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Abstract

Inhibition in set switching is inferred from so-called n–2 repetition costs:
slower response times to ABA sequences compared to CBA sequences (where
A, B, and C are arbitrary labels for different tasks). These costs are thought
to reflect the persisting inhibition of task A when it was disengaged re-
cently (as is the case in an ABA sequence). In this study we were interested
in whether more inhibition may be required when the tasks are relatively
novel. To this end, we examined the effect of practice on the n–2 repeti-
tion cost in nine participants across five experimental sessions, with 1,222
trials performed in each session. The results show a clear reduction in the
n–2 repetition cost, being altogether absent from the final sessions. Such
a reduction is predicted by both: (a) a recent computational model of the
n–2 repetition cost (Grange, Juvina, & Houghton, 2013) due to the gradual
strengthening of task-related memory elements with practice to the point
where inhibition has less impact; and (b) prior work showing smaller n–
2 repetition costs with greater cue–target association strength (Houghton,
Pritchard, & Grange, 2009). In this paper, we integrate these two theoreti-
cal derivations by extending our computational model, which fit the current
data—at the mean level, block level, and individual-subject (i.e., individual
differences) level—well.
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1. Introduction

The human environment is increasingly busy, with many possible tasks competing
for our attention at any given time. Sat at a computer, for example, there are a plethora
of tasks that could be selected (e.g. writing, Internet-browsing, playing online chess etc.).
How are humans able to select the goal-relevant task (e.g. writing a manuscript) in the
face of so many competitors? Once selected, how is the task maintained in the focus of
attention, so that competing tasks do not interfere with ongoing performance? How is it
that, when no longer goal-relevant, tasks can be switched quickly and efficiently?

The so-called task switching paradigm (Grange & Houghton, 2014; Kiesel et al., 2010;
Vandierendonck, Liefooghe, & Verbruggen, 2010) has provided much insight into the cogni-
tive processes thought to enable successful maintenance and flexible shifting of task-sets (the
mental representation of the task to perform; Logan & Gordon, 2001). In this paradigm,
participants typically must rapidly switch between simple cognitive tasks on bivalent stim-
uli (e.g. odd/even and magnitude judgments on number stimuli). One component process
thought to aid task switching is the inhibition of competing task-sets (Koch, Gade, Schuch,
& Philipp, 2010; Mayr & Keele, 2000). When a task is required, the task-set must become
active in working memory in order to be acted upon. However, such activation is hindered
by the still-active representation from the previous trial; thus activation of the current task-
set is thought to be coupled with the inhibition of the previous task-set (Mayr & Keele,
2000).

Evidence for inhibition in task switching comes from the backward inhibition
paradigm (Mayr & Keele, 2000) where participants switch between three potential tasks.
It has been consistently shown that response times and errors are increased returning to a
task after one intermediate task (e.g. ABA) compared to returning to a task not-so-recently
performed (e.g. CBA). This n–2 repetition cost is thought to reflect the persisting inhibition
of task A, which hampers its re-activation when required soon after its inhibition (as in an
ABA sequence). Inhibition in task switching has been shown to act on many different lev-
els of the task-set, targeting those aspects of the trial-structure that generate the greatest
inter-trial conflict (Houghton et al., 2009): the n–2 repetition cost is modulated by altering
cue/preparation-related processes (Gade & Koch, 2014; Grange & Houghton, 2009, 2010b,
2011; Houghton et al., 2009; Scheil & Kleinsorge, 2014), stimulus-related processes (Sdoia
& Ferlazzo, 2008) and response-related processes (Philipp, Jolicoeur, Falkenstein, & Koch,
2007; Schuch & Koch, 2003).

Although much is known about the n–2 repetition cost, there are still some funda-
mental questions to be addressed. One such question we focus on in the current paper is
whether more inhibition is required when the tasks being performed are relatively novel;
that is, we were interested in whether there was any modulation of the n–2 repetition cost
with extended practice. Recent studies have examined the effect of practice on standard
task switching measures. For example, Stoet and Snyder (2007) and Berryhill and Hughes
(2009) investigated the effect of practice on switch costs (the RT cost to task switches com-
pared to task repetitions): Berryhill and Hughes (2009) found the cost was reduced, but
not eliminated; Stoet and Snyder (2007) found a reduction of the cost in two naiive partic-
ipants, but a slight increase for two non-naiive participants. Strobach, Liepelt, Schubert,
and Kiesel (2012) also found the switch cost reduced, but was not eliminated after practice;
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however, these authors observed that the mixing cost—the slower RT to a task repetition
trial in a switching block compared to a task repetition trial when only that task is possible
(i.e. a pure block)—was fully eliminated after practice. These results seem to converge on
the finding that the switch cost cannot be eliminated even after extensive practice, sug-
gesting it reflects a core limitation to cognitive flexibility. However, none of these studies
investigated the n–2 repetition cost.

Indeed, upon considering prior work in this area, we derived—on the basis of two
theoretical reasons—a clear prediction of a reduction of the n–2 repetition cost with ex-
tended practice. One aspect of theory that predicts a reduction of the cost with practice
regards the practice-driven reduction of conflict in working memory when switching, due
to automisation of establishing the relevant attentional set (i.e., cue–target translation; see
Houghton et al., 2009); the other arises from a recent computational model of inhibition in
set switching (Grange et al., 2013) whereby increased practice of a task raises the resting
activation levels of task-related memory elements, which over-rides short-term inhibition.
We discuss each in turn below.

1.1. Automisation of cue–target translation processes

One reason to predict a reduction of the n–2 repetition cost with practice stems
from the work of Houghton and colleagues (Grange & Houghton, 2010b; Houghton et al.,
2009) who suggested that inhibition in a set switching context can be triggered by cue-
related conflict in working memory (WM) when establishing the relevant attentional set.
In their target-detection set-switching paradigm (similar to that of Mayr & Keele, 2000),
participants were presented with four potential target ovals, with each differing on a unique
visual property (e.g. one was angled, one was shaded, and one had a thick border; one was
neutral and upright and served as a distractor). Participants were presented with a cue
which signalled which target to search for on that trial (for example, a “square” cue might
mean search for the shaded oval). Houghton and colleagues (2009) argued that participants
must use the cue to activate a representation (i.e. attentional set) of which target to search
for, a process they called cue–target translation. When the relevant target switches, the
representation formed on the previous trial generates conflict in WM with the representation
required on the current trial, triggering inhibition of the prior representation.

