
Using supervised machine learning algorithms to

detect suspicious URLs in online social networks

Mohammed Al-Janabi

Keele University

m.f.al-janabi@keele.ac.uk.com

Ed de Quincey

Keele University

e.de.quincey@keele.ac.uk

Peter Andras

Keele University

p.andras@keele.ac.uk

Abstract– The increasing volume of malicious content in social

networks requires automated methods to detect and eliminate

such content. This paper describes a supervised machine learning

classification model that has been built to detect the distribution

of malicious content in online social networks (ONSs). Multisource

features have been used to detect social network posts that contain

malicious Uniform Resource Locators (URLs). These URLs could

direct users to websites that contain malicious content, drive-by

download attacks, phishing, spam, and scams. For the data collec-

tion stage, the Twitter streaming application programming inter-

face (API) was used and VirusTotal was used for labelling the da-

taset. A random forest classification model was used with a com-

bination of features derived from a range of sources. The random

forest model without any tuning and feature selection produced a

recall value of 0.89. After further investigation and applying pa-

rameter tuning and feature selection methods, however, we were

able to improve the classifier performance to 0.92 in recall.

Keywords-– Twitter; malicious URLs; phishing; spam; random

forest; spam detection

I. INTRODUCTION

The main challenges for social network security administra-

tors are not only protecting the social network management sys-

tem and database, but also protecting OSN users from being ex-

posed to malicious content that is spread over those social net-

works. 60% of social network users have received or been ex-

posed to malicious content [1] such as spam, scams, and drive-

by downloads. A number of OSNs are now developing mali-

cious content detection systems for such attacks e.g. the Face-

book Immune System detects suspicious activities such as like-

jacking, social bots, and fake content [2].

Social network detection systems vary in their robustness
yet are quite similar in their detection techniques. Examples of
popular detection techniques used are blacklists and machine
learning-based classifiers. Blacklists, which are considered one
of the traditional techniques used in this field, are databases that
collect records of previously detected attacks that have been re-
ported either by users or by security communities. Usually,
blacklists are considered as the first defensive line that OSNs
use for protection. For example, Twitter uses Google
Safebrowsing1 in particular as a blacklist service [3]. In addition
to Safebrowsing, the other well-known blacklist services in-
clude PhishTank2, URIBL and SURBL. The blacklist technique

1https://developers.google.com/safe-browsing/

offers real-time detection with a low false positive rate [4];
however, blacklist techniques cannot detect URLs that have not
been included explicitly in these blacklists. Spammers therefore
can exploit the time gap between spreading unknown URLs and
the time required for the blacklists to be updated [5]. This is
achieved by creating URLs with no historical profile via URL-
shortening[6] and low-cost domain registration and hosting ser-
vices [7]. The consequence to users is that they are exposed to
links to malicious content in real-time, with spam campaigns
achieving 80% of their spreading target within the first 24 hours
[5].

Due to this weakness of blacklists and the sheer volume and
complexity of data exchanged in OSNs, automated procedures
for identifying malicious content are essential [8]. The majority
of studies [9][10][11] that have attempted to mitigate malicious
content in social networks have built efficient machine learning
classifiers that can classify unseen malicious URLs into spam
or benign with the minimum amount of human intervention.
However, training these classifiers with an appropriate dataset
is non-trivial [12][13], with an adequate training dataset needed
to build an accurate supervised machine learning model. Black-
lists can be used to provide a large set of labelled records of
previously identified malicious URLs, which will be used to
train the classifiers.

Recent studies have compared several machine learning al-
gorithms to select the best algorithm for their collected dataset.
They used mainly supervised machine learning algorithms for
spam classification, such as Naïve Bayes (NB), k-Nearest
Neighbors (k-NN), Random Forest (RF), and Logistic Regres-
sion (LR).

Most studies [11][14] conclude that RF gives a higher clas-
sification performance than the other supervised machine learn-
ing algorithms. However, in these studies specific details re-
lated to which algorithm parameters or feature selection meth-
ods were used are often not provided. This absence of infor-
mation means that it is not possible to build an equivalent model
to reproduce the results.

In this study, the RF classifier has been used to investigate
how its performance can be optimized further by using feature
selection and parameter tuning. For feature selection, we aimed
to determine the most effective features that were derived from
multiple sources, as previous studies [15] suggested that classi-
fiers that are based on a multisource of features can give better

2https://www.phishtank.com/

classification performance. For parameter tuning we aimed to
determine the best setting for the number of trees, the size of
leaf nodes and the depth of the trees in the RF classifier. How-
ever the purpose of this paper is not to compare RF with other
methods, but to demonstrate a way of systematically analysing
the application of RF to spam twitter detection and to highlight
the importance of appropriate statistical analysis in the process
of setting the RF parameters.

