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STRUCTURED ABSTRACT 

Background: Static Pattern recognition requires a machine to classify an object on the basis of a combination of attributes, and 

is typically performed using machine learning techniques such as Support Vector Machines and Multilayer Perceptrons. 

Unusually, in this study we applied a successful time-series processing neural network architecture, the Echo State Network 

(ESN), to a static pattern recognition task. Methods: The networks were presented with clamped input data patterns, but in this 

work they were allowed to run until their output units delivered a stable set of output activations, in a similar fashion to previous 

work that focused on the behaviour of ESN reservoir units. Our aim was to see if the short term memory developed by the 

reservoir and the clamped inputs could deliver improved overall classification accuracy. The study utilized a challenging, high 

dimensional, real-world plant species spectroradiometry classification dataset with the objective of accurately detecting one of 

the world’s top 100 invasive plant species. Results: Surprisingly, the ESNs performed equally well with both unsettled and 

settled reservoirs. Delivering a classification accuracy of 96.60%, the clamped ESNs outperformed three widely used machine 

learning techniques, namely Support Vector Machines, Extreme Learning Machines and Multilayer Perceptrons. Contrary to past 

work, where inputs were clamped until reservoir stabilization, it was found that it was possible to obtain similar classification 

accuracy (96.49%) by clamping the input patterns for just two repeats. Conclusions: The chief contribution of this work is that a 

recurrent architecture can get good classification accuracy, even while the reservoir is still in an unstable state. 

Keywords: Echo State Networks; Static Pattern Recognition; Input Clamping; Hyperspectral sensors; Remote Sensing 

1. INTRODUCTION 

Static pattern recognition is a common problem in machine learning, where classifiers are trained to recognize a combination 

of attributes as belonging to particular classes and there is no spatial or time-series relationship between consecutive input 

patterns. In this paper, Echo State Networks (ESNs), a reservoir computing technique usually reserved for problems involving 

time-series data, were optimized to classify static input patterns. In a similar fashion to the previous work that investigated the 

behaviour of ESN reservoir units under a static input pattern clamping regime [1–4], our objective was to explore how such input 

pattern clamping might affect overall ESN output unit classification accuracy. 

Rhododendrons (Rhododendron ponticum) are an invasive plant species that needs managing in many parts of the UK [5]. In 

2010, it was reported that the annual cost of controlling rhododendron is in excess of £8.5 million [6].  Since the size of most 

survey areas makes visual inspection impractical, airborne or satellite-based remote sensing techniques for locating them are 

being developed, including the use of optical spectroradiometry reflectance data [7–10]. Reflectance data sampled under 
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laboratory conditions at 1869 wavelengths have been collected from evergreen rhododendron leaves and the leaves of species 

also present in the shrub layer of UK woodlands and analysed using ESNs and several alternative very widely used 

computational intelligence techniques, each of which was optimized to deliver their best performance with this dataset. It was 

hoped that successful application to laboratory data would make the techniques used here viable candidates for application to 

‘real-world’ remote sensing datasets, such as those already gathered at Coed-y-Brenin, Kiedler Forest District, Glen Affric and 

the Queen Elizabeth Forest Park [11].  

ESNs are a type of recurrent artificial neural network and, alongside Liquid State Machines (LSMs), comprise the field of 

reservoir computing [12–14]. What sets reservoir computing apart from many other types of neural network is the existence of a 

sparsely interconnected reservoir, with recurrent connections within this reservoir that allow time-series data to resonate, 

effectively giving the network a short term memory. However, ESNs have an advantage over their LSM counterparts in practical 

applications [15], and so only ESNs are considered here. There are several parameters that can be adjusted to tailor an ESN to 

optimize performance on a given dataset and these, along with the theory behind ESNs, are discussed in greater detail in section 

2.  

The ability of ESNs to exhibit a short term memory means that most applications have involved either time-series data – in 

areas such as audio classification [16] and recognition of forehands in tennis [17] – or spatially varying data, such as raw 

magnetic flux leakage data [18], [19], and microscopic cellular image segmentation [20]. The use of ESNs on static data is not 

new but is quite rare and, of the few approaches that do exist, most involve a procedure for allowing the state of the reservoir to 

settle as each static input pattern is repeatedly presented: a process characterised as clamping [1–4].  