Supporting evidence comes from manipulating the transparency of the cue–target
relationship; that is, the degree to which the cue exogenously provides the representation
required to find the relevant target (Grange & Houghton, 2010a). For example, a cue–
target relationship with low transparency would have no pre-experimental association with
its paired target (e.g. a square cue being paired with a shaded oval target) whereas a
highly-transparent cue–target relationship the cue would share some of the properties of
the to-be-located target (e.g. a shaded rectangular cue being paired with a shaded oval
target). Decreasing cue–target transparency increases the effort required to form an active
representation of the target, increasing the amount of potential conflict in WM when a
switch is required. For maximally-transparent cue–target pairings, very little (if any) cue–
target translation is required, and thus little conflict arises in WM during a switch, triggering
no/less inhibition. Across several studies, Houghton and colleagues have shown that the
magnitude of the n–2 repetition cost is inversely related to the transparency of the cue–
target relationship, being altogether absent when highly-transparent cue–target pairings are
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used (Grange & Houghton, 2009, 2010b, 2011; Grange et al., 2013; Houghton et al., 2009).
Such an account would predict a reduction of n–2 repetition cost with extended

practice due to the gradual automisation of cue–target translation processes. Using non-
transparent cue–target pairings, cue–target translation is initially slow and effortful, re-
quiring considerable work in WM to activate a target representation (what Logan, 1988,
might call an “algorithmic” process); thus, when a switch occurs, there is more in WM
that can generate conflict (and hence inhibition). With practice, however, this slow process
can be replaced by a fast automatic retrieval process, whereby prior instances of the cue–
target relationship can be directly retrieved from long-term memory with little effort. Thus,
when automated, cue–target translation requires less effort, and generates less conflict in
WM when switching. With practice, non-transparent cue–target pairings might therefore
behave like highly transparent cue–target pairings, because the cue can directly retrieve
the target pairing. This is a natural prediction from our prior work, investigating how
cue–target transparency modulates inhibition in set switching.

1.2. Predictions from a computational model of inhibition

In a previous paper (Grange et al., 2013), we presented a computational model to
account for n–2 repetition costs and benefits in set switching. This model was implemented
in the ACT-R cognitive architecture (Anderson, 2007) and integrates other previous related
work (Juvina & Taatgen, 2009; Lebiere & Best, 2009). This model was able to account for
n–2 repetition costs by using the standard cognitive mechanisms embedded in ACT-R (e.g.,
memory activation due to frequency and recency of use) and a newly added inhibition
mechanism (Lebiere & Best, 2009)1. In the ACT-R model of the target-detection paradigm
of Houghton et al. (2009), correct performance on an individual trial required successive
retrieval of “chunks” of information from declarative memory. For example, when presented
with a square cue, the model needs to retrieve a chunk from declarative memory that
represents the target that is paired with that cue. In ACT-R, a retrieval request returns
the most active chunk; thus, the system must ensure that the correct chunk is the most
active. The speed of retrieving a chunk is inversely related to its activation: highly active
chunks are retrieved quickly and accurately.

In ACT-R, the total activation of a chunk is governed by the current context (e.g.
through spreading activation from presented cues) as well as its base-level learning activation
(BLL), which reflects the degree of practice with a particular chunk. It assumes that once

1The model was not designed to account for standard task switching effects, such as the switch cost and
its reduction with increased preparation. Indeed, in a standard task switching experiment (i.e. comparing
task switch versus task repetition sequences) the model of Grange et al. (2013) would actually predict
repetition costs (rather than the benefits observed) because in the model the most recently performed task
is inhibited. (Although, it should be noted that the model can easily account for both n–1 repetition benefits
and n–2 repetition costs if we assume a fast short-term store independent of long term memory.) However,
in backward inhibition paradigms, no task repetitions occur; it has been shown by Philipp and Koch (2006)
that the n–2 repetition cost is reduced/eliminated when immediate task repetitions are possible. It might
be that when no task repetitions occur (i.e., there is no benefit of repetition priming) the cognitive systems
utilises a strategy of automatically inhibiting just-performed tasks (although the mechanism by which this
strategy is adopted is not modelled by Grange et al.). It should also be noted that models that do account
for standard task switching effects (e.g., Altmann & Gray, 2008; Schneider & Logan, 2005) cannot account
for n–2 repetition costs. Thus, although the model is far from complete, it does account for empirical effects
extant models do not.
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a chunk is activated, its activation will begin to decay as a power function of time, making
it gradually less accessible. Formally, the base-level activation A of chunk i is governed by

Ai = ln
n∑

j=1
t−d
j (1)

where ln is the natural logarithm, tj is the time since the jth presentation of that chunk,
and d is a decay parameter. As this equation would predict an n–2 repetition benefit (see
Grange et al., 2013), to model n–2 repetition costs, Grange et al. (2013) utilised a short-term
inhibitory mechanism of Lebiere and Best (2009) which is subtracted from the total BLL
(Equation 1), and only considers the most recent presentation of a chunk (cf., Equation 1).
This short-term inhibitory input, γ, is given by

γ = ln

(
1 +

(
tn
ts

)−ds
)

(2)

where tn is the time since the most recent reference to a chunk, ts is an inhibition scaling
parameter, and ds is an inhibition-decay parameter. Thus, total activation is

Ai = ln
n∑

j=1
t−d
j − γ (3)

An interesting prediction that arises from this model is that the n–2 repetition cost
should reduce with practice because the frequency component of activation (i.e. base-
level learning, Equation 1) overpowers the short-term inhibition component (γ). In other
words, extensive practice (i.e., frequency of use) strengthens memories to the point where
inhibition (which is not a function of frequency) has relatively smaller and smaller impact.
To demonstrate the a priori predictions of this model, we conducted simulations utilising
the experimental procedures presented in the present paper (i.e. 5 sessions of 1,222 trials)
using the parameters from the model in Grange et al. (2013). The model’s predictions are
shown in Figure 1, and indeed show a reduction of n–2 repetition cost with practice.

1.3. Summary

To summarise, we have derived two clear theoretical reasons to expect a decline in
n–2 repetition cost with extended practice in the set switching paradigm of Houghton et
al. (2009). In the following section we report an experiment which tested this prediction.
To anticipate the findings, we do indeed find a clear reduction of the n–2 repetition cost
with practice. In the General Discussion, we discuss these results in light of our theoretical
derivations. In particular, we extend the model of Grange et al. (2013) to include gradual
strengthening of cue–target associations with practice. This increasing cue–target associa-
tion strength is one way to formalise the cue–target translation hypothesis of Houghton et
al. (2009), and was necessary for the model to fit the human data satisfactorily.

Based on the modelling presented in the General Discussion, we suggest that the
reduction of the n–2 repetition cost with practice in this paradigm is caused by both au-
tomisation of cue–target translation and the gradual increase of base-level activation of
memory elements.
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Figure 1

2. Method

2.1. Participants

10 participants were recruited from the School of Psychology at Keele University in
exchange for £30 (£6 per session). One participant was removed due to average error rate
above 10%.2

2.2. Apparatus & Stimuli

Stimuli were presented on a 17-inch CRT monitor attached to a PC running E-Prime
(v. 2.0) experimental software. Responses were collected with a 1-ms precise USB keyboard.
The target display consisted of the presentation of four ovals (6 centimeters [cm] in height;
one had a width of 3.5cm, and the other three had widths of 2.3cm). Each target differed
on a visual property: one was shaded in gray; one had a thickened black border; one was
angled; one was neutral and upright, merely serving as a distractor. The three potential
cues were a square, a triangle, and an octagon (each with a height and width of 4cm). Cues
and targets were presented in grayscale on a white background.