 The rest of the paper is organized as follows. Section II, re-
views the related work. In Section III, we describe the data that
we used. In Section IV, we discuss model enhancement meth-
ods. Section V contains the discussion of the results, our con-
clusions and indications of the planned future work.

II. RELATED WORK

The majority of studies in this area aim to find the most pre-
dictive features that they can acquire and the best algorithm to
develop a classifier model [16]. Researchers in this field focus
mainly on finding novel features with high discriminative
power in addition to coming up with the most accurate machine
learning model [17]. Finding high discriminative features in the
area of Internet security and social networks is quite a challenge
due to the variation in attacks and techniques used by
spammers.

Due to the inventiveness of spammers detection systems are
bypassed after some time and the set of features used for spam
detection has to be regularly revised [18][19]. Similar to how
security researchers study the attacks, spammers and hackers
investigate detection systems; therefore, they can change user
properties, content or the distribution mechanism to bypass cer-
tain restriction or detection rules [20]. For example, a study of
detecting spam on Twitter [21] recommended that the number
of followers is one of the highest discriminative power features.
The feature’s discriminative power has been increasingly weak-
ened though by spammers making their accounts more popular.
They do this by conducting spam campaigns that make their
“fake” accounts connect with other fake accounts, increasing
the follower and following numbers [22].

TABLE I. COMMON FEATURES USED IN LITERATURE

Feature Features Description Ref

Account age Number of days since account

created

[21][11]

No of followers Number of accounts connected to

this account

[21][11][25]

No following Number of accounts connected to
this account

[21][11][25]

No of user favorites Number of favorite tweets [21]

No of tweets Number of posted tweets [21][11][25]

The majority of previous studies [23][24][21] begin by col-

lecting data using the Twitter streaming API3. Multiple features

are then extracted and different feature sets utilized. Some stud-

ies have common features, and often these are features that do

not require a preprocessing stage as they are provided by Twit-

ter in a numerical format e.g. tweets number and number of fol-

lowers. These can then be deployed directly into a machine

3https://dev.twitter.com/streaming/overview

learning algorithm. Table I shows examples of common fea-

tures that have been used in previous studies [21][11].
Chen et al. [21] used 12 Twitter-only lightweight features.

Lightweight features are those that do not require complicated
preprocessing operations or significant resource to be extracted
e.g. age of account and number of followers. They compared
six different classification algorithms – BayesNet, Naive Bayes,
Decision Tree (C4.5), RF, k-NN, and support vector machines
(SVMs) – which are ordered here in terms of their F-measure
scores. RF had the highest performance at 93.6% in the F-meas-
ure using an evenly distributed dataset. In the case of highly
imbalanced datasets, however, such as a 1:19 ratio for
spam/non-spam, the performance dropped to 56.6%. Classifiers
that have been trained on imbalanced data are more likely to be
subject to bias by majority class results.

Blum et al. [24] focused on detecting fraudsters’ methods to
get users to click on links that are designed to be similar to the
websites they trust or use. They used only URL lexical features.
The features were presented as a bag of words after splitting
URLs into three text strings: protocol, domain, and path. The
advantages of this detection method are the lightweight data ac-
quisition and the speed of implementation.

Burnap et al. [23] used an entirely different method to detect
malicious URLs. They deployed a high-interaction honey-net4
to collect system state changes, such as the sending/receiving
packets and CPU usage. The training dataset contained 2,000
examples with a 1:1 ratio for spam/non-spam. Ten attributes
were used to build a classifier that reflected system status
changes after opening the tweet's URL. Burnap et al. investi-
gated the shortest time required to give a preliminary warning
of the existence of malicious content in a particular URL. The
best result was reported for Multilayer Perceptron (MLP) using
features acquired after 210 seconds (0.723 in the F-measure
metric). The features used by Burnap et al. require complex data
analysis; however, they make it difficult for spammer sites to
disguise their true nature.

Although the recent literature has compared several algo-
rithms, there is a lack of information about important stages in
building a machine learning model. In particular, little infor-
mation is provided about how feature selection methods are
managed and how parameter tuning is conducted. We address
this issue in Section IV.

III. STUDY METHODOLOGY

This section describes in detail the main stages of this study,
starting with the data collection and labelling of the dataset, fol-
lowed by a brief comparison of the most common algorithms
used in related studies.

A. Data collection and labelling

This section explains how the data collection process was
conducted and how we built the ground truth dataset of mali-
cious and benign tweets. The data collection involved three
steps, as shown in Figure I: (i) collecting tweets that have
URLs, (ii) crawling each URL using headless Selenium brows-
ers, and (iii) labelling the tweet's URLs as malicious or benign.