Here, ESNs optimized for static pattern recognition have been applied to a plant leaf classification task. The motivation for 

this was that conventional static pattern recognisers, such as MLPs, will produce exactly the same response when presented with 

a static input pattern, regardless of how many times the pattern is presented and regardless of what might have been presented in 

the recent past. In contrast, a recurrent architecture, after its initial response, is likely to follow a trajectory towards an attractor in 

the high dimensional reservoir space that might not have been reached by a single static pattern presentation. This could allow 

the weights connecting the reservoir units to the output units (see Section 2.1) to be better able to classify the input patterns. 

More detail on the information contained within the plant leaf dataset can be found in section 1.1. 

The aim of the study was to see if the short term memory developed by the ESN reservoir and the statically clamped inputs 

could deliver improved overall classification accuracy when compared to other typical classification techniques. This work 

differs from a past work on the optimization of ESNs for static pattern recognition in that it considers a wider range of ESN 

parameters [21]. Furthermore, while past works allow the reservoir units to settle, we consider the possibility of instead allowing 

the output units to settle, or of letting neither settle. 
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1.1 Leaf Sample Spectroradiometry Dataset 

A leaf sample spectroradiometry dataset was used to measure the classifier performance. The dataset contained 282 real world 

leaf samples, each with 1869 attributes, corresponding to the absolute optical reflectance of the leaf sample in 10 nm wavelength 

bands. Precise details on how the data were gathered have been given by Taylor et al [9]. The leaf set samples consisted of 

various species: 126 rhododendron, 48 beech (Fagus sylvatica), 36 holly (Ilex aquifolium), 36 ivy (Hedera helix) and 36 cherry 

laurel samples (Prunus laurocerasus). This was done in order to ensure that any classifier was able to distinguish between 

rhododendron and four other species commonly found in the UK, three of which are native. Our classifiers were presented with 

24 randomly selected samples from each species for training and then the rest of the data were used during the testing phase.  

Although there were five different plant species to identify, particular importance was placed on the detection of the 

rhododendron samples, since this was the target invasive species under consideration as an important vector for plant infections. 

Therefore, two key performance aspects of our classifiers were the percentage of rhododendron samples correctly identified and 

the percentage of samples of other species that were misclassified as rhododendron.  

2. METHODS 

All ESNs used in this work were built, trained and tested using the reservoir computing toolbox for MATLAB [14].  

As an extra test of the importance of the ESN’s short term memory in static pattern classification, Extreme Learning Machines 

(ELMs) were also trained and applied to the data. An ELM can be thought of as an ESN without the possibility of recurrence, 

with no interconnectivity in the reservoir (i.e. a spectral radius of zero) and, therefore, no short term memory. While this could be 

implemented using the reservoir computing toolbox, it was found that the training regime used in Huang’s ELM implementation 

for MATLAB [22] gave better performance. Using this implementation, it was found that using a triangular basis activation 

function in a 1000 unit hidden layer produced excellent results that were considerably better than the results obtained using other 

activation functions or different numbers of ELM hidden layer units. So as to provide further performance comparison, two other 

very widely used classification methods were applied to the same data: Multilayer Perceptrons (MLPs – implemented using the 

neural network toolbox for MATLAB) and Support Vector Machines (SVMs – implemented using libsvm for MATLAB [23]). 

For each of these classifier approaches, a similar grid-search optimization method was used, so as to provide the optimal set of 

parameters for each approach. The best performing MLP had a hidden layer with eight units and the best performing SVM was 

found to use a linear kernel function. Since the weighted connections in ELMs, MLPs and ESNs are randomly generated at 

initialisation, it is possible that a particularly favourable or unfavourable set of weights will be generated for any given network. 

Thus, the results given for these three methods are the average performance of 1000 separately trained networks for each 

technique. Similarly, the performance of SVMs is strongly dependent on the training data, so 1000 random training datasets were 
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generated and the average performance of the SVM is reported below. The classification accuracy was calculated using (1).  