2.3. Procedure

Participants were tested individually across five separate sessions, each separated by
a day. Each session consisted of 10 blocks of 122 trials, preceded by a small warm-up
session of 16 trials. Thus, each participant took part in 6,100 experimental trials across all
sessions. A trial began with a centrally positioned cue for 500ms, which was then removed
and replaced by a blank screen for 250ms; after this, the four target items were displayed,

2The qualitative pattern of results remains as reported when we include this subject in the analysis,
except where noted in footnote 3. As the exclusion criteria of accuracy > 90% was decided a priori, we keep
this participant removed from the analysis.
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with one target centered in each quadrant of the screen (target location was randomised on
every trial). The participants’ task was to respond to the location of the target that was
paired with the cue presented making a spatially-congruent response: upper left response =
D; upper right response = J; lower left response = C; lower right response = N. Participants
were asked to use the index and middle finger of both hands to make their responses, and to
respond as quickly and as accurately as possible. The cue–target pairings were as follows:
square cue = shaded oval; triangle cue = bordered oval; octagon cue = angled oval. Once
a response was registered, the targets were removed and a blank screen was displayed for
500ms, after which a new cue was presented. Cue selection was random with the constraint
no repetition could occur. Set sequences were coded online by the computer program as
either n–2 repetitions (i.e., ABA sequences) or n–2 switches (CBA sequences). No error
feedback was provided.

2.4. Design

The experiment manipulated two independent variables in a fully-related design, with
the factors task sequence (ABA vs. CBA) and experimental session (sessions 1–5). The
dependent variables were response time (in milliseconds, ms) and percent error.

3. Results

The raw data was trimmed before analysis by removing the first two trials from each
122-trial block; for the response time analysis, error trials and the two trials following an
error were also removed. The response time data can be seen in Figure 2 (left panel),
and the error rates are shown in Table 1. Although the analysis focuses on n–2 repetition
costs per experimental session, Figure 3 (upper panel) plots average n–2 repetition costs
per 122-trial block of the experiment (recall each session comprised ten 122-trial blocks).
This provides a finer-grained overview of the dynamics of n–2 repetition cost with practice.

3.1. Error rates

Table 1
Mean error rates (%) and their 95% confidence intervals (in square brackets) for ABA and
CBA sequences across all five sessions.

Sequence

Session ABA CBA

1 2.44 [1.15, 3.62] 2.30 [0.95, 3.63]
2 2.74 [1.52, 3.97] 2.20 [0.94, 3.46]
3 2.84 [1.15, 4.54] 2.79 [1.34, 4.24]
4 3.29 [1.64, 4.94] 2.70 [1.45, 3.96]
5 3.48 [1.29, 5.67] 3.73 [2.11, 5.36]

There was no effect of sequence in the error data [F(1,8) = 1.17, p = .31, η2
p =.13];

the mean difference between ABA and CBA sequences was very small (0.22%, 95% CI
[-0.25, 0.68]). There was a slight increase in mean errors with session [F(4,32) = 2.49,
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p = .06, η2
p =.24]; mean differences were 0.11% [-0.65, 0.33] for session 1–2, 0.34% [-0.38,

1.06] for session 2–3, 0.18% [-0.72, 1.07] for session 3–4, and 0.61% [-0.03, 1.26] for session
4–53. There was no clear modulation of n–2 repetition cost across session [F(4,32) = 1.32,
p = .29, η2

p =.14]: the cost was 0.14% [-0.57, 0.86] for session 1, 0.54% [0.03, 1.06] for session
2, 0.06% [-0.82, 0.93] for session 3, 0.59% [-0.12, 1.30] for session 4, and -0.26% [-1.27, 0.76]
for session 5.

3.2. Response Times

There was a main effect of sequence, with an n–2 repetition cost of 14ms4 [2, 26]
[F(1,8) = 6.81, p = .03, η2

p =.46]. There was also a general reduction of RT with session
[F(4,32) = 20.44, p < .001, η2

p =.72]; there was a large reduction in RT between sessions
1–2 (142ms [75, 209]), but only modest/small reductions in RT between sessions 2–3 (31ms
[-2, 63]), sessions 3–4 (12ms [-19, 43]) and sessions 4–5 (12ms [-8, 32])5.

There was also a significant interaction of sequence and session [F(4,32) = 5.07,
p = .003, η2

p =.39]: the n–2 repetition cost was 41ms [4, 78] for session one, 13ms [2, 24] for
session two, 10ms [-2, 21] for session three, 5ms [-2, 13] for session four, and 1ms [-12, 13]
for session five. This reduction can be seen in more fine-grained detail in Figure 3 (upper
panel), which plots n–2 repetition costs as a function of each 122-trial block across the
whole experiment (of which there were 50).

3.2.1. Proportion analysis. It remains possible that the reduction of the n–
2 repetition cost was an artifact of the observed decrease in overall RT with increased
practice. That is, it is plausible that the n–2 repetition cost is a fixed proportion of overall
RT for that particular session. Although it has been shown that the n–2 repetition cost is

3This increase in errors is significant if we include the removed participant [F(4,36) = 3.36, p = .02, η2
p

=.27]
4In exploratory analysis, we also looked at whether the current task (e.g., “Angled task”, “Border task”,

and “Shaded task”) interacted wih any other independent variables. Thus, “task” was added as an additional
factor in the analysis. There was no main effect of task [F(1,8) = 1.45, p = .26, η2

p =.15], but task did
interact with sequence [F(1,8) = 4.65, p = .026, η2

p =.37]; n–2 repetition cost was 23ms for the angled task,
18ms for the border task, and 0ms for the shaded task. Task did not interact with session [F(1,8) = 1.59,
p = .15, η2

p =.17], and did not modulate the sequence by session interaction [F(1,8) = 1.60, p = .14, η2
p

=.17]. It is not clear what is driving this effect of task on the n–2 repetition cost, or indeed whether it
replicates (as this was discovered by post-hoc exploratory analysis). This remains an interesting question to
explore in future work. We are grateful to Iring Koch for suggesting this analysis.

5We also conducted exploratory analysis investigating whether response repetitions from n–1 to n mod-
ulated the n–2 repetition cost, and/or the reduction of n–2 repetition cost with practice (thanks to Iring
Koch for suggesting this analysis). We coded the current trial as either a response-repetition (i.e., the target
is in the same location at n–1 and n) or a response switch. There was a main effect of response repetition
[F(1,8) = 15.62, p = .004, η2

p =.66], with slower responses for response repetitions (537ms) than for response
switches (518ms). Response repetition did not interact with sequence [F(1,8) = 1.86, p = .21, η2

p =.19],
session [F(1,8) = 0.77, p = .56, η2

p =.09], and did not modulate the sequence by session interaction [F(1,8)
= 0.47, p = .76, η2

p =.06]. In standard task switching designs, it has been shown that response repetitions
lead to benefits if the task repeats, but costs if the task switches (as is the case in the current design); this
cost has been explained with reference to a self-inhibition mechanism targeting the just-executed response
(Druey, 2014). However, caution must be employed interpreting this finding in our design; due to the ran-
domization of target location among four possible locations, response (target) repetitions only occur with
p=.25. Thus, the slowing found for response-repetitions could be explained by expectancy violations, or the
relative novelty of response repetition.
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Figure 2

Figure 3
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not clearly related to speed of responding (see for example Experiment 2a of Houghton et
al., 2009), we wanted to address this possibility formally.

