pose of the lectures on this topic is three-fold. Firstly, we aim to show that

derviation of the evolution eqution for nonlinear surface waves can be carried

out in one A4 page even in the most general case. Secondly, we show that the

odd method that used to give a different evolution equation can in fact be used

to obtain the same evolution equation if it is properly executed. Thus, we set

the record straight: all known methods should and do give the same evolution

equation! Thirdly, we express our evolution equation in terms of results from

the linear surface-wave theory built on the Stroh formulation, and we explain

how the coefficients in the evolution equation can be evaluated efficiently.

(ii) Linear wave propagation in a coated elastic half-space. This is partly in prepa-

ration for our discussion of the third topic, but the problem is of much interest

in its own right. We show how the dispersion relation can be expressed ele-

gantly in terms of the surface-impedance matrices associated with the layer

and the half-space. We derive a two-term expression for the wave speed in the

long-wavelength limit.

(iii) Periodic and solitary waves in a coated elastic half-space. An uncoated elastic

half-space cannot in general support solitary waves due to lack of dispersion

although it has been argued previously that the nonlocal character of nonlin-

earity may give rise to the existence of steady travelling waves. We derive the

nonlinear evolution equation for small-amplitude long-wavelength travelling
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waves propagating in a coated elastic half-space where the thin coating in-

duces weak dispersion. When this evolution equation is linearized, we recover

the two-term dispersion relation obtained in (ii). We explain a simple method

that can be used to compute periodic or solitary travelling-wave solutions.

Keywords: Nonlinear surface waves; elastic half-space; coated

half-space; Stroh formalism; nonlinear elasticity; prestress

1. Introduction – background and literature review

Elastic surface waves are travelling waves that can propagate along the surface of

an elastic half-space. They satisfy the traction-free boundary condition and decay

to zero exponentially away from the surface. Understanding of nonlinear effects on

the evolution of surface waves is known to have applications in signal processing,

material characterization, and non-destructive evaluation; see, for instance, Parker

and Maugin (1987), Mayer (1995), Maugin (1999), Hess (2002) and the references

therein. More recently, it has also found applications in nanotechnology; see Hess

and Lomonosov (2005), Hess et al. (2005). Historically, evolution equations for non-

linear acoustic surface waves have been derived using different procedures and it was

very often not immediately clear whether one evolution equation was equivalent to

another. It seems that derivation of evolution equations for nonlinear surface waves

was actually initiated by Reutov (1973), but this paper remained unnoticed in the

West for a considerable period of time. Many researchers thought that Kalyanasun-

daram’s 1981 paper was the first where a multiple scale approach was used to study

the evolution of nonlinear surface waves. In both of these two papers, a far-distance

variable X(= εx1) and a slow time variable τ(= εt) were introduced, where x1 is the

coordinate along the direction of propagation, t is time and ε is a small parameter

characterizing the amplitude of strains. When Kalyanasundaram’s (1981) method

(hereafter referred to as Method I) is used, secular terms appear in the O(ε2) solu-

tion. This ‘deficiency’ was later remedied by Lardner (1983) through the introduc-

tion of another far-distance variable η(= εx2) where x2 is the coordinate such that

x2 > 0 defines the half-space. We refer to this as Method II. This method was fol-

lowed by Lardner (1984, 1985, 1986), Lardner and Tupholme (1986), David (1985),

Harvey et al. (1992), Harvey and Tupholme (1991, 1992), Tupholme and Harvey

(1988, 1992). The use of multiple scale η was also independently proposed by Planat

(1985) but he assumed that the dependence on η and X was only through a linear

combination of X and η with unspecified coefficients. Method III is Parker et al.’s

(1992) projection method which can immediately be recognized as being equivalent

to Method I and the approaches used in Parker (1988) and Hunter (1989). Method

IV is Reutov (1973)’s and Zabolotskaya’s (1992) Hamiltonian formalism which was

followed by Shull et al. (1993), Hamilton et al. (1995, 1999). Method V is Fu and
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Devenish’s (1996) virtual-work method which incorporated the best features of the

projection method and the Hamiltonian formalism. All the above methods, although

seemingly different, work with the frequency domain and are based essentially on

the same underlying philosophy. It was explicitly recognized in Fu and Devenish’s

(1996) and Eckl et al. (2004) that Methods I-IV yield the same evolution equation

for the surface velocity/elevation although this was not immediately clear from the

papers in which these methods were first presented. In Reutov (1973)’s pioneering

paper, it was already recognized that the projection method was equivalent to the

Hamiltonian formalism.

In contrast with the above methods, Method VI proposed by Gusev et al. (1997,

1998) works with the time domain and is recognized as being different from the

other methods even if it is translated into the frequency domain; see Meegan et al.

(1999) and Eckl et al. (2004). Method VI was followed by Kolomenskii et al. (1997),

Kolomenskii and Schuessler (2001), Kolomenskii et al. (2003), Jerebtsov et al. (2004).

It seems that Gusev et al. (1997, 1998) did not realize that the evolution equation

for the surface velocity is independent of whether the far-distance variable η = εx2

is introduced or not and they advocated the importance of restoring this variable

in deriving the evolution equation for the surface velocity. One of the motivations

for the present study is to understand why Method VI gives a different evolution

equation. We shall show that Method VI is in fact able to yield the same evolution

equation as the other methods if a certain underlying assumption is removed. Thus,

all the existing methods can now be said to be equivalent.

Another motivation for the present study is that when studying nonlinear surface

waves in generally anisotropic elastic materials, previous investigators seem to have

been oblivious of the more recent developments concerning linear surface waves. The

many beautiful results concerning linear surface waves based on the Stroh formula-

tion (Stroh 1958) should not only facilitate numerical evaluation of the surface-wave

speed and coefficients in the evolution equation, but they also contain a lot of qual-

itative information about properties of linear surface waves. For instance, it could

be misleading not to write the secular equation for the wave speed as a real relation,

since otherwise new researchers could question whether it would be possible to find

a real root (the wave speed) to satisfy a complex equation (which contains two real

equations).

