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Abstract 

The aim of the present study was to characterise the volatile metabolites produced by genotypically diverse 

strains of the Stenotrophomonas genus in order to evaluate their potential as biomarkers of lung infection 

by non-invasive breath analysis. Volatile organic compounds (VOCs) emitted from 15 clinical and five 

environmental strains belonging to different genogroups of Stenotrophomonas maltophilia (n=18) and 

Stenotrophomonas rhizophila (n=2) cultured in Mueller-Hinton Broth (MHB) liquid media  were analysed 

by gas chromatography mass spectrometry (GC-MS) and selected ion flow tube mass spectrometry (SIFT-

MS). Several VOCs were detected in high concentration, including ammonia, propanol, dimethyl 

disulphide, and dimethyl trisulphide. The GC-MS measurements showed that all 15 clinical strains 

produced similar headspace VOCs compositions and SIFT-MS quantification showed that the rates of 

production of the VOCs by the genotypically distinct strains were very similar. All in vitro cultures of 

both the Stenotrophomonas species were characterised by efficient production of two isomers of methyl 

butanol, which can be described by known biochemical pathways and which is absent in other pathogens 

including Pseudomonas Aeruginosa . These in-vitro data indicate that methyl butanol isomers may be 

exhaled breath biomarkers of S. maltophilia lung infection in patients with cystic fibrosis.  
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Introduction 

The genus Stenotrophomonas encompasses Gram-negative, strictly aerobic bacteria which are 

ubiquitous in aqueous environments, soil and plants [1]. These organisms have also been used for 

biotechnology applications [2]. Although they are generally non-pathogenic to healthy people, they may 

cause serious infections in patients with severe underlying disease or impaired immunity. Risk factors 

associated with Stenotrophomonas infection include HIV infection, malignancy, cystic fibrosis, 

neutropenia, the presence of mechanical ventilation or central venous catheters, recent surgery, trauma, 

and therapy using broad-spectrum antibiotics. The number of Stenotrophomonas infections in humans has 

dramatically increased in recent years, especially in patients with cystic fibrosis (CF) [3]. The lack of 

mucociliary clearance in the airways of CF patients leads to the build-up of immovable mucus in the lungs 

and airways of CF patients provides a substrate for colonization by different bacteria, notably 

Pseudomonas aeruginosa, [4], Staphylococcus aureus and Streptococcus pneumoniae [5], 

Stenotrophomonas spp. with which the present paper is largely concerned, and the fungus Aspergillus 

fumigatus [6]. Early diagnosis and antibiotic treatment of such infections can improve the prognosis and 

extend the patients’ life [7]. Some details of the genetic aspects of the genus Stenotrophomonas are given 

in Appendix 1 and the biochemical routes to the production of volatile organic compounds (VOCs) by 

this bacterium are given in Appendix 2. 

Breath analysis holds promise as a non-invasive diagnostic of lower respiratory tract infections, 

obviating the routinely-used invasive procedures like bronchoscopy or alveolar lavage [8]. Our recent 

SIFT-MS studies of VOCs released by in vitro cultures of the bacteria P. aeruginosa, S. aureus, S. 

pneumoniae, and the fungus A. fumigatus [6], suggest that these VOCs may appear in exhaled breath of 

persons infected with these pathogens. The non-invasive breath analysis approach to diagnosis would be 

3 
 



of great value, especially in children with CF where early detection of respiratory pathogens increases the 

chance of eradication and improves prognosis [9].  

Analyses of volatile compounds (VOCs) emitted from Stenotrophomonas bacterial cultures in 

vitro is a natural extension of our on-going search for volatile biomarkers of lung and airways infections 

by breath analysis. Selected ion flow tube mass spectrometry (SIFT-MS) is being successfully used for 

on-line, real time  quantification of trace gases in human breath [10, 11] and has great potential as a tool 

for non-invasive physiological monitoring of CF patients [4, 9]. A notable recent advance is the 

identification of HCN as a biomarker of P. aeruginosa in CF patients; studies based on SIFT-MS have 

shown that both HCN [4, 9] and methylthiocyanate [12] are specific volatile biomarkers of this pathogen. 