Therefore, n–2 repetition costs were calculated for each session as a proportion score
of response time for that session by the following transformation (e.g. Grange, Lody, &
Bratt, 2012):

Proportion = (RTABA −RTCBA)
RTCBA

(4)

which scales the n–2 repetition cost to a suitable control RT (i.e. RTCBA). The proportion
n–2 repetition cost was moderate for session one (0.06 [0.01, 0.11]) and session two (0.03
[0.003, 0.05]), but zero was a credible estimate for the remaining sessions: 0.02 [-0.004,
0.04] for session three, 0.1 [-0.003, 0.03] for session four, and 0.004 [-0.02, 0.03] for session
five. This reduction was statistically significant [F(4,32) = 4.17, p = .008, η2

p =.34]. This
pattern matches the standard RT analysis. Thus, the reduction of n–2 repetition cost with
practice is independent of the overall speed of responding. It should also be noted that
the reduction of n–2 repetition cost with practice also decreases when log(RT) is analysed,
another common method for controlling for speed of responding. The sequence-by-session
interaction for log(RT) was significant [F(4,32) = 4.00, p = .01, η2

p =.33].
3.2.2. RT Distribution Analysis. Given the wealth of trials per participant,

we also took the opportunity to analyse whole response time distributions. To accomplish
this, we fitted a mathematical function to the RT distribution for all participants for all
sessions and sequence conditions. Specifically, we estimated ex-Gaussian parameters for
each cell of the experimental design for each participant. The ex-Gaussian distribution—a
convolution of a normal distribution and an exponential distribution—is often used to model
RT distributions (Balota & Yap, 2011), and returns three parameters which describe the
shape of the RT distribution: mu, which represents the mean of the Gaussian component;
sigma, which represents the standard deviation of the Gaussian component; and tau, which
reflects the rate of the exponential component (i.e. the tail end of the distribution).

Although we have no clear theoretical reason to expect a certain pattern in this
analysis, Grange and Houghton (2011) observed that—at least in some data sets—the n–
2 repetition cost increases throughout the RT distribution. Thus, if this pattern were to
be present in the current data set, it would manifest as an effect of n–2 repetition on
the tau parameter, which reflects the tail end of the RT distribution. Presentation of
RT-distribution analysis also constrains model development (Balota & Yap, 2011), as any
successful model must not only explain performance at the mean level, but also at the
more-fine-grained distributional level. This extra requirement allows for discrimination of
competing models in circumstances where mean performance is explained equally well.

Parameter estimation was conducted using the ‘timefit’ function of the ‘retimes’ pack-
age (Massidda, 2013) in R (R Core Team, 2013), which utilises a maximum likelihood
method for estimation using bootstrap resampling with 1,000 iterations. The RT distribu-
tion data can be seen in the left column of Figure 4.

3.2.2.1. Mu Parameter. For this parameter there was no main effect of sequence,
with no observable difference between ABA and CBA sequences (-0.16ms [-1.90, 1.58])
[F(1,8) = 0.04, p = .84, η2

p =.00]. There was also no clear modulation of this parameter
with experimental session [F(4,32) = 1.86, p = .14, η2

p =.19]. There was also no difference
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Figure 4
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between the n–2 repetition costs in this parameter with experimental session [F(4,32) =
0.4, p = .99, η2

p =.00]: -0.19ms [-9.03, 8.65] for session one; 0.59ms [-4.07, 5.26] for session
two; 0.11ms [-4.47, 4.68] for session three; -0.80ms [-5.25, 3.64] for session four; and -0.50ms
[-5.82, 4.81] for session five.

3.2.2.2. Sigma Parameter. For this parameter there was no main effect of se-
quence, with no observable difference between ABA and CBA sequences (-1.04ms [-3.21,
1.13]) [F(1,8) = 1.23, p = .30, η2

p =.13.]. There was also no clear modulation of this pa-
rameter with experimental session [F(4,32) = 0.43, p = .79, η2

p =.05.]. There was also
no difference between the n–2 repetition costs in this parameter with experimental session
[F(4,32) = 0.36, p = .84, η2

p =.04.]: -2.44ms [-8.31, 3.44] for session one; -1.05ms [-3.77,
1.67] for session two; -2.07ms [-7.65, 3.52] for session three; 0.22ms [-4.38, 4.83] for session
four; and 0.11ms [-4.08, 4.81] for session five.

3.2.2.3. Tau Parameter. For this parameter there was a main effect of sequence,
[F(1,8) = 8.52, p = .02, η2

p =.52], with the estimate for ABA being 14ms [3, 25] slower than
for the CBA estimate. There was also a clear effect of session [F(1,8) = 18.03,p < .001, η2

p

=.69]. Parameter estimates reduced by 133ms [69, 197] between sessions 1–2, 23ms [-10,
56] between sessions 2–3, 19ms [-5, 44] between sessions 3–4, and 11ms [-7, 28] between
sessions 4–5. There was also a clear reduction of the n–2 repetition cost in this parameter
with session [F(4,32) = 4.93, p = .003, η2

p =.38]. 41ms [7, 75] for session one; 12ms [-2, 27]
for session two; 10ms [-2, 22] for session three; 6ms [-2, 14] for session four; and 1ms [-10,
12] for session five. It is interesting to note the parallel between the mean RT n–2 repetition
cost and the estimates of the tau parameter (see left side of Figure 2 and the lower-left plot
in Figure 4).

3.3. Individual Differences

Although we were primarily interested in the average n–2 repetition cost with ex-
tended practice, our data also afforded a closer examination of individual differences in
the n–2 repetition cost (and its reduction with practice). Individual subject plots of RTs
for ABA and CBA sequences for each experimental session can be seen in Figure 5, and
individual n–2 repetition cost per 122-trial block can be seen in Figure 6.