4https://www.honeynet.org/

For the data collection stage, we used Twitter's public
streaming API for tweet collection that gives access to 1% of
the total stream [23]. A Python script was written to connect to
the Twitter API and retrieve tweets that contained at least one
URL. The tweets were then stored in a MongoDB5 database.
Two million tweets were collected between June 15, 2016, and
August 14, 2016, at random times of the day. Figure I shows
the collection stage of tweets, starting by connecting to the
Twitter stream API, then applying the filter rule to limit to
tweets with URLs.

Fig. 1. Data collection and labelling stage

When building a supervised machine learning model, a la-
belled dataset is needed. In this study, this meant labelling each
tweet in the dataset as either “spam” or as a “normal” tweet. To
build this ground truth dataset, the tweets’ URLs were checked
using VirusTotal6. VirusTotal is a multisource online database
that is used to check whether a particular URL exists in any
blacklist database. VirusTotal provides an API for retrieving in-
formation about URLs using up to 50 reputable online black-
lists, such as Google Safebrowsing (Google), BitDefender,
Dr.Web Link Scanner, Kaspersky URL Advisor (Kaspersky),
PhishTank (OpenDNS), Spam404, and Trend Micro Site Safety
Center (Trend Micro7).

As an additional refinement stage, each benign example in
our dataset, i.e. a tweet containing a URL that was not black-
listed, was checked to determine whether they had been deleted
by Twitter as this may indicate tweets that they contained mali-
cious URLs that are not on a blacklist. According to Twitter’s
deletion rules8, there are three major reasons to eliminate a
user’s9 tweet: breaking copyrights, abusive tweeting activity,
and that it is spam from Twitter’s perspective. In order to check
if a tweet had been deleted, the twitter streaming API was used
to retrieve a specific tweet (using its ID). If nothing was re-
trieved via the API then we consider it as deleted. This proce-
dure was conducted several times during data collection, the
last checking was done in December 2016.

We removed the deleted tweets from our dataset to elimi-
nate from the dataset any tweet that could be deleted because it
is spam or considered to be malicious. As a result, we were able
to create 150,000 examples of ground truth data, divided into
120,000 non-spam examples and 30,000 malicious examples,

5https://www.mongodb.com/
6https://www.virustotal.com/
7https://global.sitesafety.trendmicro.com/

which ranged from malware, phishing, scam pages, and over-
loaded ads to low-quality web pages. We also validated our da-
taset periodically using the two methods mentioned above, as
some spam URLs required longer time to be blacklisted or de-
leted by Twitter.

In addition to the collected tweets, we stored the content of
each webpage that the tweet’s URL led to. For this purpose, we
used headless browsers to open each link and catch page load-
ing behaviors such as the redirection hubs and get the final
landed webpage. We used a high speed connected machine and
high processing speed to retrieve all URLs in our dataset. We
set up the headless browsers on a Core i7 32GB RAM machine
to visit each tweet's URL to collect additional source data. We
extracted web page content and URL redirection behavior. To
determine the domain age, we used the WHOIS info API to ac-
quire information about the domain's registration date.

B. Feature extraction and engineering

In the context of machine learning, features are used to pro-

vide discriminative power in the classification process. The pre-

liminary feature set used was based on the literature [11], and

also contained features selected by studying cases of real spam-

ming content distributed over OSNs. A total of 36 features were

extracted from the Twitter stream API, domain information,

and web page content. Table II shows features that were ex-

tracted directly from the tweet's metadata, provided by the

Twitter streaming API. These can be considered as lightweight

features as they do not need further pre-processing.

TABLE II. TWITTER FEATURES READY TO BE USED

Feature Feature Source

User name signs User Info

Default profile image User Info

Have media Tweet Content

User listed count User Info

User followers count User Info

User friends count User Info

User favorites count User Info

User name length User Info

Account age User Info

Is user geo-enabled? User Info

User statuses count User Info

User name digits (number) User Info

Models that rely entirely on Twitter metadata features

though [26][27] could be subverted by spammers using tech-

niques such as having fake followers [28], that make their spam

user accounts look more legitimate. Therefore, to make this

more difficult for spammers to subvert, a more powerful feature

set is required. Recent studies [23], [29] recommend using fea-

tures that are derived from several sources, such as domain

WHOIS info and web page content. These features, shown in

Table III though require resource intensive preprocessing (see

8https://support.twitter.com/articles/18311
9There is also the chance that the user themselves deletes the tweet.

previous section) to be extracted and converted for use in ma-

chine learning algorithms. Table VII shows the full list of fea-

tures that were used for building the machine learning models

used in this study.