With the aid of the evolution equation derived, it can easily be shown that

initially smooth profiles of surface displacement would evolve into shocks within a

finite time. This is to be expected since travelling waves propagating in an uncoated

elastic half-space are non-dispersive. A natural follow-up problem is the propagation

of nonlinear travelling waves, and in particular solitary waves, in a coated elastic

half-space where a thin coating gives rise to dispersion. Linear travelling waves in a
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coated elastic half-space were first studied by Tiersten (1969). Recently, Ogden and

Sotiropoulos (1995, 1996) studied linear travelling waves in a pre-stressed, coated,

incompressible or compressible, elastic half-space. When a prestress is present, there

arises the possibility of existence of static sinusoidal solutions which has stability

implications; see also Bigoni et al. (1997), Cai and Fu (1999, 2000) for further details

and additional references. However, our attention here will be focussed on travelling

wave solutions. We shall demonstrate that the surface-impedance matrix plays an

important role in studying such waves and in terms of it the dispersion relation can

be written in a very compact and revealing form.

Nonlinear travelling waves in a coated elastic half-space have previously been

studied by Porubov and Samsonov (1995), Eckl and Mayer (1998), and Eckl et al.

(2004). Porubov and Samsonov (1995) focussed on finding solitary wave solutions

that have analytical/explicit expressions and showed that when the coating layer is

perfectly bonded to the half-space (as we assume here), such solutions do not exist.

Our treatment of the problem follows the spirit of the last two papers where the

authors found solitary wave solutions numerically. In these two papers, the authors

replaced the action of the coating layer by an effective boundary condition applied

to the surface of the half-space. We show how this effective boundary condition can

be derived and again how the evolution equation can be derived with the aid of the

virtual work method. We explain a simple method that can be used to compute

periodic and solitary travelling wave solutions.

2. Unification of different methods for deriving evolution

equations for surface acoustic waves

(a) Governing equations and linear theory

We shall first consider a homogeneous, unstressed, generally anisotropic elastic

half-space defined by

0 < x2 < ∞, −∞ < x1, x3 < ∞

relative to a rectangular coordinate system with coordinates (xi). Free surface waves

are governed by the equation of motion

σij,j = ρüi, 0 < x2 < ∞, (2.1)

the traction-free boundary condition

σi2 = 0 on x2 = 0, (2.2)

and the decay condition

uk → 0 as x2 → ∞, (2.3)
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where (σij) is the stress tensor, (uk) the displacement, ρ the material density, a

comma and a superimposed dot denote differentiation with respect to the spatial

coordinates and time, respectively. The above equations are closed by the constitu-

tive relation given by

σij = cijkluk,l +
1

2
eijklmnuk,lum,n + · · · , (2.4)

where cijks and eijklmn are tensors of first- and second-order elastic moduli. We

assume that cijkl and eijklmn satisfy the pairwise symmetry relations cijkl = cklij,

eijklmn = eklijmn = eijmnkl, and that cijkl satisfies the strong convexity condition,

but otherwise the material is generally anisotropic. We observe the summation con-

vention whereby all repeated suffices are summed from 1 to 3. At the end of these

notes, we shall explain how results obtained for a generally anisotropic material can

be applied to a generally prestressed isotropic material.

We now consider the linearized form of (2.1)–(2.3) and look for a travelling-wave

solution of the form

u = a eiωpx2/v · e−iωθ, θ = t − x1/v, (2.5)

where ω > 0 is the frequency, v the speed and the constant p and amplitude vector

a are to be determined.

On substituting (2.5) into cijkluk,jl = ρüi, the linearized form of (2.1), we find

that p and a are determined by the eigenvalue problem

(

p2T + p(R + RT ) + Q − ρv2I
)

a = 0, (2.6)

where I is the identity matrix, the superscript “T” denotes matrix transpose, and

the components of the three matrices T,R,Q are defined by

Tik = ci2k2, Rik = ci1k2, Qik = ci1k1. (2.7)

Since cijks satisfies the strong convexity condition, the eigenvalues of p in (2.6)

cannot be pure real when v = 0 and they will remain complex until v = v̂ at which

at least one pair of eigenvalues first become pure real. The v̂ is usually referred to

as the limiting speed (Chadwick and Smith 1977) and surface waves with v < v̂

are said to be subsonic. An elegant result in anisotropic elasticity is that a unique

free-surface wave should normally exist except in some special cases (Barnett and

Lothe 1974).

To characterize the linear free-surface wave solution, we assume from now on that

v < v̂ and denote by p(1), p(2), p(3) the three eigenvalues of p with positive imaginary

parts and a(1), a(2), a(3) the associated eigenvectors. Then a general solution that

satisfies the decaying condition (2.3) is

u =

(

3
∑

j=1

cja
(j)eiωp(j)x2/v

)

e−iωθ = A〈eiωpx2/v〉 c e−iωθ, (2.8)
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where c1, c2, c3 are constants,

A = [a(1), a(2), a(2)], c = [c1, c2, c3]
T ,

and 〈eiωpx2/v〉 denotes the diagonal matrix

diag {eiωp(1)x2/v, eiωp(2)x2/v, eiωp(3)x2/v}.

The linearized boundary condition ci2kluk,l = 0 can be written as

RTu,1 + Tu,2 = 0. (2.9)

On substituting the general solution (2.8) into (2.9), we obtain Bc = 0, where

B = [b(1),b(2),b(2)] = RT A + TA〈p〉, b(j) = (RT + p(j)T )a(j) (2.10)

without summation over j, and 〈p〉 = diag {p1, p2, p3}.

At this juncture, we introduce the surface-impedance matrix M (Ingebrigtsen

and Tonning 1969) through

M = −iBA−1. (2.11)

In terms of this matrix, the boundary condition Bc = 0 may be rewritten as

Md = 0, where d = Ac. (2.12)

We remark that it is advantageous to use M instead of B. Among its many useful

properties, we mention that M is Hermitian so that the secular equation detM = 0

for the surface-wave speed is real even for the most general anisotropic material

(Stroh 1962). In the early studies on surface waves, it was not realized that the

secular equation for the wave speed could always be written as a real equation, and

as a result it was thought that existence of surface waves in anisotropic materials

could only be exceptional (see, e.g., Farnell 1970). Also, all the eigenvalues of M are

monotone decreasing functions of v (Barnett and Lothe 1985). As a result, detM = 0

will not have any spurious roots, which is a useful property when det M = 0 is solved

numerically.