Subjects 4, 5, 7, 8, and 10 showed a clear reduction of n–2 repetition cost with practice,
whereas no such pattern was clear for the other subjects; subjects 2, 3, and 6 show no clear
n–2 repetition cost pattern. (Subject 1 does show a reduction, but the 95% CI includes
zero at early stages of practice.) This inter-individual difference in whether participants
exhibit n–2 repetition cost does not seem to be related to the overall speed of responding
for each participant, with the exception perhaps of subject 3 (see Figure 5). Subject 3 is
striking due to the very low variance of n–2 repetition cost across all five sessions; this
particular subject’s mean RT was also very rapid, with incredibly little variance. It is not
clear what is driving these individual differences, but it is evident that not all participants
exhibit evidence of inhibition in set switching. Even those subjects who do exhibit n–2
repetition costs do not do so consistently; even among subjects 4, 5, 7, 8, and 10, negative
n–2 repetition costs (i.e. benefits) are common in some sub-blocks.
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Figure 5
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Figure 6

4. General Discussion

In this paper, we were interested in whether inhibition in set switching—as measured
by the n–2 repetition cost—is modulated by the degree of practice participants have with the
task at hand. We exposed participants to five experimental sessions of 1,222 set switching
trials, and observed clear reduction of the n–2 repetition cost, being altogether absent
from the final block. This is the first line of evidence suggesting that practice reduces
observable inhibition in set switching. Although not the primary aim of our investigation,
RT distribution analysis suggested that this reduction was generally caused by a reduction
of the tau parameter of an ex-Gaussian fit, which reflects the tail end of the RT distribution
(Grange & Houghton, 2011). We also took the opportunity to report individual differences
in n–2 repetition cost and their reduction with practice. Not all participants exhibit n–2
repetition cost. It remains an interesting question how—if inhibition is necessary for task
switching—these participants are able to switch tasks; we return to this discussion in a later
section.

In this General Discussion, we consider these results in reference to the two theoreti-
cal derivations outlined in the introduction, before discussing how aspects of both accounts
are needed to fully account for the data. Specifically, the model of Grange et al. (2013) is
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extended here to include increasing associative strength between cues and their associated
targets in declarative memory as practice progresses; this provides a formalisation of the
cue–target translation hypothesis of Houghton et al. (2009): the increasing cue–target as-
sociation strength speeds the retrieval of inhibited chunks from memory and increases the
accuracy of these retrievals, thus reducing conflict present in WM (cf., Houghton et al.,
2009).

4.1. Cue–Target Translation Automisation

In the introduction, we outlined why a reduction of the n–2 repetition cost might
be expected from the cue–target translation hypothesis of Houghton et al. (2009): with
practice, cue–target translation processes become automised (Logan, 1988), and thus less
conflict is apparent in WM during switching which reduces the need for inhibition. Although
the present data set cannot speak directly to the question of whether cue–target translation
processes were automised, this process is likely the only one in each experimental trial that
can directly benefit from practice (we discuss this detail in a later section). In the terms of
Logan (1988), initial performance of cue–target translation is slow, because the participant
has no pre-experimental association between the cue and the target, and thus performance
must rely on a slow algorithmic route; increased practice with associating a square cue with
a shaded target (for example) increases the instances of the cue–target associations stored in
long term memory, which speeds performance because long term memory retrieval of stored
instances is assumed to be a faster process than algorithmic performance. At performance,
these processes race against each other, with speed of responding being determined by
whichever process wins the race; the more instances that are stored increases the probability
that the fast retrieval process wins.

One possibility is that less inhibition is required when the system starts to benefit
from automatic retrieval of instances of cue–target associations from long term memory, as
less conflict occurs in WM during cue–target translation. This is a natural extension to our
previous work (Grange & Houghton, 2010b; Houghton et al., 2009) which has demonstrated
that n–2 repetition cost in set switching is reduced when cue–target translation processes
are facilitated.

4.2. Grange et al.’s (2013) Model Prediction

A reduction of n–2 repetition cost with extended practice was also predicted by a
computational model of inhibition (Grange et al., 2013). In this model, recently retrieved
task-related chunks in memory are inhibited; this inhibition renders these chunks temporar-
ily less accessible, making their retrieval slower and more error-prone. As practice proceeds,
the inhibition (see Equations 2 & 3) has less effect as the base-level activation of the chunks
in memory gradually increases with practice.

However, the observed reduction was larger than predicted (Figure 1), with regard to
both general RT and the n–2 repetition cost. Recall that the prediction was only based on
the base-level learning component of the activation equation. Exploring the space of possible
parameter values (e.g., memory decay) did not result in considerably better predictions.
We therefore inferred that other learning mechanisms must occur in addition to base-level
learning to account for the difference between prediction and observation. Thus, this partial
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failure of the model to predict the magnitude of the practice effect was informative in that
it suggested that something was missing in the original model.

In the next sections, we describe extensions to the Grange et al. (2013) model of
inhibition in set switching, and describe fits to the practice data presented here.

4.3. Extending Grange et al.’s (2013) Model

There are several components contributing to successful human performance in this
experiment which might be subject to practice effects, and hence be a candidate to include in
the model to explain the observed reduction of n–2 repetition cost. However, it is important
to note that in order to account for the reduction of n–2 repetition cost with practice,
the task-set component (or process) becoming facilitated must have a greater effect on n–2
repetitions than on n–2 switches; that is, if any hypothetical process that becomes facilitated
with practice affects n–2 repetitions and n–2 switches equally, the net effect would be no
reduction of the n–2 repetition cost with practice. This consideration constrains the locus of
the observed reduction. For example, the visual search component of the task might become
facilitated (see e,.g., Sireteanu & Rettenbach, 1995), to the extent that searching for task-
relevant properties of the multi-target display might become facilitated; as a consequence,
orienting to the target will become faster with practice. However, such facilitation would
benefit ABA and CBA sequences equally, and thus would not lead to a reduction of n–2
repetition cost.

4.3.1. Integrating Grange et al.’s (2013) model & Cue–Target Translation.
One aspect that can explain the observed reduction of n–2 repetition cost with practice
that is not captured by the current model is facilitated associative strength between cues
and the targets they are paired with. In the original model, the strength of association
between cues and targets was set and remained unchanged. The strength of association
between a cue and the associated target determines the amount of activation that spreads
from cue to target. If a cue and a target are strongly associated, the target will receive
a high amount of activation when its associated cue is presented, which results in faster
and more accurate retrieval. Thus, with greater associative strength, an inhibited target
chunk can be retrieved from memory faster when its associated cue is presented, leading to
reduced n–2 repetition cost.

Importantly, inclusion of such a process in the model of Grange et al. (2013) would
provide a formalisation of the cue–target translation hypothesis proposed by Houghton et
al. (2009). In the spirit of theoretical integration, we included such a mechanism in the
model of Grange et al. (2013). Spreading activation in ACT-R is governed by the following
equation:

Si =
∑

k

∑
j

WkjSji. (5)

Si is the activation that spreads to chunk i. The elements k being summed over are
all of the buffers in the model. The elements j being summed over are the chunks which are
in the slots of the chunk in buffer k (these are referred to as the sources of activation). Wkj

is the amount of activation from source j in buffer k. It is the source activation of buffer k
divided by the number of sources j in that buffer. Sji is the strength of association from
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source j to chunk i. For our purpose here, there is only one source (the cue) in one buffer
(goal) and Sji is the strength of association between the cue and the memory representation
of the target.

