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Abstract   1 

Plasmodium falciparum is a protozoan parasite that causes the most severe form of human 2 

malaria. Four other Plasmodium species can also infect humans – P. vivax, P. ovale, P. 3 

malariae and P. knowlesi – but P. falciparum is the most prevalent Plasmodium species in 4 

the African region, where 90% of all malaria occurs, and it is this species that causes the 5 

great majority of malaria deaths.  These were reported at 438,000 in 2015 (1) from an 6 

estimated 214 million cases; importantly, however, figures for the global burden of malaria 7 

tend to have wide margins of error due to poor and inaccurate reporting (2-4).  In this 8 

Perspective, the unique features of the P. falciparum parasite are highlighted and current 9 

issues surrounding the control and treatment of this major human pathogen are discussed. 10 

What is special about Plasmodium falciparum?   11 

All Plasmodium parasites share unique and fascinating biological features, enabling them to 12 

invade, colonise, replicate and persist in diverse host environments.  They have a complex 13 

and highly-evolved lifecycle that requires both an insect vector and a vertebrate host (fig 1A), 14 

and their cell and molecular biology is highly unusual.  Plasmodium belongs to an early-15 

diverging lineage of eukaryotes, the Apicomplexan phylum, which evolved from a free-living 16 

algal ancestor into an obligate intracellular parasite (5): the resultant cells carry a relic plastid 17 

(6) as well as other special organelles that facilitate invasion of host cells (7) (fig 1B).  Inside 18 

these cells they grow via various syncytial modes of cell division rather than conventional 19 

binary fission (8).  Plasmodium parasites are widespread throughout the animal kingdom but 20 

tend to be highly specialised for particular hosts – avian, reptilian, mammalian, etc.: P. 21 

falciparum infects only humans and great apes (9, 10), and although its basic biology shares 22 

all the above characteristics, it also has additional features that can cause unique and 23 

severe pathology in humans.  The case fatality rate of falciparum malaria is ~0.3-0.45%, but 24 

in a subset of severe malaria cases it can exceed 20% (11) (table 1).   25 

 26 

Table 1: Manifestations of severe falciparum malaria 27 
 28 

Clinical manifestation Frequency Prognostic of poor outcome? Linked laboratory indices 

  Children Adults Children Adults   

Cerebral coma or impaired 
consciousness 

+++ ++ +++ +++ Parasite sequestration in brain 

Repeated convulsions +++ + + ++ 
Parasite sequestration in brain, 
Hypoglycaemia 

Prostration +++ +++ + + 
 

Respiratory distress +++ ++ +++ +++ Metabolic acidosis/Hyperlactataemia, 

     
Severe anaemia 

Pregnancy malaria - +++ - +++ 
Parasite sequestration in placenta, 
Hypoglycaemia 

 29 
Table shows a non-exhaustive list of key disease features in severe falciparum malaria. 30 

Adapted from data in references (4) and (11).  31 
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 Firstly, in the human-pathogenic stage of its lifecycle, which consists of growth inside 32 

erythrocytes (fig 1A), P. falciparum can infect erythrocytes of all ages.  This distinguishes it 33 

from the other major human malaria species, P. vivax, which is restricted to rare immature 34 

erythrocytes called reticulocytes.  Accordingly, whereas P. vivax growth is limited by the 35 

scarcity of reticulocytes, P. falciparum can swiftly reach parasitaemias of 10-20%, and each 36 

infected cell can produce ~20-30 new parasites every 48 hours.  This capacity to reach very 37 

high parasitaemias exacerbates malaria pathologies such as severe anaemia, metabolic 38 

acidosis and respiratory distress (11, 12) (table 1).   39 

 Secondly, P. falciparum has a family of major virulence genes called var genes which 40 

are unique to this parasite and its close relatives (ape malaria parasites in the ‘Laverania’ 41 

subgenus (13)).  These virulence factors play key roles in other lethal pathologies, such as 42 

cerebral malaria and pregnancy malaria (14) (table 1).  Var genes encode an adhesive 43 