SIFT-MS has been recently exploited to quantify a range of volatile metabolites released by various in-

vitro cultures of P. aeruginosa [13] and other respiratory pathogens [5, 6]. Similarly, gas chromatography-

mass spectrometry (GC-MS) is a well-established technique for untargeted analyses of volatile 

compounds in complex matrices and has been exploited to identify many of the characteristic VOCs 

released by bacterial cultures [14, 15].  

The present study aimed to assess the VOCs released by in vitro cultures of Stenotrophomonas 

spp. in order to identify potential biomarkers of infection of the airways by these bacteria in CF patients 

via breath analysis. This work, first presented at the Breath Analysis 2014 meeting in Torun, Poland, has 

been conducted using the powerful combination of GC-MS and SIFT-MS by which VOCs released by a 

genotypically characterized bacterial collection encompassing 18 strains of S. maltophilia isolated from 

clinical (n=15) and environmental (n=3) specimens and two strains of S. rhizophila of environmental 

origin have been investigated. 
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Materials and methods 

Origin and genetic diversity of the bacterial strains 

The study set encompassed 20 Stenotrophomonas strains, including 15 S. maltophilia strains 

isolated from clinical specimens and five environmental strains (three S. maltophilia and two S. 

rhizophila) from natural environments (Table 1). Nine of the 15 clinical strains were recovered from the 

respiratory specimens of CF patients at the Cystic Fibrosis Centre in Prague. The taxonomic affiliation of 

these 20 strains were determined previously [16]. The previous work using multi-locus sequence typing 

(MLST) has delineated nine different genogroups (GGs) [17]. The clinical strains included in the present 

study belong to at least four of these genogroups (GGs) with GG6 containing most of them. All five 

environmental strains belong to either the strictly environmental species S. rhizophila (previous GG8) or 

GG9 [18-20]. 

Table 1. The 20 Stenotrophomonas strains studied 
 

Strain* Species (genogroup)# Specimen Year of isolation 
CNCTC 5821T S. maltophilia (GG6) Orypharynx Before 1964 
ANC 4262 (= Cf1) S. maltophilia (GG6) CF sputum 2004 
ANC 4263 (= Cf2) S. maltophilia (GG6) CF throat swab 2005 
ANC 4264 (= Cf3) S. maltophilia (GG6) CF sputum 2005 
ANC 4265 (= Cf4) S. maltophilia (GGnew) CF sputum 2005 
ANC 4266 (= Cf5) S. maltophilia CF sputum 2005 
ANC 4267 (= Cf6) S. maltophilia (GG6) CF sputum 2006 
ANC 4268 (= Cf7) S. maltophilia (GG6) CF sputum 2006 
ANC 4269 (= Cf8) S. maltophilia (GG1) CF sputum 2007 
ANC 4331 (= Cf9) S. maltophilia (GG6) CF sputum 1989 
ANC 4332 (= Cli4) S. maltophilia (GGnew) Blood culture 1994 
ANC 4333 (= Cli5) S. maltophilia (GG4) Endotracheal tube 1994 
ANC 4336 (= Cli2) S. maltophilia Venous catheter 1993 
ANC 4338 (= Cli7) S. maltophilia (GG6) Wound 1997 
ANC 4339 (= Cli8) S. maltophilia (GGnew) Blood 1997 
ANC 4341 (= Env1 ) S. maltophilia (GG9) Meadow  2007 
ANC 4342 (= Env2) S. maltophilia (GG9) Meadow  2007 
ANC 4343 (= Env11) S. maltophilia (GG9) Cave  2010 
ANC 4344 (= Env13) S. rhizophila (GG8) Cave  2010 
ANC 4345 (= Env14) S. rhizophila (GG8) Cave  2010 
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* Strain codes used by Nurvar et al. [16] are in parentheses. 
# Assignation to genogroup based on partial gyrB gene sequence analysis [17]. 
 