Total activation A of chunk i is now

Ai =
(
ln

n∑
j=1

t−d
j − γ

)
+ Si. (6)

The current version of ACT-R (i.e., ACT-R 66) does not support learning of asso-
ciation strengths from practice. A previous version—ACT-R 4—had such an associative
learning mechanism; many in the modelling community would agree that an associative
learning mechanism is empirically justified, though its computational implementation is
non-trivial. Efforts to develop an associative learning mechanism are currently underway in
the ACT-R modeling community (Thomson & Lebiere, 2013). For demonstrative purposes,
here we set the associative strengths (Sji in the equation above) at values that increase with
session (i.e., practice). This was necessary to fit the magnitude of the n–2 repetition cost
reduction observed in the empirical data, but it was not sufficient to also fit the magnitude
of the overall reduction in response time across sessions.

4.3.2. Decreasing Retrieval-Noise with Practice. Another aspect that came
out of the empirical study that informed our modeling was the observation that variability
in response time decreased with practice: standard error of the mean for sessions 1 to 5 was
51ms, 35ms, 28ms, 27ms, and 28ms, respectively. Based on this result, we set the activation
noise in the model at values that decreased with session. Activation noise causes variability
in activation, which in turn determines variability in response time. When the added
decrease in activation noise was coupled with the existing increase in base-level activation
with practice, the result was a steeper learning curve; that is, a larger magnitude of the
overall RT reduction, as observed in the empirical data.

4.4. Model Fit Results & Discussion

The model fit to the mean RT as a function of task sequence and practice is shown
in the right panel of Figure 2; the parameters used to fit the model can be seen in Table
2.7 As can be seen, the model captured all of the main trends in the data. Although the
model was only explicitly fit to the session data in Figure 2, examination of the dynamics
of the model’s predicted n–2 repetition cost as a function of each 122-trial block across the
experiment showed that it reproduced the pattern in the human data very well (see lower
panel of Figure 3.)

4.4.1. On Individual Differences. The empirical study also revealed important
individual differences in n–2 repetition cost, and its reduction with practice (Figure 6).
As the n–2 repetition cost is believed to be an important measure of cognitive inhibition
(Koch et al., 2010), the n–2 repetition cost has started to garner interest in the literature
examining individual differences in inhibitory control. For example, Whitmer and Banich
(2007) showed that participants with higher-levels of depressive rumination had smaller

6http://act-r.psy.cmu.edu/software/
7We refer the interested reader to Grange et al. (2013) for full specification of the model. ACT-R source

code for the current model can be supplied as supplementary material.
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Table 2
The best fitting parameter values and fit statistics for the inhibition model (see General
Discussion). RMSD = root mean square deviation. Note that the five values for the acti-
vation noise and the strength of association parameters reflect the values for sessions 1–5
respectively.

Parameter Description Default Value Fitted Value (s)

:lf Latency factor 1.0 0.7
:bll Base level learning nil 0.5

(decay [d] in Equations 1 & 2)
:ans Activation noise nil 0.5, 0.35, 0.25, 0.15, 0.05
:rt Retrieval threshold 0 -2.6
sji Strength of association 1 0.05, 0.25, 0.60, 1.20, 2.00

:inhibition-decay Base level inhibition decay 1.0 1.1
(ds in Equation 2)

:inhibition-scale Base level inhibition scale 5 From 0 to 14
(ts in Equation 2)

R2 = 0.992
RMSD = 6.93ms

(sometimes reversed) n–2 repetition costs. Thus, the n–2 repetition cost is a promising
marker with which to explore individual differences in inhibitory control.

In our study, we have shown a wide range of individual differences in the n–2 repetition
cost in a healthy sample. This suggests that there is much individual-difference in the n–2
repetition cost. Interestingly, some subjects (e.g., Subjects 3 and 6 in Figure 6) showed no
evidence of n–2 repetition cost at all. Assuming that at least part of this inter-individual
variability is of potential theoretical relevance to the understanding of inhibition in task
switching, we wanted to explore this in the model simulations.

We addressed individual differences in n–2 repetition cost by varying one of the in-
hibition parameters: the inhibition scaling parameter (Ts). In the simulations we varied
this parameter between 0 and 14 in increments of 1. Figure 7 shows a random selection of
model “participants” and their reduction of n–2 repetition cost with practice. As is clear,
the model exhibits both intra-individual variability (i.e., stochasticity in memory retrievals)
and inter-individual variability (variation in n–2 repetition costs).

These simulations show that the inter-individual variation in n–2 repetition cost is
well-replicated by the model by selectively varying the degree of inhibitory strength in the
model; this adds to the general agreement in the literature that the n–2 repetition cost is
a valid marker of cognitive inhibition during set switching (but see Grange et al., 2013, for
some important constraints on this issue). We note that individual differences in n–2 repe-
tition cost could also be explained by variation of the inhibition decay parameter between
subjects rather than inhibition itself; with constant inhibitory input, faster inhibition decay
would lead to a smaller n–2 repetition cost than if inhibition decay was slower8. Future

8We thank Iriing Koch for this point.
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Figure 7

empirical and theoretical work should attempt to decide between these accounts.
4.4.2. Response Time Distributions. In this section, we explored the ability

of the model to account for the results of the response time distributional analyses (Figure
4), even though the model was not directly fit to these data (i.e., the model was fit to
mean RT alone). We reasoned that if all the necessary mechanisms are included in the
model, the distributional data should implicitly be accounted for. Thus, these data provide
important information regarding the fit of the model to more-fine grained data. The model
distributional analyses can be seen in the right panel of Figure 4.

First thing to notice is that there are differences in scale between the observed and
simulated data: mu estimates are larger and tau estimates are smaller in the model than in
the human data. These differences are caused by the lower variability in the model than in
the human data. We deliberately chose to not reproduce the full range of variability in the
human data to avoid a common problem in post-hoc modeling; that is, fitting the noise.
Thus, we can ignore differences in scale and focus on qualitative differences between the
distributional parameters. As can be seen in Figure 4, the model shows clear inhibition and
practice effects on all three ex-Gaussian parameters (i.e. difference between ABA and CBA
sequences at early sessions, with the difference attenuating with practice); in the human
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data only the tau parameter shows significant inhibition and practice effects. This result
is surprising and difficult to interpret at this moment. It could be that the model fails to
explain why the n–2 repetition cost occurs preferentially at the tail of the RT distribution,
or the human data is too noisy to show the significant effects on mu and sigma that are
predicted by the model. Further research is needed to elucidate this dilemma.

4.4.3. Model Fit—Summary. In summary, the original model predicted the
reduction of both n–2 repetition cost and overall RT with practice, but it underestimated
the actual magnitudes of these effects. Two amendments were necessary to improve the
model fit: increasing activation strengths and decreasing activation noises with practice.
In so doing, we have been able to integrate the computational model of Grange et al.
(2013) with the cue–target translation hypothesis of Houghton et al. (2009), providing an
important link between different research programs.