The surface-impedance matrix also has many applications other than in the

surface-wave theory (see, e.g., Fu 2005). There now exist very efficient methods for

computing this matrix. Firstly, this matrix has an integral representation given by

M =

(
∫ π

0

Tθ
−1dθ

)

−1 (

πI − i

∫ π

0

Tθ
−1Rθ

Tdθ

)

, (2.13)

where

Tθ = cos2 θT − sin θ cos θ(R + RT) + sin2 θ(Q − ρv2I),

Rθ = cos2 θR − sin2 θRT + sin θ cos θ(T − Q + ρv2I), (2.14)

Qθ = cos2 θ(Q − ρv2I) + sin θ cos θ(R + RT) + sin2 θT.
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This integral representation was first derived by Barnett and Lothe (1973), and

later rederived by Mielke and Fu (2004) using a different procedure. Secondly, the

surface-impedance matrix can also be computed with the aid of the matrix Riccati

equation

(M − iR)T−1(M + iRT) − Q + ρv2I = 0, (2.15)

see Biryukov (1985), Mielke and Sprenger (1998), Fu and Mielke (2002). Finally,

when x3 = 0 is a plane of material symmetry, this matrix has a simple and explicit

expression (Fu 2005, Fu and Brookes 2006).

A simple method for computing the surface-wave speed v and the corresponding

M is as follows. Increase v gradually from v = 0 and at each step use (2.13) to

evaluate M and hence det M . As soon as det M changes sign, use the corresponding

values of M and v as a initial guess and solve (2.15) and detM = 0 to find M and

v accurately.

In the following, we assume that v has been determined as the unique solution

of det M = 0 and d the corresponding non-trivial solution of (2.12)1.

With the use of (2.12)2, the solution (2.8) may be written as

u = u(θ, x2, ω) = A〈eiωpx2/v〉A−1d e−iωθ. (2.16)

We observe that this solution is only valid for ω > 0. When ω < 0, we would need

to use p̄1, p̄2, p̄2 in the construction of the general decaying solution (2.8), where an

overbar denotes complex conjugation. As a result, when ω < 0, we have

u(θ, x2, ω) = Ā〈eiωp̄x2/v〉 Ā−1d̄ e−iωθ. (2.17)

We note that

u(θ, x2, ω) = u(θ, x2,−ω), for ω < 0, (2.18)

and we remark that this rule of defining a frequency-dependent function when the

frequency is negative in terms of the same function when the frequency is positive

applies to all frequency-dependent functions in our subsequent analysis. To facilitate

analysis later, we define a new function z through

z(ω, x2) = A〈eiωpx2/v〉A−1d, when ω > 0. (2.19)

As remarked above, we have z(ω, x2) = z(−ω, x2) when ω < 0 is negative.

Once the linear solution is known, we may construct an asymptotic solution

u = εu(1) + ε2u(2) + O(ε3) (2.20)

for the original nonlinear surface-wave problem with

u(1) =
1

2π

∫

∞

−∞

ũ(1)e−iωθdω, (2.21)

The original publication is available at www.springerlink.com 
http://www.springerlink.com/content/978-3-211-73571-8/#section=264495&page=2&locus=50



8

ũ(1) = F [u(1)] ≡

∫

∞

−∞

u(1)eiωθdθ = f(ω, τ, η) z(ω, x2), (2.22)

where the unknown amplitude function f(ω, τ, η) is assumed to depend on the slow-

time variable τ = εt and the far-distance variable η = εx2, and to satisfy the

condition

f(−ω, τ, η) = f(ω, τ, η).

However, we shall show later that the evolution equation for the surface velocity is

independent of whether the far-distance variable η is introduced or not. Throughout

this paper we use both F [g] and g̃ to denote the Fourier transform of a function g.

The remaining of this subsection is devoted to explaining why the method used by

Gusev et al. (1998) yields a different evolution from the other methods. If you simply

want to learn the easiest method for deriving the evolution equation for surface

acoustic waves, you may skip the rest of this subsection and the next subsection,

and go straight to the subsection entitled Evolution equation using the virtual work

method.

With the aid of (2.19) and (2.22), we deduce that

∂ũ(1)

∂x2

= f(ω, τ, η)
∂z

∂x2

=
iω

v
·

{

A〈p〉A−1ũ(1), when ω > 0,

Ā〈p̄〉 Ā−1ũ(1), when ω < 0.

Thus, following Gusev et al. (1998) we have

∂ũ(1)

∂x2

= −
1

v
(Re G + i sgn(ω) Im G) F

[

∂u(1)

∂θ

]

, (2.23)

where

G = A〈p〉A−1, (2.24)

Re and Im denote the real and imaginary parts, respectively, and sgn is the sign

function. The matrix G corresponds to the matrix β defined in Gusev et al. (1998).

It follows from (2.10), (2.11) and the Hermitian property MT = M that

GT T = iMT − R, TḠ = −iMT − RT , (2.25)

which will be used in our derivations later. We also observe that G is related to the

matrix E of Fu and Mielke (2002) by

G = iE. (2.26)

The matrix E plays an important role in the linear surface-wave theory. It can be

shown that

E = T−1(M + iRT ), Ea(k) = ip(k) a(k), k = 1, 2, 3, (2.27)

The original publication is available at www.springerlink.com 
http://www.springerlink.com/content/978-3-211-73571-8/#section=264495&page=2&locus=50



9
the second relation showing that the three eigenvalues of E are ip1, ip2, ip3. These

relations can be used to compute a(k) and p(k) more efficiently than (2.6) once the

surface-impedance matrix M is known (e.g. from (2.13)).

Taking the inverse Fourier transform of (2.23), we have

∂u(1)

∂x2

= −
1

v

{

Re G
∂u(1)

∂θ
− (Im G) H[

∂u(1)

∂θ
]

}

, (2.28)

where H denotes the Hilbert transform defined by

H[g(θ)] =
1

π
p.v.

∫

∞

−∞

g(y)

y − θ
dy = −

1

πθ
? g(θ), (2.29)

and use has been made of the basic result that

F [p.v.
1

θ
] = p.v.

∫

∞

−∞

1

θ
eiωθdθ = 2i lim

a→0

∫

∞

a

sin ωθ

θ
dθ = iπ sgn(ω). (2.30)

In (2.29) and (2.30), p.v. denotes “principal value” and the star denotes integral

convolution.