Culturing and quantification of bacteria 

Liquid (submersion) cultures of each strain were prepared in 7 mL of Mueller-Hinton Broth 

(MHB) (Oxoid Ltd, UK) in 100 mL hermetically sealed flasks [12]. These cultures were inoculated with 

~50 μL of cell suspension of standardized turbidity (~108 colony forming units [CFU] mL-1) prepared in 

saline from an overnight agar culture, and these were cultured with continuous stirring in a 

thermostatically controlled water bath for 20 h. The cultures of the 15 clinical strains were grown at 37°C 

whereas the cultivation temperature for the five environmental strains had to be lowered to 30°C because 

of insufficient growth at 37°C. As a control, sterile liquid MHB medium cultured under the same 

conditions was included in all experiments. All strains and controls were processed in duplicate within 

each experiment. Bacterial growth was assessed both by CFU counting and by optical density  

measurement. The CFU mL-1 of all strains cultured for 20 h ranged from 0.9x1010 to 1.9x1010. 

 

SPME headspace sampling protocol and GC-MS analysis. 

VOCs were extracted from the headspace of the bacterial cultures using solid phase 

microextraction (SPME) onto carboxen/polydimethylsiloxane (CAR/PDMS)-coated fibres (Supelco, 

Bellefonte, PA, USA) for 30 min at a temperature 37°C. Immediately following the extraction period, the 

SPME fibres were directly inserted into the injector of the GC-MS instrument (FOCUS GC with SSL, 

ITQ 700 ion trap mass spectrometer using electron ionisation) held at 210°C. The GC conditions were the 

following: splitless injection, He carrier gas at 1 mL/min, GC oven temperature program 38°C  (hold 13 

min) 3°C/min ramp up to 100°C (hold 5min), 4°C/min to 150, 20°C/min to 210°C and a final hold 3 min 

(total run time 58 min). A GC-MS capillary column TG-624 (fused 100% Cyanopropylphenyl 

Polisiloxane, 30m x 0.25mm ID x 1.0um film) was used. Electron ionisation at 70eV generated ions that 
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were analysed by the ion trap operating in the scan mode (m/z 15–400, scan rate 1 scan/s). Peak 

identification was based on mass spectral interpretation and comparisons with the NIST 2.0 library [21]. 

Kovats retention indices were obtained by analysing standard mixtures of different C5-C10 hydrocarbons. 

Whilst the SPME/GC-MS technique is a suitable method for identification of unknown molecules in 

complex matrices, quantification of compounds is time consuming and not precise. SIFT-MS is able to 

accurately quantify specific VOCs in complex mixtures in real time and so the combination of SPME/GC-

MS and SIFT-MS is powerful for the analysis of complex mixtures. 

 

SIFT-MS analysis 

The SIFT-MS analytical technique has been described in detail previously [10, 11, 22] and the 

particular aspects of its use to analyse in vitro bacterial cultures are detailed in the previous papers by 

Shestivska et al [12, 13]. Thus, the headspace of the bacterial cultures was analysed using judiciously 

chosen reagent ions (H3O+, NO+ or O2
+) to produce analyte ions that identify the neutral trace compounds 

present in the headspace [10]; the the count rates of these analyte ions provide accurate absolute 

quantification of the precursor neutral trace compounds down to concentrations as low as parts-per-billion 

by volume, ppbv [23-25]. A list of compounds quantified by SIFT-MS, together with the reagent ions and 

the analyte ions used for their identification and quantification, is given in Table 2. Some of the 

compounds identified by GC-MS analyses were specifically targeted for SIFT-MS analysis. The data 

obtained were assessed by principal component analysis (PCA) using the Statistica software (StatSoft 

Czech Republic s.r.o.), as explained and discussed later. 

  

7 
 



 

Table 2. Reagent and product ions used for SIFT-MS quantification of volatile metabolites in the 
headspace of cultures of the 20 Stenotrophomonas strains. Note that SIFT-MS quantifications correspond 
to the sum of concentrations of all isomers of the compounds indicated.  