TABLE III. FEATURES THAT REQUIRED EXTRACTION AND

PREPROCESSING

Feature Feature Source

Domain age Domain WHOIS Info

Is it secured https? User Info

Link length Tweet Content

Link letters (number) URL Info (after redirection)

Number of dots in link URL Info (after redirection)

Number of link signs URL Info (after redirection)

Number of digits in link URL Info (after redirection)

User name length User Info

Number of input forms Web Page Content

Number of external links Web Page Content

Number of ad blocked10 links Web Page Content

Number of webpage links Web Page Content

C. Model selection

To explore the best-performance machine learning algo-
rithms for the classification of spam and non-spam URLs asso-
ciated with tweets, the top four common algorithms reported in
the literature review (see section 2) were used. These algo-
rithms are:

LR classifier: a probabilistic classifier, typically working on bi-
nary classification problems

RF: one of the ensemble classification techniques. RF builds
many decision trees that are used to classify new data by the
majority vote. RF shows good generalization due to the random
sampling and random selection of features.

NB: one of the commonly used learning algorithms. The NB
classifier is a probabilistic model based on the Bayes rule. ‘Na-
ïve’ refers to the assumption of conditional independence
among features.

k-NN: a supervised learning method used in classification prob-
lems. k-NN maps the training input feature vectors X = {x_1,
x_2, ..,x_n} in n-dimensional space, then classifies new data
based on the majority class for the k neighbors. k refers to the
number of training samples closest to the point of entry.

 All the algorithms above were implemented in this study by
using Scikit-learn11, which is an open source machine learning
library in Python.

We trained and tested four classifiers using the same set of
36 features and the same training and testing datasets described
in Section III.B. The ground truth dataset was randomly divided
into a 75% training and 25% testing set. The four classifiers
(RF, LR, k-NN, and NB) were trained and tested. We used the
Scikit-learn default parameter values for all four algorithms. To
assess performance, evaluation metrics were used that are
known to be less sensitive to dataset imbalance [30]:

10https://github.com/adblockplus/python-abp

TABLE IV. RANDOM FOREST MAIN PARAMETERS

Data Set
Classifier decision

SPAM Not SPAM

T
ru

e Spam True Positive False Negative

Not SPAM False Positive True Negative

• Area under the curve (AUC) represents the classifier’s
ability to detect classes. If the AUC is 1, that means
that the classifier perfectly detects class labels whereas
0.5 is equal to random selection. AUC has been found
to be insensitive to an imbalanced [31] dataset.

• Precision is the ratio of true level of positive or nega-
tive detection of the classifier to overall test samples.

TP / (TP + FP)

• Recall is the ratio of correct true positive classifier
decisions to the all true positive examples in the test

set.

TP / (TP + FN)

• F-measure (F1) represents the previous metrics preci-
sion and recall combined as follows.

 2 * (precision * recall) / (precision + recall)

Table V presents the overall performance of all implemented
classifiers using the four evaluation metrics that are showed.

TABLE V. OVERALL PERFORMANCE (AVERAGE OF 10 EXPERIMENTS)

USING ONE CLASSIFIER FOR ALL ATTRIBUTES

Model AUC F1 Precision Recall

RF 0.92 0.92 0.96 0.89

LR 0.67 0.63 0.67 0.60

NB 0.58 0.62 0.51 0.78

k-NN 0.80 0.78 0.79 0.76

The results shown above confirm that RF had the best per-

formance, which is aligned with the results reported in most of
the literature [11][14]. Although one of RF’s main advantages
is that it does not require a fine-tuning process for its parameters
[32], choosing the optimized values of parameters could protect
the model from falling into overfitting.

The preliminary results show that the RF classifier with
Scikit-learn default parameters (10 trees, undefined max depth
and leaf size) reached 89% in the recall performance metric.
The next section describes two approaches to enhance the clas-
sifier’s performance.

IV. MODEL PARAMETER TUNING AND PERFORMANCE

ENHANCEMENT

 One of the main stages in building a machine learning model
is model enhancement, i.e. changing the model’s structure or
parameters with the aim to improve its performance. Here we
use two approaches to improve the model’s performance and

11http://scikit-learn.org/stable/

decrease its complexity. First we tuned the RF model’s param-
eters and second we trialed several feature evaluation methods
to determine the feature set that gives the most accurate results.

A. Model enhancement by parameter tuning

Although RF does not require high effort fine-tuning, set-
ting proper RF parameters prevents overfitting and enhances
the detection performance. The RF main parameters [33][34]
that we considered are tree number, max depth and leaf size
(stopping criteria) (as shown in Table VI).