 

Accuracy = 100(1 – m/n) 



In (1), m is the number of misclassified samples and n is the total number of samples. Since the Matthews Correlation 

Coefficient (MCC) takes into account true positives, false positives, true negatives and false negatives, rather than just 

considering classification accuracy, it is used as a reliable summary of the performance of a classifier [24]. The MCC is also 

particularly useful as a measure of performance on unbalanced datasets, such as the one used here. For each classifier, the MCC 

was calculated for each output class. All of the data were normalised between +1 and -1 prior to presentation to any of the 

classifiers. 

Prior to the use of the leaf sample spectroradiometry dataset, the ESN approach was validated using two well-known benchmark 

datasets from the UCI machine learning repository [25], namely the Iris dataset and the WDBC dataset. The former consists of 

150 samples, each with four different attributes. There are three possible classes for the data to be sorted into and 50 samples for 

each class. Each of the classifiers was presented with 25 samples of each class for training and tasked with correctly classifying 

the remaining 25 samples during testing. The breast cancer dataset is somewhat more challenging, containing 569 samples with 

30 features each, with two possible classes. There were 357 samples for the first class and 212 for the second class. Fifty samples 

from each class were used for training the classifiers, which were then tasked with classifying the remaining data in the testing 

phase. 

2.1 ESN OPTIMIZATION FOR STATIC PATTERN RECOGNITION 

A typical ESN topology can be seen in Fig. 1. The input units are fully connected to the reservoir, whereas the reservoir units 

themselves are only sparsely interconnected, and all of these weighted connections are randomly generated at the initialization of 

the reservoir and kept constant throughout. Only the weights on the connections between each reservoir unit and each output unit 

are trained. Past approaches have used a linear solver to train these weights, but this led to poor classification performance for 

larger reservoir sizes [21], and so ridge regression was used in this work [26–28]. ESNs have a number of tuneable parameters 

and this section details how the adjustment of these parameters was observed to affect the performance of ESNs when given a 

static pattern recognition task. The tuned parameters here were the spectral radius, the leak rate, the reservoir size and the input 

scaling; a good general guide to the effects of each one of these on conventional ESN behaviour was produced by Lukosevicius 

in 2012 [29]. 

In order to find the best static pattern recognition values for the parameters, the ESNs were presented with data from the leaf 
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sample spectroradiometry dataset. This required an ESN with 1869 input units – one for each wavelength reflectance attribute – 

and five output units, each representing a different plant species classification. An attempt was made to reduce the 

dimensionality of the dataset using principle component analysis; this did not lead to improved performance in preliminary 

investigations. The overall performance of the network was then thoroughly tested using 20-fold cross validation and it was on 

this basis that the optimal settings were chosen. 

The presence of recurrent connections in the reservoir of a conventional ESN means that the ESN can have a memory of past 

inputs that will affect the final output unit activations. Static data, by definition, have only one set of input data for each sample 

and so the most common approach is to keep the input clamped until the reservoir state has settled [1–4]. The approach used 

here, though, was to maintain the clamped inputs until the output unit states were settled. The output node that produced the 

highest value at the end of a sequence of repeated pattern presentations was considered the ‘winner’ for that set of clamped 

inputs. During each clamped sequence of input pattern presentations, the output of each output node gradually converged and 

eventually settled on a particular value. The input pattern clamping regime effectively prevents the ESN learning a relationship 

between two consecutive input patterns. Initially, the number of pattern presentations for each input pattern was set to 400, as 

this was long enough to allow the full effect of adjusting the ESN leak rate to be seen. 

2.1.1 Leak Rate 

The contribution of the leak rate to the overall ESN output is described in (2), which explains how the activation of an ESN 

reservoir neuron at time t is determined.  