 
SIFT-MS MW 

g/mol 
reagent 
ion 

Analyte (product) ions 
m/z 

Methanol 32 H3O+ 33, 51, 69 
Propanol 60 H3O+ 43 
Butanol 74 H3O+ 57, 75, 93 

Methyl butanol 88 H3O+ 71, 89, 107 
Hydrogen sulphide 34 H3O+ 35, 53 

Methanethiol 48 H3O+ 49, 67, 85 
Dimethyl sulphide 62 O2

+ 62, 80 
Dimethyl disulphide 94 NO+ 94 

Butanone 72 NO+ 102 
Ammonia 17 O2

+ 17, 35 
Methyl benzoate 136 H3O+ 137 

Pentane 72 O2
+ 42, 72 

Butyric acid 88 NO+ 71, 118 
 

 

Results and discussion 

Sample chromatograms obtained by headspace SPME/GC-MS analyses of cultivated sterile 

medium and of identical media cultivated with clinical and environmental S. maltophilia strains are shown 

in Fig. 1. The GC-MS data show that the qualitative composition of the produced VOCs (see Table 3) is 

very similar for all 20 Stenotrophomonas strains studied.  
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Fig. 1. GC-MS analyses of VOCs extracted using SPME from the headspace of a) blank sample (liquid MHB 
medium), b) identical medium cultivated with the clinical S. maltophilia strain ANC 4266 c) clinical S. maltophilia 
strain ANC 4263 (GG6), d) environmental S. maltophilia strain ANC 4343(GG9), e) environmental S. rhizophila 
strain ANC 4345 (GG8).  
 

The SIFT-MS analyses provided absolute concentrations of 13 VOCs given in Fig. 2, but were 

unable to distinguish the two methyl butanol isomers (both with a molecular weight of 88). SIFT-MS 

indicated presence of relatively high concentrations of ammonia (500 to 2000 ppbv), which is commonly 

produced by bacteria, including oral cavity bacteria, and so it cannot be used as a reliable volatile 
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biomarker of lung infection. However, its elevation in the breath of patients may be a useful co-biomarker 

in combination with other specific volatiles such as methyl butanol (see below). 

 

 

 
Fig. 2. SIFT-MS quantifications (in ppbv) of volatile metabolites detected in the headspace of cultures of the 20 
Stenotrophomonas strains indicated by box and whiskers plots; dashed green for environmental and open black for 
clinical strains (whiskers indicate minimum and maximum range, boxes indicate 25th and 75th percentile and the 
lines indicate medians). The diamond data points show median concentrations in the headspace of cultured control 
medium.  

 

 

Table 3 shows the VOCs identified by SPME/GC-MS in the culture headspace of the 20 

Stenotrophomonas strains. Fourteen of these VOCs were seen in all the strains, including acetone, 2-
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butanone, 2-propanol, dimethyl disulphide, 2- and 3-methyl butanol. These VOCs can also be released by 

other bacterial cells, but in different concentration, as previously reported [5, 6, 12, 13]. 

 

Table 3. Volatile metabolites detected by SPME/GC-MS the headspace of cultures of the 20 Stenotrophomonas 
strains. Peak areas corresponding to the headspace concentrations of selected VOCs are indicated as percentages of 
observed maximum as: ↓<25%, ○=25-75% and ●>75%.  

 
Compound Retention 

time (m) 
Retention 

index 
Medium only Clinical Environmental 

1-propanol 7.03 616 ↓ ○ ○ 
2-propanol 4.44 547 ○ ○ ○ 
2-butanol 9.38 650 ↓ ○ ● 
2-methyl-1-propanol  12.23  ↓ ● ● 
1-pentanol 25.00 833 ↓ ○ ◌ 
3-methyl butanol 22.48 800 ↓ ● ● 
2-methyl butanol 22.76 804 ↓ ● ● 
dimethyl disulphide 20.42 779 ↓ ○ ● 
dimethyl trisulphide 38.04  ↓ ○ ○ 
methyl thiolacetate 16.40 737 ↓ ◌ ○ 
2-butanone 8.53 638 ○ ● ● 
2-pentanone 16.80 741 ↓ ○ ○ 
2-heptanone 32.48 934 ↓ ○ ○ 
butyric acid 29.04 885 ↓ ○ ○ 