protein, ‘PfEMP1’, which is exported and expressed on the surface of infected erythrocytes, 44 

allowing the cells to be sequestered in capillaries as they mature. Thus they avoid clearance 45 

by the spleen, but sequestered cells obstruct blood flow and cause inflammatory responses 46 

that are particularly harmful in vessels of the brain or placenta (15).  Most other malaria 47 

parasites do not adhere in this way and do not cause cerebral comas or pregnancy 48 

complications.  Furthermore, the var gene family is variantly expressed, giving rise to 49 

antigenic variation in PfEMP1, and hence immune evasion (16), which is one reason why 50 

sterile immunity to falciparum malaria is rarely achieved in humans. 51 

 A third unusual feature of P. falciparum is its extremely biased genome, the 52 

implications of which are not yet understood.  At 81% A/T, this is one of the most biased 53 

genomes ever sequenced (17).  Not all human malaria parasites share this bias  – the P. 54 

vivax genome is only ~58% A/T – and although elegant studies have recently elucidated 55 

how the bias is maintained at a molecular level (18), they have not established why.  It may 56 

be that A/T-rich DNA favours permissive transcription (19) or rapid DNA replication (20, 21) 57 

– both signature features of P. falciparum.  Certainly, this genome bias presents a severe 58 

challenge to biologists in sequencing, cloning, expressing and working with P. falciparum 59 

genes. 60 

Current issues in P. falciparum biology 61 

Hot topics in P. falciparum biology range from the molecular to the epidemiological.  On the 62 

molecular and cellular level, the parasite has unusual basic biology that is both academically 63 

interesting and medically important.  Understanding the parasite’s unique features will help 64 

scientists to focus on new targets for antimalarial drugs and vaccines.  These features 65 

include the unusual genome mentioned above; the unusual cell cycles (8)(fig 1A); the 66 

biochemical specialisations for an intracellular lifecycle (22); and the invasion pathways (7), 67 
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transport pathways (23) and capacities for host-cell remodelling (24, 25) that have evolved to 68 

facilitate life inside anucleate erythrocytes.  Interestingly, a recent screen for genes that are 69 

essential for growth in the rodent malaria parasite P. berghei revealed an unprecedentedly 70 

high proportion of indispensable genes, which was extrapolated to be similarly true for P. 71 

falciparum (26).  This raises conceptual questions about reductive specialisation for an 72 

intracellular parasitic lifestyle and importantly it also raises the prospect of an abundance of 73 

genetically-essential targets for antimalarial drugs.    74 

 Moving to the epidemiological level, falciparum malaria has historically been a major 75 

scourge of humans throughout the tropics and subtropics, and attempts to control the 76 

disease have a long and complex history.  Excitingly and controversially, the prospect of 77 

global malaria eradication has recently returned to the fore (27), after the failure of the first in 78 

‘WHO Global Malaria Eradication Programme’ in the mid-20th century.  The original 79 

programme was built upon considerable success in eliminating the disease from Europe and 80 

North America in the early 1900s via large-scale environmental insecticide treatment which 81 

targeted the mosquito vector, together with drug treatment of malaria cases in humans.  82 

Reasons for its ultimate failure included the development of mosquito resistance to the 83 

insecticide DDT and parasite resistance to the antimalarial chloroquine, as well as the more 84 

challenging dynamics of disease transmission in hyperendemic tropical areas.  Figure 1C 85 

illustrates the subsequent rebound in the global burden of malaria.  Encouragingly, however, 86 

more modern interventions have reduced this burden once again, with a drop of ~40% in 87 

malaria in Africa over the past 15 years, attributed primarily to the use of insecticide-treated 88 

bednets (28, 29).   89 

 Whether or not malaria can actually be eradicated with current tools remains a topic 90 

of debate (30, 31), and some of these tools are now increasingly threatened, as discussed 91 

below.  There is a clear historical trend for disease resurgence when control measures fail or 92 

when funding to sustain them fails (not only malaria (fig 1C) but other parasitic diseases 93 

such as sleeping sickness have illustrated this (32)).  Nevertheless, striking successes have 94 

already been achieved in eliminating malaria from island nations such as Sri Lanka (33), as 95 

well as non-island nations on the margins of transmission zones, such as Morocco and 96 