 

1)))(1)((1)-(δ)-((1 )(  tttf t xWuWxx
res
res

inp
res   (2) 

 

In (2), inp
resW is the input to reservoir weight matrix, f is the tanh activation function that was used here, x(t) is the vector of the 

activations of the reservoir neurons at time t, which is the current time step, t − 1 is the previous time step,   res
resW is the reservoir 

weight matrix, u(t) is the vector of the input data at time t and δ is the leak rate. The leak rate acts as an inverse time constant and 

sets the dynamics of the reservoir, since it determines the extent to which the reservoir neurons’ activations decrease over a 

period of time. It was observed that the higher the leak rate, the smaller the number of repeated input pattern presentations 

required for each output unit to settle on a value. Once the outputs had settled, they continued to produce this value for every 

subsequent repeated input pattern presentation. The sooner the outputs converge, the fewer repeated input pattern presentations 

are required. 

An example of the ESN output unit activations for a high leak rate (0.9) and a low leak rate (0.1) can be seen in Fig. 2. 
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Although the size of the leak rate did not radically affect the classification performance of the ESN during cross validation, so 

long as there were sufficient repeated input pattern presentations, the best classification performance came with a leak rate of 

0.3820. Fig. 2 shows that for input patterns that are difficult to classify (for example, rhododendron often misclassifies as cherry 

laurel), having a lower leak rate allows the ESNs to distinguish more clearly between input patterns from those classes. For the 

outputs shown in Fig. 2, both ESNs were repeatedly presented with the same input data taken from a cherry laurel sample. 

However, in Fig. 2B, the final output activation for the laurel output node is almost the same as the rhododendron output node’s 

activation, showing that the network has difficulty distinguishing between these two classes. In Fig. 2A, the ESN has a lower 

leak rate and the output unit classifications are correctly separated. It was generally observed that there was a clearer distinction 

between classes for a slower reservoir of this sort. A leak rate of 0.3820 provided a good balance, offering sufficiently slow 

dynamics and also requiring a suitably small number of repeated presentations; classification performance did not improve when 

the number of input pattern presentations was more than 60.  

2.1.2 Reservoir Size 

Often, increasing the number of reservoir neurons can lead to improved network performance [29]. In this case, however, it 

was found that a relatively small reservoir consisting of just 55 neurons provided the best classification performance on the cross 

validation data, actually decreasing slightly for bigger reservoirs. This is a curious result and led to an unconventional application 

of ESNs in this work. One of the basic ideas of ESNs is to project an input into a higher-dimensional space – the reservoir – 

allowing for the data to become more linearly separable [30], [31]. Consequently, one might assume that the very high-

dimensional input used here would necessitate a reservoir containing in excess of 1869 neurons, which could be computationally 

unwieldly. The use of a lower-dimensional representation is more akin to the recent work by Bozhkov et al., where ESNs were 

used for the dimensionality reduction of static input patterns [32]. Whereas that work featured combinations of the equilibrium 

states of reservoir neurons being fed into classification techniques such as SVMs and decision trees, the high-dimensional input 

data here effectively undergoes dimensionality reduction by being fed into the low-dimensional reservoir, with the output 

weights then trained to learn the relationship between this representation and the desired output. In this sense, the static reservoir 

acts almost as a feature selection tool and classifier. 

2.1.3 Spectral Radius 

In a conventional network, the spectral radius affects an ESN’s short term memory, as values very close to one give a longer 

memory than a spectral very close to zero [29]. The ESN used here is unconventional in the sense that the inputs are static, but it 

can still be said that the spectral radius has influence over the extent to which the ESN outputs vary with each repeated input 

presentation. The dependence of the final internal reservoir weights on the spectral radius is shown by (3) [33].  
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max/'  res
res

res
res WW               (3) 

 

In (3), α is the spectral radius and λmax is the maximum eigenvalue of res
res'W , which represents the initial reservoir weights. Fig. 3 

shows the output of two ESNs processing the same clamped input pattern, but with different spectral radii: 0.99 in 3A and 0.01 

in 3B. Comparing the plots in Fig. 3A and B, it is clear that the number of repeated input pattern presentations required for the 

output unit activations to settle is similar, if slightly longer for the smaller spectral radius. Prior to that point, though, the 

behaviour of the output units is significantly influenced by the network’s memory of previous inputs. When the spectral radius 

was increased past a value of one, chaotic outputs and poor network classification performance were observed. Based on 

classification accuracy during the cross-validation testing, the best value for the spectral radius was found to be quite low at 