 
 

Several organosulphur compounds were identified in the headspace of both the clinical and 

environmental Stenotrophomonas strains. Some of these compounds are commonly generated by bacteria, 

including those often present in the healthy human oral cavity responsible for oral malodour (hydrogen 

sulphide, methanethiol) [26-28]. However, one sulphur compound, dimethyl trisulphide, which was 

identified by SPME/GC-MS in the headspace of all 20 strains (see Table 2), is not usually released by 

non-Stenotrophomonas bacteria [4, 5] and, thus, may be considered as a potential volatile biomarker in 

exhaled breath specific to Stenotrophomonas infection.  
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Several aldehydes, including methyl butanal, were observed in the headspace of the blank MHB 

liquid media and their concentrations decreased in the headspace of bacterial cultures; thus, they are not 

included in Table 2 and Table 3. This  removal of aldehydes from culture media by bacterial and some 

mammalian cells has been observed in previous studies [29-32]. 

 

Presence of methyl butanol isomers in the headspace of Stenotrophomonas cultures 

The SPME/GC-MS data show similar qualitative VOCs composition for all 20 strains. As 

examples of positive compound identification, total ion current chromatograms obtained for the sterile 

MHB liquid medium and four selected Stenotrophomonas strains are shown above in Fig.1. An important 

observation is that all the strains produced high amounts of two isomers of methyl butanol (Fig.1) 

(retention times 20.72 min for 3-methyl-1-butanol and 21.04 min for 2-methyl-1-butanol), so we have 

given special attention to these compounds. The elution times and the ionisation fragmentation patterns 

of these two compounds agreed with those of reference standard sample of these isomers and also with 

those included in the NIST ion mass spectral library NIST 2.0 [21]. Methyl butanol was observed in all 

the 20 strains (ranges of ion signals: 1.8x105 to 2.5x107 for 3-methyl-1-butanol and 3.2x107 to 2x108 for 

2-methyl-1-butanol), the ion signal level of 3-methyl-1-butanol being typically 20% of that for 2-methyl-

1-butanol, as indicated by the slope of the plot in Fig. 3. 
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Fig. 3. GC-MS peak area correlation between 2-methyl butanol and 3-methyl butanol detected in the headspace of 
20 Stenotrophomonas strains cultured in liquid MHB medium. The diamonds indicate the 15 clinical strains and 
the circles indicate the 5 environmental strains. Note the different correlations (R2 values) for the two types of strain 
(see the text). 

 

Fig. 3 also indicates the close correlation (more than 80%) between the GC-MS signal peak areas 

for 2- and 3- methyl butanol generated by the 15 clinical Stenotrophomonas strains. The analogous 

correlation for the five environmental strains is weaker (R2= 0.39). This can be related to different 

metabolisms of those two groups of bacteria, but given the small number of samples this weaker 

correlation should not be over interpreted. Note that SIFT-MS quantification provides the total 

concentration of these two butanol isomers and their pentanol isomers; but, according to these GC-MS 

data, pentanol was present in the headspace of these bacteria strains in much smaller amounts (range of 

ion signals <2x105) compared to the methyl butanol isomers (see above). 
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Fig. 4. Concentrations (ppbv) of total methyl butanol measured using SIFT-MS obtained for the headspace of 15 
clinical and 5 environmental Stenotrophomonas strains cultured in liquid MHB medium. Also included, for 
comparison, are the results from identically cultivated medium samples that were not inoculated. 

 

SIFT-MS quantification of total methyl butanol (sum of the concentrations of the two isomers) 

showed that these compounds were produced in the headspace of all 20 strains in significant 

concentrations within the range 87-1036 parts-per-billion by volume (ppbv). As shown by the box and 

whisker plots in Fig. 4, there is a clear difference between the concentrations of total methyl butanol in 

the headspace of the environmental strains (from 87 to 201ppbv) and the clinical strains (from 283 to 1036 

ppbv.  