4.5. Future Directions

4.5.1. Conflict-Triggered Inhibition. The above has shown that in order to
reproduce the reduction of n–2 repetition cost with practice, we had to include the assump-
tion of increasing cue–target association strength with practice and the increasing base-level
activation with practice. Thus, although we outlined in the Introduction two seemingly sep-
arate theoretical reasons to predict a reduction of n–2 repetition cost with practice, we have
had to use elements of both to fully account for the data.

Prima facie, it might appear that increasing cue–target association strength in the
model reported here is not a faithful formalisation of the cue–target translation hypothesis
of Houghton et al. (2009). Recall that their hypothesis was that aiding cue–target transla-
tion leads to a reduction of interference (or conflict) in working memory when a switch of
attentional set is required. As a consequence of this reduced interference, less inhibition is
required, leading to a reduced n–2 repetition cost. That is, in their hypothesis, inhibition
is triggered by—and is directly proportional to—the degree of interference registered in the
system. By contrast, inhibition in the model here is not triggered by interference. Although
conflict-triggered inhibition is present in some computational models of selective attention
(see e.g., Houghton & Tipper, 1994), a computational implementation of this is yet to be
explored in the area of task switching, and remains an essential avenue for future research.

However, we see more similarities than differences between our account and that
of Houghton et al. (2009). Although inhibition in the current model is not triggered by
the degree of interference present, the amount of inhibition used is proportional to the
amount of interference in the system. ACT-R models interference as the probability to
retrieve the “wrong” chunk. This happens when the “right” chunk does not have enough
activation relative to its competitors (either due to decay or inhibition). During early stages
of practice, a required chunk’s activation will be low due to low base-level learning; due to
weaker associative strength between a cue and a target, presentation of the cue does not
enhance the required chunk’s activation as much during early stages of practice. With
this reduced activation, the inhibitory subtraction (Equation 2) is large relative to total
activation, and has greater effect on the chunk’s dynamics. During early stages of practice,
all chunks will have relatively low activation, and so interference can be considered high.
With practice, however, a required chunk is relatively more active (due to higher base-level
learning and increased associative strength), and so the inhibitory subtraction has less effect.
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In addition, interference is reduced because the increased associative strength together with
the increased base-level learning allows rapid activation of the target chunk over and above
its competitors.

Taken together, the above shows how the model also suggests that inhibition is relative
to the degree of conflict present, even though it is not triggered by the conflict (cf., Houghton
et al., 2009). It also highlights that inhibition in the model in absolute terms is constant
and unchanging as practice progresses; as the activation of chunks begins to grow (due to
increasing base-level learning and increased associative strength when a cue is presented),
inhibition in relative terms decreases as practice progresses.

It is essential to compare statistically the fit of our model in comparison to a computa-
tional implementation of conflict-driven inhibition to see which provides a better account—
in terms of fit and parsimony—of n–2 repetition cost data. This remains a pressing issue to
explore in future work. This is pressing because data exists besides that of Houghton and
colleagues (2009) suggesting n–2 repetition costs are generated by conflict-driven inhibition
(Gade & Koch, 2005; Scheil & Kleinsorge, 2014). In addition, a limitation of our data is
that it is not able to decisively rule out conflict-driven inhibition, as practice is exerting
a uniform influence on all aspects of the trial equally9, so it is difficult to ascertain with
certainty which aspect of trial performance is becoming facilitated (and hence, whether it is
related to conflict-reduction or not). Future work should address this limitation by design-
ing experiments capable of arbitrating between conflict and no-conflict accounts of the n–2
repetition cost, and to compare statistically fits of models that implement conflict-driven
deployment of inhibition and those that do not.

4.5.1.1. Cue–target transparency manipulations. However, Houghton and
colleagues (Grange & Houghton, 2010a; Houghton et al., 2009) claim to have provided em-
pirical evidence for conflict-driven inhibition in set switching by showing the n–2 repetition
cost reduces with increased cue–target transparency. They suggest that less-transparent
cue–target relationships (e.g., a square cue being paired with a shaded target) require a
process of cue–target translation in working memory, which can be a source of interference
when the relevant target switches on the next trial (thus triggering inhibition, and a large
n–2 repetition cost). More-transparent cue–target relationships (such as a shaded rectangle
cuing the shaded target) require less/no cue—target translation, and thus generates no in-
terference when switching attentional set (and no n–2 repetition cost). At first blush, this
pattern of data is difficult to reconcile with the model presented here, where inhibition is
not related to the degree of interference.

We conjecture that these findings can be explained by our model, as highly-
transparent cue–target relationships are likely to have strong associative links between the
cue and target chunks in memory. Thus, if we assume inhibition is equal in both cuing condi-
tions, the stronger associative link between cue and target for highly-transparent cue–target
relationships will lead to faster activation of inhibited chunks in memory, leading to reduced
n–2 repetition costs as is observed. From this perspective, cue–target transparency does
not influence the amount of inhibition used, but rather the speed with which this inhibition
can be overcome. This conjecture makes the interesting prediction that inhibition is present
even for maximally-transparent cue–target pairings, even though n–2 repetition costs are

9We are grateful to an anonymous reviewer for highlighting this issue.
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never reported for them (see Houghton et al., 2009, Experiment 1). We are exploring this
prediction in ongoing work.

4.5.2. Set Switching Versus Task Switching. In this experiment presented to
humans and to the model, we used a somewhat atypical version of a switching paradigm in
that it required switching attentional set rather than task switching, per se. This paradigm
is very similar to that used by Mayr and Keele (2000) who first reported the n–2 repetition
cost. This might limit the conclusions we have reached in the current paper to similar set
switching designs.

It should be noted, though, that many (if not all) task switching effects have been
reported using this set switching paradigm: n–2 repetition costs (Grange & Houghton,
2009, 2010b; Houghton et al., 2009); cue-switch costs that decrease with increased cue–
stimulus interval (Grange & Houghton, 2010a); “set-switch costs”, that reduce with in-
creased cue–stimulus interval (Grange & Houghton, 2010a); restart costs and within-run
slowing (Grange, 2010). This perhaps should not be surprising, as switching attentional-
set is likely a core aspect of task switching (Logan & Gordon, 2001). Thus, although the
findings reported in the current paper come from a set switching paradigm, this paradigm
reproduces many task switching effects. It remains an important avenue for future work to
explore how practice affects performance in more traditional, task switching, designs, and
whether our model is generalisable to these data.

4.6. Conclusion

We have provided empirical evidence for a reduction in n–2 repetition cost in set
switching, and have outlined plausible theoretical explanations for this reduction, supported
by computational simulation. This work has shown that inhibition—as measured by the
n–2 repetition cost—has its greatest effect on performance when the tasks being performed
are relatively novel. With practice, we suggest that the cognitive system benefits from
increasing activation of task-related elements in memory, as well as increasing associative
strength between cue–target pairings. The net effect is a reduction of the n–2 repetition
cost with practice.