0.181. This suggests that for static classification tasks, a network should be strongly driven by the clamped input pattern, and that 

reservoir feedback is less important. Consequently, it is better to use a network with more stable dynamics. Importantly, it should 

be noted that that some feedback is required (i.e. the best spectral radius was greater than zero and performance was generally 

good for all spectral radii less than one, as can be seen by the range of spectral radii evaluated in Fig. 4). A non-zero spectral 

radius is therefore one of the properties of the ESN that is desirable for a static pattern classification task. 

2.1.4 Input Scaling 

Fig. 5 shows how the performance of the ESN varied as input scaling was varied. When smoothed over 100 points, the results 

in Fig. 5 can be expressed as a third order polynomial  of the form 0.0321s
3
 - 0.1149s

2
 + 0.0413s + 0.9825 (R

2
 = 0.9987), where s 

is the value of the input scaling. Classification performance during cross-validation peaked with an input scaling value of 0.17. 

Generally for ESNs, the lower the input scaling value, the more the reservoir units act around the zero point of their hyperbolic 

tangent (tanh) activation functions. This means that the reservoir units would have been operating in the linear part of the tanh 

curve.  

2.1.5 Interaction between reservoir and output neurons 

One of the most instructive details found during the optimization process concerned an important relationship involving the 

interaction of the ESNs’ reservoir neurons and their output neurons. Compared to the work of Alexandre et al [1], whose focus 

was on reservoir behaviour, Fig. 6A shows the outputs of twelve randomly selected reservoir neurons for each presentation of a 

randomly chosen clamped input pattern that was clamped at the input units. Fig. 6B shows the corresponding output activations 

from each of the five output units during the same input pattern clamping. The vertical dashed line on each plot marks the point 
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at which output units and the selected reservoir units had plateaued, respectively. The lag between the number of pattern 

presentations for the reservoir and the output units to plateau indicates that the best results may not necessarily achieved by 

harvesting values after reservoir stabilisation, as suggested by Alexandre et al [1], but after output unit stabilisation has occurred 

instead. Furthermore, although the output unit activations had all plateaued after around 24 input pattern presentations during 

training, the best cross validation classification results were obtained with 60 input pattern presentations, suggesting that the 

output weights of the ESN need to be trained on a settled reservoir. However, only 24 input pattern presentations are required 

when a trained network is presented with unseen test data. 

2.1.6 Input clamping 

Earlier work has noted that reservoir neurons need to be ‘clamped’ until full reservoir stabilisation has been achieved for good 

classification performance [1–4]. However, while a grid search found that using 60 repeated input pattern presentations (i.e. the 

same clamping period that was used with the training data) was optimal, it was observed that quite good performance could also 

be achieved by as few as two input pattern presentations during both the training and testing period. Using only two input 

presentations is equivalent to obtaining an output without allowing the reservoir to settle at all, suggesting that for good (if not 

optimal) performance, input ‘clamping’ may be almost unnecessary. This is a counter-intuitive result that goes against the 

conventional wisdom. 

Interestingly, the fact that the reservoir is still in an unstable state for the first ten input presentations means that the number of 

input presentations in testing must not exceed that used in training, unless the number used in training is greater than the extent 

of the unstable state. Fig. 7 shows how the output from each node varied with each repeated input pattern. The purple line 

represents the cherry laurel output node, which should give the highest output value for this test pattern in question. This plot 

demonstrates why it is important that the number of testing repetitions should not exceed the number of training repetitions when 

using this approach. Although the cherry laurel node has the highest output after the second presentation, beyond this point a 

different output node starts to produce much higher values, causing that to become the winner after 25 testing presentations were 

used. It was usually the case that for every sample presented during testing, each ESN trained on two presentations had one 

output node consistently produce much higher output values than all of the others, although this was not necessarily the correct 

winning output node. It seems to be the case that the dynamics of the reservoir and corresponding output weights of the network 

had been tuned so that the correct output was obtained after the first two presentations, but these weights were not configured to 

continue produce the correct output when the reservoir dynamics were driven beyond this number of presentations, possibly due 

to the short term memory of the network.  