Some clinical strains of S. maltophilia (genogroups other than GG9) produced much more methyl 

butanol than the environmental S. maltophilia (GG9) and S. rhizophila. This difference may result from 

the genetic distinction of the two bacterial species and different genogroups of S. maltophilia. If this is the 

case, such a difference could assist diagnosis of lung/airways infection by different Stenotrophomonas 

genogroups via breath analysis. However, more strains must be analysed using different culture media 
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before any definite conclusion can be drawn on this issue. In addition, the quantitative differences in the 

production of methyl butanol between the two bacterial groups may also reflect the different cultivation 

temperatures for the clinical (37°C) and environmental (30°C) strains that were needed to obtain 

approximately equal culture densities for all strains. 

It is also important to note that methyl butanol has also been identified in the headspace of cultures 

of the major CF pathogen P. aeruginosa when cultured in MHB liquid medium [33, 34], but at much 

lower concentrations  (within the range 1 -15 ppbv) [13]. This may further support the role of methyl 

butanol as a specific biomarker of Stenotrophomonas infection. Again, this assumption needs to be 

verified by more extensive studies.  

Only a very weak correlation (R2=0.07) is observed between the GC-MS peak area for methyl 

butanol and the total concentration of methyl butanol isomers as quantified by SIFT-MS. This is most 

probably due to the uncertainty in defining GC-MS peak areas and the variability of the extraction 

efficiency of volatile metabolites by the SPME fibre. Fig. 5 shows a comparison of the total GC-MS peak 

areas for methyl butanol and butanol in the headspace of all 20 Stenotrophomonas strains. The reasonable 

correlation (R2 = 0.6) may suggest common biochemical origins for these isomers (see Appendix 2). 
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Fig. 5 GC-MS peak area correlation for total methyl butanol and 2-butanol detected in the headspace of 20 
Stenotrophomonas strains cultured in liquid MHB medium.  The diamonds indicate the 15 clinical strains and the 
circles indicate the 5 environmental strains.  
 

 

Principal component analysis (PCA) of SIFT-MS concentrations data 

Principal component analysis (PCA) methods, as used previously for the assessment of bacterial 

culture headspace data obtained using SIFT-MS [5, 35], have also been used in the present work to 

visualize the differences in the composition headspace concentration of VOCs emitted by the clinical and 

environmental Stenotrophomonas strains cultured in the same medium. The plot of the PCA scores of the 

first two principal components shown in Fig. 6 reveals a clear discrimination between the concentrations 

of volatile metabolites present in the headspace of clinical and environmental Stenotrophomonas bacterial 

cultures and culture medium alone. The main compounds important for discrimination between the 

environmental and the clinical strains are acetaldehyde, aminoacetophenone, ammonia, carbon disulphide 

and dimethyl disulphide, as indicated by the directions of the eigenvectors plotted in Fig. 6.  
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Fig 6. Principal component analysis (PCA) for SIFT-MS data obtained from full spectral scans. Scores of the first 
two principal components PC1 and PC2, which correspond to headspace concentrations, are indicted by blue circles 
for the 15 clinical strains, green diamonds for the 5 environmental strains and orange triangles for identically 
cultivated medium samples that were not inoculated. The lines indicate the projected directions corresponding to 
the individual compounds indicated. The PC1 scores plotted on the horizontal axis explain 29.5% of the variation 
and the PC2 scores  plotted on the vertical axis explain 13% of the total variation. 
 