TABLE VI. RANDOM FOREST MAIN PARAMETERS

Parameter Description

Tree number Number of trees in building the RF classifier

Max depth The maximum depth that the tree can grow

Leaf size The minimum number of leaves a branch can have

To find the best parameter values for our model, we used

the Scikit-learn grid search method. Using this approach, the
parameters could be varied based on a range of pre-specified
values. All options for all parameters cannot be considered, es-
pecially those that can be infinite, such as tree number and max
depth.

In the context of the spam content classification task, the
classifier performs very well if the number of trees is suffi-
ciently large, the max tree depth is sufficiently high, and the
minimum leaf size is sufficiently low. The results show that the
number of trees has a relatively small impact, and beyond nine
trees there is no significant change in the performance. The
minimum leaf size has a greater effect, especially for classifiers
with high max tree depth, for which even small changes in the
minimum size of the leaf have a significant impact on the per-
formance. Finally, the max tree depth has a significant effect on
the performance for low values of this parameter, and the effect
diminishes below significance for depth values above 16 or 24
for small and large minimum leaf size, respectively (Figure 2).

Fig. 2. Random forest performance using 19 trees and leaf size equal to 10

with varying tree depth

This implies that the number of trees and max tree depth
should be set to moderate values to achieve good performance

without an excessive computational burden. A too small mini-
mum leaf size combined with an excessively large max tree
depth is likely to lead to overfitting (note that the overfitting is
because of the trees and not because of the forest arrangement
of the trees [35], [36]). Therefore, controlling the minimum leaf
size is important, and again it should be set to a moderate value
to prevent overfitting and excessive unnecessary computation.

We determined that our optimal model parameter was 19
trees, a max depth of 24, and ten as the max leaf size. These
parameter values will be used later in the process in feature se-
lection. It is worth mentioning that all results are the average of
20 times trials using ten stratification fold validation.

B. Model enhancement by feature selection

The feature selection procedure was conducted in two
stages. In the first stage, each feature in our original feature set
was evaluated by applying a number of available feature selec-
tion metrics. Secondly, the top k features were chosen which
should have the highest discriminative power [37]. Evaluating
features, which is also known as the feature importance score,
is an essential process to understand the dataset we rely on to
build models. Moreover, it enables the researcher to distinguish
between good features and irrelevant features. Eliminating re-
dundant and noisy features could cause performance improve-
ment [38]. There are several existing methods to perform fea-
ture selection, such as the wrapper and filter methods [39].

The wrapper method concept is based on model perfor-
mance, and every chosen subset of features is used to build a
classifier and evaluate its performance until the optimal subset
is found with the lowest error rate. For a high dimensional da-
taset, the wrapper method could be a costly and time-consum-
ing method; however, the wrapper method is one of the highly
efficient methods as its feature evaluation relies directly on the
classifier performance. It has been shown [40] that the wrapper
method achieves higher classification accuracy than the filter
method. Despite the high computational resources required, the
wrapper method is recommended to be applied for such classi-
fication problems.

The mean decrease accuracy (MDA) [41] is ranking fea-
tures based on the decrease in performance value after remov-
ing features one at a time. Essential features should show a neg-
ative impact when they are removed. Conversely, useless fea-
tures should have no significant impact when removed. How-
ever, as mentioned earlier, some features, acting as noise, could
have a negative impact on the model. Removing such features
might improve the performance of the model.

The filter method uses importance measurement methods to
assess the information content of features and possibly their
correlation with the target classification. Unlike the wrapper
method, the filter method does not rely on classifier perfor-
mance to rank features’ importance, making its application
much faster Table VI, shows the features’ importance ranking
based on three methods, information gain, Gini Index and mean
decrease accuracy (MDA).

The features’ importance is varied; each method ranks fea-
tures’ importance somewhat differently, although there is gen-
eral agreement on the top and bottom, which are the best and

worst features. In this stage, we wanted to select the top k fea-
tures that give the best classification performance. To conduct
feature selection, we started by eliminating the lowest ranked
features from the three ranking lists that were produced by three
different evaluating techniques. Therefore, at each number of
features, we built an RF classifier based on the new feature set,
then compared it to the original performance we achieved by
using the feature set with all the original 36 features. Our stop-
ping criterion was whenever we got performance that was sta-
tistically less than the first classifier performance we built using
all features, which was 0.89 in the recall. Figure III shows the
performance of classifiers against the number of features used.
Each time we evaluated the RF classification model, we used
cross-validation to evaluate classifiers based on the recall met-
ric.

TABLE VII. RANKING OF FEATURES BASED ON INFORMATION GAIN, GINI

INDEX, AND MEAN DECREASE AVERAGE

Feature
Info.