As a consequence of this result, two separate training methods were used on ESNs with the optimized architecture outlined 
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above. ESNs subject to the first training regime (henceforth referred to as ESN-Op) were presented with the optimal 60 input 

repeats during both training and testing, while ESNs subject to the second training regime (henceforth referred to as ESN-2R) 

were given two input repeats during training and testing. By doing this, it would be possible to determine exactly how necessary 

reservoir stabilisation is for good performance. 

3. RESULTS 

Table 1 gives the performance of each technique on the benchmark datasets. These results show that on average, both ESN 

architectures achieved better performance than all of the other classifiers, with the exception of the MLP. This confirms that the 

input clamping methodology can provide good performance when compared to other widely-used classifiers. 

As shown in Table 2, the two ESN training regimes used here, ESN-Op and ESN-2R, both produce good test data 

classification performance comparable to the very widely used ELM and SVM techniques. The MLP, in contrast, was the worst 

performing technique in all but one category. While it was adept at dealing with the relatively straightforward benchmark 

datasets, the more challenging real-world dataset proved to be too complex for the MLP. The ELM proved to be the best at 

distinguishing between non-rhododendron samples, having achieved perfect classification for these during testing. Despite this, 

the two ESNs were found to be better at correctly identifying rhododendron samples and also gave slightly better overall 

classification accuracy. The SVM produced good results, but was outperformed by both ESN training regimes in all but three 

categories. Given that the focus of this task was on detecting rhododendron and that, although they did not classify the other 

species perfectly, the ESNs misclassified very few of the non-rhododendron samples as false positives, the ESNs offered the best 

performance of the computational intelligence techniques used for this particular problem. 

Curiously, the SVM and ELM gave very similar overall performance, with the SVM proving to be marginally better at 

rhododendron detection, but with the ELM superior at classifying the other plant species. It would seem that while other 

classifiers can offer good performance, the recurrent reservoir in an ESN adds certain discriminatory advantages that are not 

available to other methods. 

4. DISCUSSION 

Looking at the difference between ESN-Op and ESN-2R, it would appear that there is very little difference between the two 

techniques in terms of the overall accuracy. ESN-Op marginally outperformed ESN-2R on seven out of the eleven performance 

measures, including the critical classification accuracy, percentage of rhododendrons identified and rhododendron MCC 

measures. This difference was, however, found to be insignificant at a 5% significance level using a two tailed t-test. So long as 

the number of repeated input pattern presentations used during testing is kept the same as the number of clamped presentations 



11 

 

used during training, this t-test result suggests that there is no need to clamp the reservoir neurons until reservoir stabilisation has 

occurred: contrary to results reported in the literature elsewhere, where it was proposed that the activations of the reservoir units 

needed to be allowed to settle in order to provide the best ESN performance [1–4]. The most significant contribution of this 

work, therefore, is that it is possible to obtain accurate results while the reservoir is still unstable, so long as the number of 

repeated input presentations used during testing is the same as during training. The need for algorithms to determine the point at 

which the reservoir units can be deemed to have stabilised are thus rendered unnecessary. 

5. CONCLUSION 

In this paper, ESNs were optimized for static pattern classification and the effect of altering spectral radius, leak rate, input 

scaling, reservoir size and input pattern repeats on the behaviour of both reservoir and output units was investigated. The 

performance of these was then tested by presenting them with a challenging classification dataset and comparing them against a 

standard MLP and very widely used ELMs and SVMs. 