Concluding remarks  

The results of this combined SPME/GC-MS and SIFT-MS study indicate that methyl butanol is produced 

by both environmental and clinical strains of the genus Stenotrophomonas cultured in vitro, and that 

clinical strains produced methyl butanol in significantly higher concentrations compared to strains from 

the natural environment. Thus, methyl butanol might be present in measurable concentration in the 

exhaled breath of CF patients; if so, this could provide a specific and valuable non-invasive VOC 

diagnostic of early lung infection by Stenotrophomonas. Note that methyl butanol was not reported in 

previous studies of pathogens relevant to CF, viz.  P. aeruginosa, S. aureus, S. pneumoniae, and the fungus 

PC2 

PC1 
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A. fumigatus [6]. More extensive work is needed to investigate this tentative postulate, including further 

in vitro bacterial culture studies as well as in vivo studies of the exhaled breath of precisely defined 

clinically and epidemiologically cohorts of patients. Also, it is important to keep in mind that the suggested 

method of SIFT-MS quantification of methyl butanol relies on the use of the analyte ions at m/z 71, 89 

and 107 formed by its reactions with the H3O+ reagent ions. Whilst currently no overlaps with common 

breath metabolites are known at these m/z values, this cannot be entirely ruled out. 

This study again shows that by direct analysis of the headspace of active bacterial cultures by 

SIFT-MS, absolute concentrations of several volatile metabolites can be obtained simultaneously. 

Reporting of absolute concentrations is most valuable in such in vitro experiments when the ultimate 

objective of the work is to provide guidance to envisaged in vivo investigations and the anticipated 

exploitation of breath analysis for the detection bacterial infection in the airways and lungs. Diagnosis of 

airways infection by sample (sputum, lavage) collection is often challenging, especially in children, and 

so immediate non-invasive diagnosis by the identification and quantification in exhaled breath of volatile 

biomarkers of specific infections is very attractive. Such could provide a rapid identification of the 

infecting bacterium, thus indicating more appropriate treatment, and a concomitant reduction of stress for 

both patients and clinicians alike.  

 

Acknowledgements 

We gratefully acknowledge funding from Czech Science Foundation GACR projects No 14-14534S and 

No 14-15771P. We are grateful to Martina Maixnerová for help with culturing of bacterial strains. 

  

18 
 



Appendix 1 Genetic diversity of the genus Stenotrophomonas  

The genus Stenotrophomonas currently comprises 12 distinct species with valid names 

(http://www.bacterio.net/stenotrophomonas.html), but the genetic diversity is remarkable and further 

differentiation at the species level is expected [36]. This applies also to the most important species, 

Stenotrophomonas maltophilia, which has been only broadly defined and may represent several species 

according to the current taxonomic criteria. A number of genotypic methods have been used to unravel 

the taxonomic and phylogenetic diversity of  S. maltophilia, including AFLP fingerprinting [37], 16S 

rRNA gene comparative analysis [20] and multilocus sequence typing (MLST) [17].  Most strains of S. 

maltophilia are characterized by their resistance to many currently available broad-spectrum antimicrobial 

agents [38]. The environmental strains of S. maltophilia show high resistance to antibiotics, as do the 

strains isolated from the sputum of CF patients, and the resistance profile pattern of the strains is seen to 

be independent of their source of isolation [39]. Many strains are susceptible to co-trimoxazole and 

ticarcillin,  though resistance to these antibiotics has been increasing [40].  

Strains from AFLP group 8 (= MLST genogroup (GG) 8 = 16S rRNA group E1) were recently 

accommodated in a novel species, Stenotrophomonas rhizophila [19]. This species has been isolated from 

environmental sites only. Another distinct lineage, AFLP group 9 (MLST genogroup GG9 = 16S rRNA 

group E2), also seems to be a strictly environmental group [18-20]. In contrast, the AFLP group 6 (= 

MLST genogroup GG6) has repeatedly been shown to be prominent among clinical strains [16, 17, 37]. 