References

Altmann, E. M., & Gray, W. D. (2008). An integrated model of cognitive control in task switching.
Psychological Review, 115 , 602–639.

Anderson, J. R. (2007). How can the human mind occur in the physical universe? Oxford: University
Press.

Balota, D. A., & Yap, M. J. (2011). Moving beyond the mean in studies of mental chronometry: The
power of response time distributional analyses. Current Directions in Psychological Science,
20 , 160–166.

Berryhill, M. E., & Hughes, H. C. (2009). On the minimization of task switch costs following
long-term training. Attention, Perception, & Psychophysics, 71 , 503–514.

Druey, M. D. (2014). Response-repetition costs in choice-rt tasks: Biased expectancies or response
inhibition? Acta Psychologica, 145 , 21–32.

Gade, M., & Koch, I. (2005). Linking inhibition to activation in the control of task sequences.
Psychonomic Bulletin & Review, 12 , 530–534.

Gade, M., & Koch, I. (2014). Cue type affects preparatory influences on task inhibition. Acta
Psychologica, 148 , 12-18. doi: 10.1016/j.actpsy.2013.12.009



PRACTICE & INHIBITION 23

Grange, J. A. (2010). Control of cognitive processes in task switching. (Unpublished doctoral
dissertation). Bangor University, UK.

Grange, J. A., & Houghton, G. (2009). Temporal cue-target overlap is not essential for backward
inhibition in task switching. Quarterly Journal of Experimental Psychology, 62 , 2069–2080.

Grange, J. A., & Houghton, G. (2010a). Cue-switch costs in task-switching: Cue-priming or control
processes? Psychological Research, 74 , 481-490. doi: 10.1007/s00426-009-0270-y

Grange, J. A., & Houghton, G. (2010b). Heightened conflict in cue-target translation increases
backward inhibition in set switching. Journal of Experimental Psychology: Learning, Memory,
and Cognition, 36 , 1003-1009. doi: 10.1037/a0019129

Grange, J. A., & Houghton, G. (2011). Task preparation and task inhibition: A comment on
Koch, Gade, Schuch, & Philipp (2010). Psychonomic Bulletin & Review, 18 , 211-216. doi:
10.3758/s13423-010-0023-3

Grange, J. A., & Houghton, G. (Eds.). (2014). Task switching and cognitive control. New York, NY:
Oxford University Press.

Grange, J. A., Juvina, I., & Houghton, G. (2013). On costs and benefits of n–2 repetitions in task
switching: Towards a behavioural marker of cognitive inhibition. Psychological Research, 77 ,
211-222.

Grange, J. A., Lody, A., & Bratt, S. (2012). Cost–benefit and distributional analyses of accessory
stimuli. Psychological Research, 76 , 626–633.

Houghton, G., Pritchard, R., & Grange, J. A. (2009). The role of cue-target translation in backward
inhibition of attentional set. Journal of Experimental Psychology: Learning, Memory, and
Cognition, 35 , 466–476.

Houghton, G., & Tipper, S. (1994). A model of inhibitory mechanisms in selective attention.
In D. Dagenbach & T. Carr (Eds.), Inhibitory processes of attention, memory and language
(p. 53-112). Academic Press: Florida.

Juvina, I., & Taatgen, N. (2009). A repetition-suppression account of between-trial effects in a
modified Stroop-task. Acta Psychologica, 131 , 72–84.

Kiesel, A., Steinhauser, M., Wendt, M., Falkstein, M., Jost, K., Philipp, A., & Koch, I. (2010).
Control and interference in task switching—a review. Psychological Bulletin, 136 , 849-874.

Koch, I., Gade, M., Schuch, S., & Philipp, A. M. (2010). The role of inhibition in task switching:
A review. Psychonomic Bulletin & Review, 17 , 1-14.

Lebiere, C., & Best, B. J. (2009). Balancing long-term reinforcement and short-term inhibition. In
Proceedings of the 31st annual conference of the cognitive science society. Austin: Cognitive
Science Society.

Logan, G. D. (1988). Toward an instance theory of automization. Psychological Review, 95 , 492-527.
Logan, G. D., & Gordon, R. D. (2001). Executive control of visual attention in dual-task situations.

Psychological Review, 108 , 393-434.
Massidda, D. (2013). retimes: Reaction time analysis [Computer software manual]. Retrieved from

http://CRAN.R-project.org/package=retimes (R package version 0.1-2)
Mayr, U., & Keele, S. W. (2000). Changing internal constraints on action: the role of backward

inhibition. Journal of Experimental Psychology: General, 129 , 4–26.
Philipp, A. M., Jolicoeur, P., Falkenstein, M., & Koch, I. (2007). Response selection and response

execution in task switching: evidence from a go-signal paradigm. Journal of Expimental
Psychology: Learning, Memory, and Cognition, 33 , 1062–1075.

Philipp, A. M., & Koch, I. (2006). Task inhibition and task repetition in task switching. European
Journal of Cognitive Psychology, 18 , 624-639.

R Core Team. (2013). R: A Language and Environment for Statistical Computing [Computer
software manual]. Vienna, Austria.

Scheil, J., & Kleinsorge, T. (2014). N–2 repetition costs depend on preparation in trials n–1 and
n–2. Journal of Experimental Psychology: Learning, Memory, & Cognition, 40 , 865–872.

Schneider, D. W., & Logan, G. D. (2005). Modeling task switching without switching tasks: A short-



PRACTICE & INHIBITION 24

term priming account of explicitly cued performance. Journal of Experimental Psychology:
General, 134 , 343–367.

Schuch, S., & Koch, I. (2003). The role of response selection for inhibition of task sets in task shifting.
Journal of Experimental Psychology: Human Perception and Performance, 29 , 92–105.

Sdoia, S., & Ferlazzo, F. (2008). Stimulus-related inhibition of task set during task switching.
Experimental Psychology, 55 , 322-327.

Sireteanu, R., & Rettenbach, R. (1995). Preceptial learning in visual search: Fast, enduring, but
non-specific. Vision Research, 35 , 2037-2043.

Stoet, G., & Snyder, L. H. (2007). Extensive practice does not eliminate human switch costs.
Cognitive, Affective, & Behavioral Neuroscience, 7 , 192–197.

Strobach, T., Liepelt, R., Schubert, T., & Kiesel, A. (2012). Task switching: effects of practice on
switch and mixing costs. Psychological Research, 76 , 74–83.

Thomson, R., & Lebiere, C. (2013). Constraining Bayesian inference with cognitive architectures:
An updated associative learning mechanism in ACT-R. In Proceedings of the 35th annual
meeting of the Cognitive Science Society (CogSci ’13), Berlin, Germany.

Vandierendonck, A., Liefooghe, B., & Verbruggen, F. (2010). Task switching: interplay of reconfig-
uration and interference. Psychological Bulletin, 136 , 601-626.

Whitmer, A. J., & Banich, M. T. (2007). Inhibition versus switching deficits in different forms of
rumination. Psychological Science, 18 , 546-553.