On differentiating (2.20) with respect to x2 and making use of (2.28), we obtain

∂u

∂x2

= −
ε

v

{

Re G
∂u(1)

∂θ
− (Im G) H[

∂u(1)

∂θ
]

}

+ O(ε2),

= −
1

v

{

Re G
∂u

∂θ
− (Im G) H[

∂u

∂θ
]

}

+ O(ε2). (2.31)

It can further be deduced with the aid of the property H[H[g(x)]] = −g(x) that

∂2u

∂x2
2

=
1

v2

{

Re(G2)
∂2u

∂θ2
− Im(G2) H[

∂2u

∂θ2
]

}

+ O(ε2). (2.32)

Gusev et al. (1998) made a fundamental assumption that effectively says that the

O(ε2) terms in (2.31) and (2.32) are identically zero (see their statement in the

paragraph between equations (29) and (30)). Thus, a major operation used by Gusev

et al. (1998) is to use (2.31) and (2.32), with the O(ε2) terms neglected, to eliminate

derivatives with respect to x2 in favor of derivatives with respect to θ. When this

operation is applied to quadratic terms, it will induce an error of order ε3 which can

be neglected in the derivation of the nonlinear evolution equation. However, they

also applied this operation to linear terms and in doing so they neglected some O(ε2)

terms which, we believe, are not identically zero. Thus, the derivation procedure used

in Gusev et al. (1998) is asymptotically inconsistent. We believe that this is why

their method would gave a different evolution equation from all the other methods.

This is elaborated further in the following subsection.
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(b) Nonlinear evolution equation

With the variable transformation

(x1, x2, t) → (θ, x2, τ, η),

we have
∂

∂x1

→ −
1

v

∂

∂θ
,

∂

∂t
→

∂

∂t
+ ε

∂

∂τ
,

∂

∂x2

→
∂

∂x2

+ ε
∂

∂η
.

The nonlinear equation of motion (2.1) and the boundary condition (2.2) then be-

come

(ρI −
1

v2
Q)

∂2u

∂θ2
+

1

v
(R + RT )

∂2u

∂θ∂x2

− T
∂2u

∂x2
2

= −2ρε
∂2u

∂θ∂τ
+ 2εT

∂2u

∂x2∂η

−
1

v
(R + RT )ε

∂2u

∂θ∂η
−

1

v

∂n(1)

∂θ
+

∂n(2)

∂x2

+ O(ε3), 0 < x2 < ∞, (2.33)

−
1

v
RT ∂u

∂θ
+ T

∂u

∂x2

= −εT
∂u

∂η
− n(2) + O(ε3), x2 = η = 0, (2.34)

where the two vector functions n(1),n(2) are defined by

n
(1)
i =

1

2
ei1klmnuk,lum,n, n

(2)
i =

1

2
ei2klmnuk,lum,n. (2.35)

At this stage, Gusev et al. (1998) would inconsistently apply the substitutions (2.31)

and (2.32) to the linear terms of both order ε and order ε2 in (2.33) and (2.34) and

to obtain

2ρε
∂2u

∂θ∂τ
+

1

v
(R + RT )ε

∂2u

∂θ∂η
+

2

v
εT

{

Re G
∂2u

∂θ∂η
− (Im G) H[

∂2u

∂θ∂η
]

}

= −
1

v

∂n(1)

∂θ
+

∂n(2)

∂x2

+ O(ε3), 0 < x2 < ∞, (2.36)

1

v

{

RT + TRe G
∂u

∂θ
− T (Im G) H[

∂u

∂θ
]

}

= εT
∂u

∂η
+ n(2) + O(ε3), x2 = η = 0,

(2.37)

where use has been made of the fact that

ρv2I − Q = (R + RT )Re G + T Re(G2), 0 = (R + RT )Im G + T Im(G2), (2.38)

which can be deduced from (2.6) with aid of (2.10) and (2.24).

Applying the Fourier transform to (2.36) and (2.37), we would obtain for ω > 0

ε

{

2ρ
∂ṽ

∂τ
+

1

v
(R + RT + 2TG)

∂ṽ

∂η

}

=
1

v
iωñ(1) +

∂ñ(2)

∂x2

+ O(ε3), 0 < x2 < ∞

(2.39)
1

v
iM ṽ = εT

∂ũ

∂η
+ ñ(2) + O(ε3), x2 = η = 0, (2.40)
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where v = ∂u/∂t = ∂u/∂θ and ṽ denotes the Fourier transform of v so that

ṽ = −iωũ = −εiωf(ω, τ, η) z(ω, x2) + O(ε2). (2.41)

Contracting (2.40) with the left eigenvector ζ of M and replacing ũ by ṽ/(−iω), we

would eliminate the O(ε) term on the left and obtain

εζ · T
∂ṽ

∂η
− iω ζ · ñ(2) + O(ε3) = 0. (2.42)

It follows from (2.25) that

R + RT + 2TG = 2iM + R − RT .

Thus, (2.39) may also be written as

ε

v
(2iM + R−RT )

∂ṽ

∂η
= −ε2ρ

∂ṽ

∂τ
+

1

v
iωñ(1) +

∂ñ(2)

∂x2

+ O(ε3), 0 < x2 < ∞. (2.43)

The evolution equation of Gusev et al. (1998) (in the frequency domain) would be

obtained by taking the limit x2 → 0 in (2.43), solving the resulting equation for

∂ṽ/∂η and substituting it into the boundary condition (2.42), the derivatives with

respect to x2 being eliminated with the aid of (2.31). However, this operation is

illegitimate since ∂ṽ/∂η becomes parallel to d as x2 → 0 so that

(2iM + R − RT )
∂ṽ

∂η

∣

∣

∣

∣

x2→0

= (R − RT )
∂ṽ

∂η

∣

∣

∣

∣

x2→0

,

but the coefficient matrix R − RT is in general not invertible (an example is when

the material is isotropic). Gusev et al. (1998) did not seem to realize this fact and

wrote down (in our notation)

∂ṽ

∂η

∣

∣

∣

∣

x2→0

=
v

ε
(2iM + R − RT )−1 × RHS of (2.43)|x2→0.

Clearly this expression cannot be expected to be consistent with (2.41) since its

right hand will not be parallel to d.

We now return to (2.33) and (2.34) in order to derive the correction evolution

equation. On substituting (2.20) into these equations and equating the coefficient of

ε2, we obtain

(ρI −
1

v2
Q)

∂2u(2)

∂θ2
+

1

v
(R + RT )

∂2u(2)

∂θ∂x2

− T
∂2u(2)

∂x2
2

= −2ρ
∂2u(1)

∂θ∂τ
+ 2T

∂2u(1)

∂x2∂η

−
1

v
(R + RT )

∂2u(1)

∂θ∂η
−

1

v

∂n(1)

∂θ
+

∂n(2)

∂x2

, 0 < x2 < ∞, (2.44)

−
1

v
RT ∂u(2)

∂θ
+ T

∂u(2)

∂x2

= −T
∂u(1)

∂η
− n(2), x2 = η = 0, (2.45)
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where without introducing extra notation n(1) and n(2) are still given by (2.35) but

with u on the right hand sides now replaced by u(1).