The defining characteristics of  S. rhizophila are as follows: growth at 4 °C and the absence of growth at 

40 °C; the utilization of xylose as a carbon source; lower osmotic tolerance, the absence of lipase and β-

glucosidase production and antifungal activity [41]. It has been observed that S. rhizophila, as a plant-

associated bacterium, has the ability to grow at lower temperatures. As the environmental strains have a 

preference for lower temperatures, this might be related to their ability to survive in the rhizosphere.  
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Appendix 2 Biochemical routes to the production of methyl butanol by the genus Stenotrophomonas 

There are several known mechanisms of production of butanol and methyl butanol by bacteria. For 

example, butanol (biobutanol) can be naturally synthesized by solventogenic bacteria of the genus 

Clostridium through renewable substrates such as glucose. Higher-order alcohols (like 3-methyl butanol) 

can be produced through the ketoacid pathways [42, 43]. Scheme I describes possible and natural 

fermentative pathways for biosynthesis of branched-chain higher alcohols, including methyl butanol. This 

shows that metabolic synthesis of both methyl butanol and butanol is complementary. It is perhaps 

significant that both of these VOCs have been identified in measurable concentration in the headspace of 

the cultures of all 20 strains included in the present study , and that their headspace concentrations are 

well correlated, as seen in Fig. 5, probably indicating that they both originate from the keto-acid metabolic 

pathway (see Scheme I). Much previous research has been concerned with the biotechnology of methyl 

butanol production as a potential biofuel and so some details of the mechanism of methyl butanol 

production by different bacteria and yeast cells are already understood. A high yield for iso-butanol 

production from glucose by microbial fermentation has been achieved [44].  

Scheme I shows that the two isomers of methyl butanol each originate from a different metabolic 

pathway: 3-methyl butanol from that proceeding via pyruvate and 2 methyl butanol from that proceeding 

via oxaloacetate, whilst butanol is produced in both of these pathways. The clinical and environmental 

strains included in the present study are genetically different and thus could produce different amount of 

enzymes.  
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Scheme I Metabolic keto-acid pathway for the biosynthetic production of 3-methyl butanol and 2-methyl butanol 
[42, 44] 

 

Another possible synthesis of methyl butanol is from methyl butanal, even though is not considered 

to be physiologically relevant: 

 

 

(1)

 

Scheme II 

 

However, the correlation between methyl butanol and methyl butanal concentrations as measured in the 

present study of Stenotrophomonas is weak (R2= 0.16). Thus, we judge that this metabolic pathway for 

methyl butanol production by this bacterium is unlikely.  
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S. maltophilia and S. rhizophila are ubiquitous in aqueous environments and soil. As organisms 

living in a wild environment, Stenotrophomonas have to coexist with many other bacteria and fungi that 

can produce toxic secondary metabolites. Thus, the competition between microorganisms and 

Stenotrophomonas bacteria for these ecological niches is very intense. Stenotrophomonas is also often 

associated with plants and has been isolated from rhizosphere in which wheat, oat, cucumber, maize, 

oilseed rape, and potato are grown. Consequently, Stenotrophomonas bacteria must have some specific 

strategies to exist in such environments and to manage the symbiotic relationship [45]. It is often a 

dominant member of the rhizosphere microbial community of plants and can produce high amounts of the 

plant growth hormone indole-3-acetic acid [39]. On the other hand, some studies suggest that 

Stenotrophomonas might potentially produce phytotoxic substance at one of stages of its life cycle, [46] 

causing root shortening due to 2-methyl butanol, 3-methyl butanol and 3-methyl butanal. Thus, we 

speculate that the high production of methyl butanol by Stenotrophomonas could be a specific genetically-

conditioned pathway process in Stenotrophomonas bacteria.  

From the evolutionary point-of-view, it is worth noting that methyl butanol production was 

detected in both the clinical and environmental Stenotrophomonas strains. Many studies have consistently 

shown that the environmental genogroups GG9 (syn. E2) and GG8 (S. rhizophila, syn. E1) branch at the 

base of Stenotrophomonas phylogenetic trees, and can therefore be considered ancestral lineages [18-20]. 

Thus, it can be inferred that the metabolic pathways leading to methyl butanol production were fixed early 

during Stenotrophomonas evolution before the divergence of pathogenic lineages (typically GG6). 

However, cellular metabolism of Stenotrophomonas is very complex and it is therefore difficult to account 

for every detail of the synthesis of methyl butanol by this bacterium. For effective optimization, details on 

the genes and enzymes responsible for the synthesis of the target compound, as well as undesired side 

products, need to be known. 
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