Kyrgyzstan.  Others including China and Malaysia, benefitting from regional cross-border 97 

collaboration, are close to the elimination goal (34). 98 

Current challenges in P. falciparum biology 99 

Key challenges in the P. falciparum field range from basic science to real-world intervention.  100 

At the level of basic science, the unusual biology of this parasite makes it challenging to 101 

work with, although it remains one of only two human malaria parasites that can be grown in 102 

laboratory culture at all (35) (the other is the zoonotic macaque parasite P. knowlesi (36)).  103 
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The ability to culture P. falciparum in human erythrocytes makes genetic experiments 104 

feasible (37), albeit painfully inefficient when compared to model systems.  Nevertheless, in 105 

the past decade great advances have been made in developing genetic tools for gene 106 

tagging, gene knockouts, knockdowns, inducible approaches and gene editing (38), and the 107 

scope for further improvement remains substantial.  Collaborative efforts to sequence 108 

hundreds of P. falciparum strains from around the world are fast revealing the genetic 109 

diversity of the species (39), but challenges remain in efficiently adapting field strains to in 110 

vitro culture (40) and there are persistent concerns about the relevance of laboratory 111 

experiments conducted exclusively in strains that have been in culture for decades.   112 

 Meanwhile, major challenges persist for P. falciparum control in the real world.  Drug 113 

resistant parasites (as well as insecticide-resistant mosquito vectors) are a recurring 114 

problem, as are sufficiently accurate and sensitive diagnostics, while the gold-standard 115 

disease-prevention tool of a vaccine against P. falciparum remains elusive despite decades 116 

of scientific effort.   117 

 P. falciparum parasites have historically developed resistance to every antimalarial 118 

deployed (fig 1C).  Current first-line treatments are all based on artemisinin derivatives, 119 

which are highly effective but very short-lived in the bloodstream.  Therefore they are always 120 

supplied with a second longer-lasting antimalarial as a combination therapy or ’ACT’.  121 

Resistance to ACTs is now found in much of the greater Mekong region (41, 42).  As yet, 122 

there is no strong evidence that resistance has spread from Asia to Africa, where it would be 123 

particularly devastating, but this has previously happened with antimalarials such as 124 

chloroquine and antifolates, and the ever-increasing global movement of people makes the 125 

transport of resistant parasites very likely.  The current picture is complicated by the unusual 126 

nature of artemisinin resistance: a phenotype of ‘delayed parasite clearance’ in which 127 

parasites are cleared only slowly from the blood, and may go ’dormant’ to survive the brief 128 

period of drug exposure before recrudescing (41, 43).  This phenotype is difficult to measure 129 

in vitro, its genetic basis is only partially understood (44, 45), and it may be dependent on 130 

the genetic background of the parasite, perhaps explaining why it has developed in Asian 131 

but not yet in African strains (46, 47).  As highlighted below, it will be imperative to preserve 132 

the effectiveness of the ACT antimalarials for as long as possible.  133 

 Developing an effective vaccine remains a huge challenge owing to the parasite’s 134 

antigenic complexity, antigenic redundancy and capacity for antigenic variation (48).  In 135 

2018, the first ever vaccine for falciparum malaria, Mosquirix™, will begin to be supplied in 136 

three African countries, Ghana, Kenya and Malawi, supported by the WHO ‘Malaria Vaccine 137 

Implementation Programme’.  However, this programme remains exploratory and the 138 

vaccine is unlikely to be a game-changer in global malaria control because it does not offer 139 
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sterile or long-term protection.  Mosquirix™ features an epitope from the invading 140 

‘sporozoite’ stage of the parasite (fig 1A), and thus targets the pre-erythrocytic parasite 141 

stages in order to stimulate an immune response pre-empting symptomatic blood-stage 142 

malaria.  Unfortunately, Phase-3 clinical trials revealed that the vaccine offered only ~30% 143 

protection, waning rapidly over a four-year period (49).  Deployment in young children across 144 