Applying the Fourier transform to (2.44) and (2.45), we obtain

(ρI −
1

v2
Q)ω2ũ(2) +

iω

v
(R + RT )

∂ũ(2)

∂x2

+ T
∂2ũ(2)

∂x2
2

= −2ρ iω
∂ũ(1)

∂τ
− 2T

∂2ũ(1)

∂x2∂η

−
iω

v
(R + RT )

∂ũ(1)

∂η
−

iω

v
ñ(1) −

∂ñ(2)

∂x2

, 0 < x2 < ∞, (2.46)

iω

v
RT ũ(2) + T

∂ũ(2)

∂x2

= −T
∂ũ(1)

∂η
− ñ(2), x2 = η = 0. (2.47)

We emphasize that in arriving at the equations (2.46) and (2.47) we have used the

same procedure as Gusev et al. (1998) except that we have not assumed that ∂u/∂x2

is related to ∂u/∂θ by exactly the same formula as ∂u(1)/∂x2 is related to ∂u(1)/∂θ.

The latter assumption would force the left hand side of (2.46) to be identically zero

and the left hand side of (2.47) to be orthogonal to the left eigenvector ζ of M .

At this stage, the formulation can be connected to the formulations in Meth-

ods I-V. Any of these methods would yield the right evolution equation. Since the

governing equation and the boundary condition are already expanded out, the best

method for deriving the evolution equation from this point is probably the projec-

tion method (Parker et al. 1992). In the next subsection, however, we shall show

that when the virtual-work method is used, there is in fact no need to expand the

boundary condition.

In the project method we contract (2.46) with the linear solution z(−ω, x2)

defined by (2.19). We write z(−ω, x2) as z− in order to avoid confusion with z(ω, x2)

when the arguments are not written out. It can be shown by integrating by parts

that
∫

∞

0

z− · LHS of (2.46) dx2 = −z− ·

{

iω

v
RT ũ(2) + T

∂ũ(2)

∂x2

}∣

∣

∣

∣

x2=0

= z− ·

{

T
∂ũ(1)

∂η
+ ñ(2)

}∣

∣

∣

∣

x2=0

= −

∫

∞

0

∂

∂x2

z− ·

{

T
∂ũ(1)

∂η
+ ñ(2)

}

dx2, (2.48)

where in obtaining the second equation above use has been made of (2.47). On

replacing the left hand side (LHS) of (2.46) by its right hand side in (2.48), we

obtain
∫

∞

0

{

−2ρ iωz− ·
∂ũ(1)

∂τ
− Tz− ·

∂2ũ(1)

∂x2∂η
−

iω

v
z− · (R + RT )

∂ũ(1)

∂η

−
iω

v
z− · n(1) +

∂z−

∂x2

· n(2) +
∂z−

∂x2

· T
∂ũ(1)

∂η

}

dx2 = 0. (2.49)

We assume in the rest of this subsection that ω > 0. Then from (2.23),

∂ũ(1)

∂x2

=
iω

v
Gũ(1). (2.50)
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Similarly, we have

∂z−

∂x2

= −
iω

v
G z−. (2.51)

With the aid of (2.50) and (2.51), the partial derivatives with respect to x2 in the

second and sixth terms in (2.49) can be eliminated. As a result, we obtain, after

simplifying with the use of (2.25),

∫

∞

0

{

−2ρ iωz− ·
∂ũ(1)

∂τ
−

iω

v
z− · ñ(1) +

∂z−

∂x2

· ñ(2)

}

dx2 = 0,

or equivalently,

∫

∞

0

{

−2ρ iωz− ·
∂ũ(1)

∂τ
+

1

2
eijklmn F [z−i,j]F [u

(1)
k,l u

(1)
m,n]

}

dx2 = 0. (2.52)

It is seen that ∂ũ(1)/∂η has dropped out of the evolution equation (2.52) so that

the evolution equation obtained from (2.52) for f(ω, τ, 0) would be independent of

whether the far-distance variable η has been introduced or not. The latter fact is of

course already known (Fu and Devenish 1997, Eckl et al. 2004).

To obtain the final evolution equation from (2.52), we first obtain from (2.22)

F [
∂u(1)

∂x1

] =
iω

v
ũ(1) =

iω

v
f(ω, τ, η) A〈eiωpx2/v〉 c,

F [
∂u(1)

∂x2

] =
iω

v
f(ω, τ, η) A〈peiωpx2/v〉 c.

Thus, we may write

F [u(1)
m,n] =

iω

v
f(ω, τ, η) Qmn(x2, ω), (2.53)

where

Qmn(x2, ω) =
3

∑

j=1

Amj L(j)
n eiωp(j)x2/vcj, L(j)

n = δn1 + δn2p
(j), n, j = 1, 2, 3, (2.54)

and we have written out the summation over j explicitly since it is not a standard

summation over a suffix repeated only once.

In terms of Qmn defined above, we have

z−i,j = −
iω

v
Qij(x2, ω), (2.55)

and
1

2
eijklmnF [u

(1)
k,l u(1)

m,n] =
1

2
eijklmnF [u

(1)
k,l ] ? F [u(1)

m,n]

= −
1

2v2
eijklmn

∫

∞

−∞

ω′(ω − ω′)f(ω′, τ)f(ω − ω′, τ)Qkl(x2, ω
′)Qmn(x2, ω − ω′)dω′.

(2.56)
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We note that when ω′ and ω−ω′ are negative, the functions Qkl(x2, ω

′) and Qmn(x2, ω−

ω′) above are defined by the rule

Qkl(x2, ω
′) = Qkl(x2,−ω′), Qmn(x2, ω − ω′) = Qmn(x2, ω′ − ω),

as prescribed below (2.18).