Two different ESN training regimes were employed, ESN-2R and ESN-Op, and in each case it was found that the optimized 

ESNs outperform the widely used classification techniques. Only the MLP produced better classification accuracy on the 

benchmark datasets, although the MLP later proved incapable of dealing with the more complex leaf sample spectroradiometry 

dataset. The fact that the ELM and SVM achieved very similar performance implies that the recurrent connections within the 

reservoir are important for providing optimal classification performance, as does the fact that the optimal ESN spectral radius 

was greater than zero. The literature regarding the use of ESNs for static pattern recognition suggests that it is necessary to allow 

the reservoir to settle into a stable state, by ‘clamping’ the input patterns. However, it was found that it is possible to obtain 

similar classification capability by presenting the input pattern only twice, even though the ESN reservoir might still be in a 

highly unstable state at this stage, a contribution that defies the conventional wisdom. This idiosyncratic network behaviour 

needs further investigation, in particular how the spectral radius affects final output designations and the function of the 

unusually small reservoir. Further work will look into the importance of the reservoir and short term memory for classification 

ability. 
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9. TABLES 

 

Technique 
Dataset Classification Accuracy 

Iris WDBC Average 

ESN-Op 96.37% 95.17% 95.77% 

ESN-2R 97.69% 94.90% 96.30% 

ELM 91.20% 99.96% 95.58% 

SVM 94.67% 92.75% 93.71% 

MLP 98.63% 95.99% 97.31% 

Table 1: Benchmark dataset results 

 

Test 
Technique 

ESN-Op ESN-2R ELM SVM MLP 

Classification Accuracy 96.71% (0.016) 96.49% (0.017) 96.05% (0.007) 96.07% (0.027) 71.66% (0.223) 

Rhododendron MCC 0.9330 0.9291 0.9202 0.9214 0.5675 

Rhododendrons Identified 95.34% 95.01% 93.72% 94.42% 61.53% 

Beech Identified 99.90% 99.92% 100.00% 100.00% 0.23% 

Holly Identified 99.84% 99.71% 100.00% 98.44% 87.13% 

Ivy Identified 98.88% 98.70% 100.00% 99.66% 85.13% 

Laurel Identified 96.63% 96.78% 100.00% 96.28% 91.67% 

Beech Misidentified as Rhododendron 0.09% 0.07% 0.00% 0.00% 2.19% 

Holly Misidentified as Rhododendron 0.05% 0.12% 0.00% 0.97% 4.36% 
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Ivy Misdentified as Rhododendron 0.91% 
0.95% 0.00% 0.24% 8.53% 

Laurel Misidentified as Rhododendron 3.01% 
2.82% 0.00% 3.09% 2.30% 

Table 2: Leaf sample spectroradiometry results. The standard deviation for the classification accuracy is given in brackets. 
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10. FIGURES 

 

 
Figure 1: A typical ESN topology. The input units (left) are fully connected to the reservoir neurons via randomly weighted connections set at initialization. The 

reservoir is sparsely interconnected with randomly weighted connections and there is potential for recurrent loops. Each reservoir node is connected to each 

output node (right) and these connections are the only ones that are trained. 
 

 
Figure 2: ESN outputs over 400 input pattern presentations for the same set of input data. Each coloured line represents values produced by a different output 

node, with each node representing a different class. The ESN in A has a very low leak rate (0.1) and hence the output varies for some time as the repeats 
progress, while the ESN in B has a high leak rate (0.9) and thus very fast dynamics. While the output of most units is roughly the same in both cases, the holly 

output unit settles on a much lower output of -0.7, rather than -0.4. Note also that in 2B, it can be difficult to distinguish between the rhododendron and laurel 

outputs, which give very similar values. 
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Figure 3: An ESN with a spectral radius of 0.01 (A) (i.e. a small short-term memory) and an ESN with a spectral radius of 0.99 (B) (i.e. a long short-term 
memory). The lines representing each class are the same as in Fig. 2. 

 

 
Figure 4: The effect of the spectral radius on ESN performance. The final optimal value, 0.181, is marked by the dashed line. 
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Figure 5: The effect of the input scaling value on the performance of the network. The optimal input scaling, 0.17, is marked on the graph with the dashed line. 
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Figure 6: The activations of twelve randomly selected reservoir neurons (A) and the corresponding outputs of the five output units (B). On each graph, the point 

at which the data had all plateaued is marked with a dashed line. 
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Figure 7: The effect of presenting more than two presentations to a network trained on only two presentations. The lines representing each class are the same as 

in Fig. 6. 
 

 