Gain

Gini

Index
MDA

1 Domain age 1 2 1

2 Number of digits in link 2 1 2

3 Number of external links 7 6 5

4 Ratio of age to number of tweets 3 3 8

5 Link letters (number) 4 5 11

6 Number of links (webpage) 8 7 7

7 Number of images (webpage) 11 9 4

8 Number of dots in link 13 13 6

9 Ratio of words to external links 6 10 12

10 Number of input forms 12 12 3

11 Number of words (webpage) 10 11 10

12 Link length 5 8 13

13 User statuses count 9 4 15

12 http://www.yes-www.org/why-use-www/

Feature
Info.

Gain

Gini

Index
MDA

14 Number of link signs (webpage) 14 14 14

15 Number of ad blocked links 20 18 9

16 User friends count 15 15 16

17 Account age 17 16 17

18 User followers count 16 17 22

19 User favorites count 18 19 18

20 Number of hashtags (tweet) 21 21 20

21 User listed count 19 20 24

22 Does link contain ‘www’12? 25 24 19

23
Does webpage have password

input?
27 25 21

24 Link letters (number) 22 23 27

25 Does tweet have media? 28 27 23

26 Number of mentions (tweet) 23 22 26

27 User name length 24 26 30

28 Is https protocol used in URL? 26 28 25

29 User name digits (number) 29 29 31

30 Is tweet is a reply tweet? 33 31 28

31 Number of URLs (tweet) 32 33 29

32 User name signs 30 30 33

33 Is user geo-enabled? 31 32 32

34 Default profile image 34 34 34

35 Is user account verified? 35 35 35

36 Is user account protected? 36 36 36

In Figure 3, the horizontal axis represents the number of top
features used to build the classifier, and the vertical axis repre-
sents the performance in recall. To assess the impact of features
on the classification performance we removed features from the
three ranking lists, starting from the original 36 features. The
performance of the classifier that was built using the original

Fig. 3. Random forest classification performance based on the selected features.

feature set (with 36 features) is shown as the horizontal line
fixed with the performance at 0.897 in recall in Figure 3. This
was used as a benchmark performance to assess the extent of
improvement or degradation in classification performance
cause by elimination of features. Figure 3 does not show classi-
fiers’ performance for less than six features, as the performance
drops very much for further reduction of the number of top fea-
tures. The classifier performance is improved as we removed
lower ranking features.

The filter methods reached their peak performance (0.908)
for 13 features for the Gini impurity features ranking list and
for 12 features (0.907) for the information gain features ranking
list. On the other hand, the MDA-based elimination of features
reached its best classification performance (0.916) for 9 fea-
tures. All methods improved the classifier performance and re-
duced the feature set to less than half.

V. DISCUSSION, CONCLUSION AND FUTURE WORK

 In this paper, we aimed to find the highest performance
model using the smallest number of features and the smallest
structural parameters (tree number, max tree depth and maxi-
mum leaf size) in order to find the least complex but high per-
forming classifier. First we determined the required minimal
structural parameter values using all features and then we re-
duced the feature set to the minimally required set. The best
feature set reduction was achieved using the computationally
costly MDA wrapper method, but relatively close performance
(although statistically significantly lower) and feature set reduc-
tion was achieved by using the two chosen filtering methods as
well.

 In the social networks, the spam detection task requires a
fast response to the new emerging techniques and tricks that
hackers use. Features in this field need to be re-ranked and eval-
uated periodically since machine learning models need to be
built on reliable and validated feature sets to achieve high-qual-
ity performance. Features that used to be highly discriminative
can become less effective if spammers change their methods or
content. Our work provides a practical example of how to em-
ploy parameter tuning and feature selection methods to develop
a low complexity and efficient machine learning classification
tool for spam filtering in social media context.

 We believe that it is important to tune the parameters of such
spam classification tools and to optimize the feature set that
they use in order to achieve reliable good classification perfor-
mance. It is also important to report the parameter values and
the details of the feature set optimization method that is applied
in order to guarantee the reproducibility of the results reported
in the paper.

 For our future work, we aim to conduct a systematic analy-
sis to evaluate the feature selection procedure and performance
based on the wrapper method using RF and XGBoost13, which
is a new library of gradient-boosting trees. We also aim to com-
pare other methods such as Random forest, XGBoost, Support
Vector Machine and Deep Neural Network (DNN) classifiers.

13 https://xgboost.readthedocs.io

 The source code of our spam classification tool and the data
set that we used are available from the authors on request.

ACKNOWLEDGMENT

We would like to thank the Iraqi Ministry of Higher Educa-
tion and Research for the PhD scholarship provided for Mo-
hammed Al-Janabi.

REFERENCES

[1] J. Jang-Jaccard and S. Nepal, “A survey of emerging threats in

cybersecurity,” J. Comput. Syst. Sci., vol. 80, no. 5, pp. 973–993,

2014.