On substituting (2.53), (2.55) and (2.56) into (2.52), we obtain

∂f

∂τ
=

i

4ρv2N(ω)

∫

∞

−∞

ω′(ω − ω′)f(ω′)f(ω − ω′)K(ω, ω′)dω′, (2.57)

where

N(ω) =

∫

∞

0

z · z̄dx2 =

∫

∞

0

d · A−T 〈eiωpx2/v〉AT Ā〈e−iωp̄x2/v〉 Ā−1d̄ dx2 =
1

ω
N(1),

(2.58)

K(ω, ω′) = −
i

v
esjklmn

∫

∞

0

Qkl(x2, ω
′)Qmn(x2, ω − ω′)Qsj(x2, ω)dx2. (2.59)

We note that the pair-wise symmetry of esjklmn implies that

K(ω, ω′) = K(ω, ω − ω′), K(ω′, ω) = −K(ω, ω′). (2.60)

(c) Evolution equation using the virtual work method

In this subsection we show how with the use of the virtual work method the

same evolution can be obtained in the simplest manner. We assume throughout this

subsection that ω0 is a positive constant and we consider a nonlinear surface-wave

solution that is periodic in θ with period 2π/ω0. Such a solution can be represented

as

u = ε

∞
∑

m=1

fm(τ)A〈eimω0px2/v〉A−1d e−imω0θ + C.C. + O(ε2), (2.61)

where C.C. denotes the complex conjugate of the preceding term and fm(τ) are

amplitude functions to be determined. We have not allowed fm(τ) to depend on the

far-distance variable η = εx2 since the evolution equation for the surface elevation

or surface velocity is independent of its inclusion.

The virtual work method starts with the following line integral:

I = lim
h→∞

∮

C

σijnjûids, (2.62)

where (ni) is the outward normal to the path, û is a linear solution given by

û = z(−kω0, x2) eikω0θ = z(kω0, x2) eikω0θ, k > 0 an integer, (2.63)

the closed path C is the boundary of the rectangular region S: [0 ≤ θ < 2π/ω0, 0 ≤

x2 ≤ h], and h is a positive constant. Since the integrand in (2.62) vanishes both on

x2 = 0 and as x2 → ∞ and since it takes the same value on the two vertical paths
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due to periodicity, it is easy to see that I is identically zero. With the use of the

divergence theorem and the equation of motion (2.1), we also have

I =

∫

∞

0

dx2

∫ 2π/ω0

0

{

ρûi
∂2ui

∂θ2
+ cijkluk,lûi,j + 2ρε

∂2ui

∂θ∂τ
· ûi +

1

2
eijklmnuk,lum,nûi,j

}

dθ.

(2.64)

Integrating the first two terms by parts and making use of the fact that z is a linear

solution, we can show that the integral of the first two terms vanishes and (2.64)

reduces to

I =

∫

∞

0

dx2

∫ 2π/ω0

0

{

2ρ ε
∂2ui

∂θ∂τ
· ûi +

1

2
eijklmnuk,lum,nûi,j

}

dθ. (2.65)

We note that both terms in (2.65) are of order ε2, and that in the above derivation

we did not have to expand the equation of motion or the boundary condition.

With the use of (2.61) and (2.63), we obtain

ui,j = ε
i ω0

v

∞
∑

m=−∞

mfm(τ)Qij(x2,mω0)e
−imω0θ, (2.66)

ûi,j = −
i kω0

v
Qij(x2, kω0)e

ikω0θ. (2.67)

On substituting (2.66) and (2.67) into (2.65) and then evaluating the integral with

respect to x2, we obtain

dfk(τ)

dτ
=

i kω2
0

4ρv2N(1)

∞
∑

m=−∞

m(k − m)K(k,m)fmfk−m, k = 1, 2, . . . , (2.68)

where N(ω) and K(ω, ω′) are as in the previous subsection. As expected, by taking

ωm = mω0, identifying fm(τ) with ω0f(ωm, η), and then taking the limit ω0 → 0

in this subsection, all the sums tend to integrals and the evolution equations (2.68)

recover the integral equation (2.57).

(d) Evaluation of coefficients

With the use of (2.61), the velocity on the surface x2 = 0 is obtained as

∂u

∂t
=

∂u

∂θ
= ε

∞
∑

n1=1

gn1(τ)d e−in1ω0θ + C.C. + O(ε2), (2.69)

where

gn1(τ) = −in1ω0 fn1(τ). (2.70)

In terms of gn1 , the evolution equations (2.68) become

dgn1(τ)

dτ
= −

n1
2ω0

4ρv2N(1)

∞
∑

n2=−∞

K(n1, n2)gn2gn1−n2 , n1 = 1, 2, . . . . (2.71)
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It can easily be shown with the use of (2.60) that (2.71) can be rewritten as

dgn1(τ)

dτ
= −

n1
2ω0

4ρv2N(1)

{

n1−1
∑

n2=1

K(n1, n2)gn2gn1−n2

−2
∞

∑

n2=n1+1

K(n2, n1)gn2gn2−n1

}

, n1 = 1, 2, · · · . (2.72)

With the aid of the various expressions given in the previous subsection, we obtain

for n1 > n2,

K(n1, n2) = eijklmn

3
∑

r=1

3
∑

s=1

3
∑

t=1

ĀisAktAmr

crc̄sct L
(r)
n L

(s)
j L

(t)
l

n2p(t) + (n1 − n2)p(r) − n1p̄(s)
. (2.73)

We have checked that the evolution equation (2.72) together with (2.73) is consistent

with that given by Hamilton et al. (1999).

It is seen that to evaluate the coefficients in the evolution equations, we only need

to know the values of v, c, p(1), p(2), p(3), A. To find the linear surface-wave speed

v and the corresponding M , we may use the procedure stated in the paragraph

below equation (2.15). Once M is known, we may use (2.27) to find E and hence

p(j), a(j), j = 1, 2, 3, A = [a(1), a(2), a(3)], and c = A−1d.

The evolution equation (2.73) can be integrated numerically subjected to speci-

fied initial conditions. The evolution of surface velocity or surface elevation can then

be determined. It is known that shocks always form at finite times. Parker and Tal-

bot (1985) argued that the nonlocal character of the kernel in the evolution equation

(2.73) might give rise to steady nonlinear surface waves and they calculated such

solutions using a certain numerical procedure. Ogden and Fu (1996) questioned the

validity of the procedure: they applied the same procedure to a simple example and

obtained spurious solutions. Thus, the steady wave solutions obtained in Parker and

Talbot (1985) were probably spurious as well.