[2] T. Stein, E. Chen, and K. Mangla, “Facebook immune system,”

Proc. 4th Work. Soc. Netw. Syst., vol. m, no. 5, pp. 1–8, 2011.

[3] K. Thomas and D. M. Nicol, “The Koobface botnet and the rise of

social malware?,” Proc. 5th IEEE Int. Conf. Malicious Unwanted

Software, Malware 2010, pp. 63–70, 2010.

[4] S. Sheng, B. Wardman, G. Warner, L. F. Cranor, J. Hong, and C.

Zhang, “An Empirical Analysis of Phishing Blacklists,” 2009.

[5] C. Grier, K. Thomas, V. Paxson, and M. Zhang, “@spam: The

Underground on 140 Characters or Less,” in Proceedings of the

17th ACM conference on Computer and communications security -

CCS ’10, 2010, p. 27.

[6] F. Klien and M. Strohmaier, “Short Links Under Attack:

Geographical Analysis of Spam in a URL Shortener Network,” in

Proceedings of the 23rd ACM conference on Hypertext and social

media - HT ’12, 2012, p. 83.

[7] P. Ponce-Cruz and F. D. Ramírez-Figueroa, “Intelligent control

systems with LabVIEW???,” Intell. Control Syst. with

LabVIEW???, pp. 1–216, 2010.

[8] J. Tang, Y. Chang, and H. Liu, “Mining Social Media with Social

Theories: A Survey,” SIGKDD Explor. Newsl, vol. 15, no. Iid, pp.

20–29, 2014.

[9] I. Kayes and A. Iamnitchi, “A Survey on Privacy and Security in

Online Social Networks,” ACM Comput. Surv., no. 1, pp. 323–325,

Jan. 2015.

[10] T. S. Guzella and W. M. Caminhas, “A review of machine learning

approaches to Spam filtering,” Expert Syst. Appl., vol. 36, no. 7, pp.

10206–10222, Sep. 2009.

[11] A. Aggarwal, A. Rajadesingan, and P. Kumaraguru, “PhishAri:

Automatic realtime phishing detection on twitter,” eCrime Res.

Summit, eCrime, pp. 1–12, 2012.

[12] C. Yang, J. Zhang, and G. Gu, “A taste of tweets: reverse

engineering Twitter spammers,” Proc. 30th Annu. Comput. Secur.

Appl. Conf., pp. 86–95, 2014.

[13] H. Li, Z. Chen, A. Mukherjee, B. Liu, and J. Shao, “Analyzing and

Detecting Opinion Spam on a Large-scale Dataset via Temporal and

Spatial Patterns,” Proc. Ninth Int. AAAI Conf. Web Soc. Media, no.

MAY, pp. 634–637, 2015.

[14] C. Yang, R. C. Harkreader, and G. Gu, “Empirical evaluation and

new design for fighting evolving twitter spammers,” IEEE Trans.

Inf. Forensics Secur., vol. 8, no. 8, pp. 1280–1293, 2013.

[15] Q. Huang, V. K. Singh, and P. K. Atrey, “Cyber Bullying Detection

Using Social and Textual Analysis,” in Proceedings of the 3rd

International Workshop on Socially-Aware Multimedia - SAM ’14,

2014, pp. 3–6.

[16] C. Chen, Y. Wang, J. Zhang, Y. Xiang, W. Zhou, and G. Min,

“Statistical Features-Based Real-Time Detection of Drifted Twitter

Spam,” IEEE Trans. Inf. Forensics Secur., vol. 12, no. 4, pp. 914–

925, 2017.

[17] G. Canfora and C. A. Visaggio, “A set of features to detect web

security threats,” J. Comput. Virol. Hacking Tech., pp. 1–19, 2016.

[18] S. Liu, Y. Wang, C. Chen, and Y. Xiang, “An Ensemble Learning

Approach for Addressing the Class Imbalance Problem in Twitter

Spam Detection,” in Information Security and Privacy: 21st

Australasian Conference, ACISP 2016, Melbourne, VIC, Australia,

July 4-6, 2016, Proceedings, Part I, J. K. Liu and R. Steinfeld, Eds.

Cham: Springer International Publishing, 2016, pp. 215–228.

[19] S. K. Trivedi and S. Dey, “Effect of feature selection methods on

machine learning classifiers for detecting email spams,” Proc. 2013

Res. Adapt. Converg. Syst. - RACS ’13, no. August 2016, pp. 35–40,

2013.

[20] A. Bollinger, H. J. Simon, L. Huang, A. D. Joseph, B. Nelson, B. I.