It is not surprising that steady nonlinear surface waves cannot exist in the ab-

sence of any form of dispersion. When dispersion is introduced into the problem, it

is expected that weak dispersion would balance the wave steepening effects of non-

linearity and lead to solitary wave solutions. In recent years, the existence of solitary

wave solutions has been demonstrated for a variety of dispersion forms. Three major

forms of dispersion are: (i) when the wavelength is large compared with the thickness

of a coating layer, see Porubov and Samsonov (1995) and Eckl et al. (1998), (ii) when

the material properties of the coating layer are close to those of the half-space, see

Fu and Hill (2001), and (iii) when the half-space has a microstructure, see Porubov

and Pastrone (2004) and Porubov et al. (2004). In Section 4, we shall illustrate the

existence of solitary wave solutions by considering the first type of dispersion.
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3. Linear wave propagation in a coated elastic half-space

We now consider a coated half-space in which the half-space is made of the same

material as in the previous sections but the coating layer has its constitutive relation

given by

σij = c̃ijkluk,l +
1

2
ẽijklmnuk,lum,n + · · · , (3.1)

where c̃ijks and ẽijklmn are tensors of first- and second-order elastic moduli. The

coating layer is assumed to occupy the region −h < x2 < 0. With the use of (2.8),

we may deduce that such an elastic layer admits a travelling wave solution given by

u =

(

Ã〈eiωp̃x2/v〉Ã−1 d(1) + Ã〈eiω ¯̃px2/v〉Ã
−1

d(2)

)

e−iωθ

=
(

e−Ẽkx2 d(1) + eẼkx2 d(2)
)

e−iωθ, (3.2)

where k = ω/v is the wavenumber, d(1) and d(2) are constant vectors to be deter-

mined, and here and hereafter a superimposed tilde signifies association with the

elastic layer. Note that in (3.2) we have also included the solution corresponding to

¯̃p1, ¯̃p2, ¯̃p3 since we do not require the solution to decay as x2 → ∞. Corresponding

to this solution, we have

u(0) = (d(1) + d(2)) e−iωθ, (3.3)

(σi2)|x2=0 = ik(−M̃ d(1) + M̃d(2)) e−iωθ, (3.4)

(σi2)|x2=−h = ik(−M̃eẼkh d(1) + M̃e−Ẽkh d(2)) e−iωθ. (3.5)

For the half-space, we have

u = e−Ekx2 d(3) e−iωθ, (3.6)

u(0) = d(3) e−iωθ, (3.7)

(σi2)|x2=0 = −ikM d(3) e−iωθ, (3.8)

where d(3) is another constant vector to be determined. Thus, the traction-free

boundary condition at x2 = −h and the displacement and traction continuity at the

interface x2 = 0 give

−M̃eẼkh d(1) + M̃e−Ẽkh d(2) = 0, (3.9)

d(1) + d(2) = d(3), (3.10)

−M̃ d(1) + M̃d(2) = −M d(3). (3.11)

On eliminating d(1) and d(2) from the above equations, we obtain

Dd(3) = 0, (3.12)
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where

D = M̃e−Ẽkh −
(

M̃eẼkh + M̃e−Ẽkh
)

(M̃ + M̃)−1(M + M̃). (3.13)

Thus, the dispersion relation for the speed as a function of kh is given by

det D = 0. (3.14)

For kh ¿ 1, we obtain from (3.13)

D = −M − kh
{

M̃Ẽ + (M̃Ẽ − M̃Ẽ)(M̃ + M̃)−1(M + M̃)
}

+ O(k2h2),

= −M + kh(R̃T̃−1R̃T − Q̃ + ρ̃v2I − iR̃T̃−1M) + O(k2h2), (3.15)

where we have made use of the relation

M̃Ẽ = iR̃T̃−1M̃ − R̃T̃−1R̃T + Q̃ − ρv2I,

which can be established with the aid of (2.27)1 and (2.15).

Denote by vR the surface-wave speed associated with the half-space and by d the

right eigenvector of M when v = vR (so that d has the same meaning as in previous

sections). We look for a solution of the form

v = vR + khv1 + · · · , d(3) = d + O(kh), (3.16)

where v1 is a constant. We have

M = M |v=vR
+ khv1

dM

dv

∣

∣

∣

∣

v=vR

+ O(k2h2). (3.17)

It is known (see, e.g., Mielke and Fu 2004) that

dM

dv

∣

∣

∣

∣

v=vR

= −2ρvR

∫

∞

0

e−x2ĒT

e−x2Edx2. (3.18)

Thus,

d ·
dM

dv

∣

∣

∣

∣

v=vR

d = −2ρvRN(vR) = −2ρN(1), (3.19)

where N(1) is given by (2.58). On substituting (3.15)–(3.18) into d · Dd(3) = 0 and

equating the coefficients of kh, we obtain

v1 = −
ζ

2ρN(1)
, and so v = vR −

ζkh

2ρN(1)
+ O(k2h2), (3.20)

where

ζ = d · (ρ̃v2
RI + R̃T̃−1R̃T − Q̃)d. (3.21)
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4. Solitary waves in a coated elastic half-space

We now consider propagation of nonlinear travelling waves in the coated elastic

half-space specified in the previous section. We shall consider a small-amplitude

travelling wave solution in which the wavelength, L say, is much greater than the

plate thickness. To be more precise, we assume that h/L is of the same order as ε

where ε has the same meaning as in the previous sections. In order to keep track

terms of different orders, we scale x2 by ε, and still use x2 for its scaled counterpart.

The equation of motion σij,j = ρ̃üi, where ρ̃ is the material density of the layer, then

becomes

1

ε2
T̃ijuj,22 +

1

ε
(R̃ij + R̃ji)uj,12 + Q̃ijuj,11 +

1

ε3
ẽi2k2m2uk,22um,2

+
1

ε2
{ẽi2k2m1uk,22um,1 + (ẽi1k2m2 + ẽi2k1m2)uk,12um,2} + O(ε) = ρ̃üi, (4.1)

where

T̃ik = c̃i2k2, R̃ik = c̃i1k2, Q̃ik = c̃i1k1. (4.2)

A similar equation can be written down for the traction-free boundary condition

σi2 = 0 at x2 = −h. We now look for an asymptotic solution of the form

u = εu(1) + ε2u(2) + ε3u(3) + O(ε4). (4.3)

On substituting (4.3) into (4.1), equating the coefficients of ε−1, ε0 and then solving

the two equations subjected to the corresponding traction-free boundary conditions

at x2 = −h, we find that u(1) is independent of x2 and that u(2) is given by

u(2) = −T̃−1R̃T ∂u(1)

∂x1

x2 + an arbitrary function independent of x2. (4.4)

With the aid of these results, we may evaluate the traction vector (σi2) at the

interface x2 = 0. It is found that its order ε term is identically zero. To find the