P. Rubinstein, and J. D. Tygar, “Adversarial machine learning,” in

Proceedings of the 4th ACM workshop on Security and artificial

intelligence, 2011, vol. 92, no. 1, pp. 43–58.

[21] C. Chen, J. Zhang, X. Chen, Y. Xiang, and W. Zhou, “6 million

spam tweets: A large ground truth for timely Twitter spam

detection,” IEEE Int. Conf. Commun., vol. 2015–Septe, pp. 7065–

7070, 2015.

[22] H. Shen and X. Liu, “Detecting Spammers on Twitter Based on

Content and Social Interaction,” Proc. - 2015 Int. Conf. Netw. Inf.

Syst. Comput. ICNISC 2015, pp. 413–417, 2015.

[23] P. Burnap, A. Javed, O. F. Rana, and M. S. Awan, “Real-time

classification of malicious URLs on Twitter using machine activity

data,” in Proceedings of the 2015 IEEE/ACM International

Conference on Advances in Social Networks Analysis and Mining,

ASONAM 2015, 2015, pp. 970–977.

[24] A. Blum, B. Wardman, T. Solorio, and G. Warner, “Lexical feature

based phishing URL detection using online learning,” Proc. 3rd

ACM Work. Artif. Intell. Secur. - AISec ’10, no. August 2016, p. 54,

2010.

[25] M. McCord and M. Chuah, “Spam detection on twitter using

traditional classifiers,” Lect. Notes Comput. Sci. (including Subser.

Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 6906

LNCS, pp. 175–186, 2011.

[26] X. Zheng, Z. Zeng, Z. Chen, Y. Yu, and C. Rong, “Detecting

spammers on social networks,” Neurocomputing, vol. 159, no. 0, pp.

27–34, Jul. 2015.

[27] Z. Chu, I. Widjaja, and H. Wang, “Detecting social spam campaigns

on Twitter,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes

Artif. Intell. Lect. Notes Bioinformatics), vol. 7341 LNCS, pp. 455–

472, 2012.

[28] A. Aggarwal and P. Kumaraguru, “Followers or Phantoms? An

Anatomy of Purchased Twitter Followers,” Aug. 2014.

[29] K. Thomas, C. Grier, J. Ma, V. Paxson, and D. Song, “Design and

evaluation of a real-time URL spam filtering service,” in

Proceedings - IEEE Symposium on Security and Privacy, 2011, pp.

447–462.

[30] H. He and Y. Ma, Imbalanced learning: foundations, algorithms,

and applications. Wiley-IEEE Press, 2013.

[31] T. Fawcett, “An introduction to ROC analysis,” Pattern Recognit.

Lett., vol. 27, no. 8, pp. 861–874, 2006.

[32] J. C. Ross and P. E. Allen, “Random Forest for improved analysis

efficiency in passive acoustic monitoring,” Ecol. Inform., vol. 21,

pp. 34–39, 2014.

[33] A. Liaw, M. Wiener, and J. Hebebrand, “Classification and

regression by randomForest,” R news, vol. 2, no. 3, pp. 18–22, Dec.

2002.

[34] V. Lempitsky, M. Verhoek, J. A. Noble, and A. Blake, “Random

forest classification for automatic delineation of myocardium in

real-time 3D echocardiography,” Lect. Notes Comput. Sci.

(including Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics), vol. 5528, pp. 447–456, 2009.

[35] J. Bradford, C. Kunz, R. Kohavi, C. Brunk, and C. Brodley,

“Pruning decision trees with misclassification costs,” Mach. Learn.

ECML- 98, vol. 1398, pp. 131–136, 1998.

[36] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–

32, 2001.

[37] G. Forman, “An Extensive Empirical Study of Feature Selection

Metrics for Text Classification George,” CrossRef List. Deleted

DOIs, vol. 1, no. 7–8, pp. 1289–1305, 2000.

[38] Q. Xu, E. Xiang, J. Du, J. Zhong, and Q. Yang, “SMS Spam

Detection using Content-less Features,” IEEE Intell. Syst., no.

January, 2012.

[39] M. Dash, H. Liu, M. Dash ’, and H. Liu, “Feature selection for

classification,” Intell. Data Anal., vol. 1, no. 3, pp. 131–156, 1997.

[40] Y. Zhang, S. Wang, P. Phillips, and G. Ji, “Binary PSO with

mutation operator for feature selection using decision tree applied to

spam detection,” Knowledge-Based Syst., vol. 64, pp. 22–31, 2014.

[41] G. Louppe, L. Wehenkel, A. Sutera, and P. Geurts, “Understanding

variable importances in forests of randomized trees,” Adv. Neural

Inf. Process. Syst. 26, pp. 431–439, 2013.