O(ε2) term, we could carry out the above expansion to the next order, but a simpler

method is to rewrite the equation of motion as

σi1,1 + σi2,2 = ρ̃üi,

and then integrate across the layer thickness to obtain

σi2|x2=0 =

∫ 0

−h

(ρ̂üi − σi1,1) dx2. (4.5)

With the use of (3.1) and (4.3), we obtain

(σi2)|x2=0 = h
{

ρ̃ü + (R̃T̃−1R̃T − Q̃)u,11

}

|x2=0 + O(ε3). (4.6)

Because of continuity of displacement and traction across the interface, the u and

(σi2) in (4.6) can be taken to their counterparts in the half-space. Equation (4.6)
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then becomes an effective boundary condition to be imposed on the surface of the

half-space. Such an effective boundary condition was first given by Tiersten (1969)

and later assumed in Eckl et al. (1998). We observe that this effective boundary

condition does not contain nonlinear terms. Since the above asymptotic procedure

is the same as that used by Porubov and Samsonov (1995), the latter authors have

implicitly used such an effective boundary condition although they did not display

this explicitly (they used the method of imposing solvability conditions to derive

their evolution equations).

The matrix R̃T̃−1R̃T − Q̃ in (4.6) is recognized as the matrix N3 that appears in

the Stroh formulation. This is not surprising since the Stroh formulation gives

(σi2),2 = ρ̃ü + (R̃T̃−1R̃T − Q̃)u,11 − R̃T̃−1(σi2),1.

On integrating this equation from −h to 0 and making use of the traction-free

boundary condition at x2 = −h, we recover (4.6) in the limit h → 0.

Since the leading order term in the effective boundary condition (4.6) is of order

ε2, the coated half-space behaves like an uncoated half-space to leading order and

the leading-order solution (2.61) is still valid but we now expect that the effective

boundary condition will affect the evolution of the amplitude functions fm(τ). We

have

(σi2)|x2=0 = h
{

ρ̃v2
RI + R̃T̃−1R̃T − Q̃

}

u,11|x2=0 + O(ε3)

= −
εhω2

0

v2
R

(ρ̃v2
RI + R̃T̃−1R̃T − Q̃)d

∞
∑

m=1

m2fm(τ)e−imω0θ + C.C. + O(ε3). (4.7)

The integral I given by (2.62) is no longer zero; instead it is now given by

I = −

∫ 2π/ω0

0

(σi2ûi)|x2=0dθ =
εh2πω0ζ

v2
R

k2fk(τ), (4.8)

where ζ is given by (3.21).

The evolution equation (2.68) is now replaced by

dfk(τ)

dτ
=

h

ε
·

iω2
0ζ

2ρv2
RN(1)

k2fk

+
i kω2

0

4ρv2
RN(1)

∞
∑

m=−∞

m(k − m)K(k,m)fmfk−m, k = 1, 2, . . . , (4.9)

On neglecting the nonlinear term above, we find that the solution of (4.9) is given

by

fk(τ) = fk(0) exp

{

k2h ·
iω2

0ζ

2ρv2
RN(1)

t

}

.

On substituting this expression into (2.61), we find that the coating layer gives rise

to a small correction to the wave speed and that the total wave speed is now given

by

vR −
ζ

2ρN(1)
k̃h + O(k̃2h2), (4.10)
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where k̃ = kω0/v is the actual wave number of the mode. This expression is consis-

tent with the two-term expansion given by (3.20)2.

The velocity at the interface x2 = 0 is again given by (2.69). In terms of the

gn1(τ) defined by (2.70), the evolution equation (4.9) becomes

dgn1(τ)

dτ
=

h

ε
·

iω2
0ζ

2ρv2
RN(1)

gn1 −
n1

2ω0

4ρv2
RN(1)

{

n1−1
∑

n2=1

K(n1, n2)gn2gn1−n2

−2
∞

∑

n2=n1+1

K(n2, n1)gn2gn2−n1

}

, n1 = 1, 2, · · · . (4.11)

We may look for a solution of the form

gn1(τ) = Γn1e
in1cτ , (4.12)

where c is a real constant and Γn1 , n1 = 1, 2, ... are complex constants to be deter-

mined. On substituting (4.12) into (4.11), we obtain

in1cΓn1 =
h

ε
·

iω2
0ζ

2ρv2
RN(1)

Γn1 −
n1

2ω0

4ρv2
RN(1)

{

n1−1
∑

n2=1

K(n1, n2)Γn2Γn1−n2

−2
∞

∑

n2=n1+1

K(n2, n1)Γn2Γn2−n1

}

, n1 = 1, 2, · · · . (4.13)

This system of algebraic equation can be solved using the following procedure pro-

posed by Parker and Talbot (1985). We first replace the infinite system by a finite

sysmtem of M equations. that is we assume that Γk = 0 (k = M,M +1, ...). We start

with M = 2, in which case the two simultaneous equations can be solved exactly.

Using each of these solutions as a starting solution, we increase M in unit steps

until a convergence criterion is satisfied. At each step, the finite system of quadratic

equations can be solved using Mathematica. As suggested by Eckl and Mayer (1998),

solitary wave solutions can be obtained in the limit ω0 → ∞.

Finally, we note that for a generally prestressed isotropic elastic half-space, small-

amplitude perturbations are governed by the incremental equation of motion

χij,j = ρüi, (4.14)

and the incremental traction-free boundary condition takes the form

χi2 = 0, on x2 = 0, (4.15)

where the incremental stress tensor (χij) is given by

χij = A1
jilkuk,l +

1

2
A2

jilknmuk,lum,n + · · · , (4.16)
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and expressions for the elastic moduli A1

jilk and A2
jilknm in terms of the strain-energy

function and the principal stretches can be found in Ogden (1984) or Appendix A of

Fu and Ogden (1999). Thus, with cijkl and eijklmn identified with A1
jilk and A2

jilknm,

respectively, all the results obtained above are also valid for a generally prestressed

isotropic elastic half-space or coated half-space. However, we remark that it would be

too restrictive to assume that A1
jilk satisfies the strong convexity condition. Instead,

we assume that A1
jilk are such that the corresponding surface-impedance matrix

is positive definite when v = 0. This assumption is made so that the incremental

dynamic problem is well-posed.

Acknowledgement: The author thanks Professor V.E. Gusev for reading an earlier

version of these notes and for drawing his attention to the work of Professor V.P.

Reutov.
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