Africa might still prevent millions of severe malaria episodes and deaths, but this must be 145 

weighed against concerns about cost, uptake, impact on other malaria control interventions, 146 

and the potential risk of shifting severe disease to older age groups (50).   147 

 Finally, in order to prevent malaria transmission it is vital to detect and then treat P. 148 

falciparum infections accurately, even when asymptomatic, because they may nevertheless 149 

still be transmitted by mosquitoes (51).  People who have been repeatedly exposed tend to 150 

develop functional – albeit non-sterile – immunity to the parasite, suppressing infections to a 151 

level that causes few symptoms.  These can be difficult to detect (because asymptomatic 152 

people do not seek treatment) and if the parasitaemia is very low they can also be difficult to 153 

diagnose without sensitive PCR-based tests or expert microscopy.  Field diagnosis is often 154 

limited to antibody-based ‘rapid diagnostic tests’ (52), which frequently have lower 155 

sensitivity. 156 

Future perspectives on P. falciparum 157 

Arguably the most urgent current issue in the P. falciparum field is the threat now posed by 158 

artemisinin-resistant parasites.  The community must work to understand the underlying 159 

biology of resistance, develop and deploy the right assays for it in the field – genetic, 160 

phenotypic or a combination of both – and thus track its spread across the malaria-endemic 161 

world.  Retrospective studies have traced the emergence and spread of chloroquine 162 

resistance in the mid-1900s (53), but for the first time we now have the capacity to do this in 163 

real time, putting in place proactive interventions.  Indeed, the genetic basis of artemisinin 164 

resistance was at least partially elucidated almost as it emerged, via a massive multicentre 165 

effort to sequence parasites and perform genome-wide association studies (44).  It may be 166 

possible to prevent, or at least impede, the spread or de novo emergence of artemisinin-167 

resistant parasites in Africa via in-depth surveillance, preventing the use of artemisinin 168 

monotherapy and using the right partner drugs in ACTs (since partner drugs are also at risk 169 

of resistance, invalidating the ACT approach (54)).  170 

 In parallel with this effort, since artemisinin will inevitably be lost sooner or later as an 171 

effective first-line drug, it is crucial to develop new drugs with different modes of action, and 172 

to improve their transit through the drug development pipeline (55).  Product Development 173 

Partnerships such as the Medicines for Malaria Venture (MMV) are key players here.    174 
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 Finally, returning to the eradication agenda, there are strong advocates for an 175 

audacious plan which was backed by the WHO in 2015 to halt the spread of artemisinin 176 

resistance by entirely eliminating P. falciparum from the Mekong region, where resistant 177 

parasites currently reside (56).  This would probably require the unprecedented use of mass 178 

drug administration in complete populations – a logistical and ethical challenge – but the 179 

concept merits serious consideration if the WHO target of reducing malaria cases and 180 

deaths by 90% by 2030 is to be met.  If successful, it could set a template for other regional 181 

elimination programmes.   182 

 P. falciparum is a fascinating and sophisticated parasite that has co-evolved with 183 

humans for thousands of years, shaping human genetics (57) and remaining a major public 184 

health problem to this day.  There has never been a better moment for a concerted effort at 185 

the elimination, and eventually the global eradication, of this parasite. 186 

 187 

Summary points 188 

 Plasmodium falciparum is responsible for most of the global burden of death from 189 

malaria – approximately half a million per annum. 190 

 The P. falciparum parasite is an early-diverging eukaryote with many unusual and 191 

interesting biological features. 192 

 Studying this parasite in the laboratory is challenging but great advances have been 193 

made in recent decades. 194 

 Control of falciparum malaria has improved greatly in the past 15 years but is 195 

threatened by the repeated emergence of drug resistant parasites.  196 

 197 
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Figure legend 354 

Fig. 1: P. falciparum lifecycle, parasite structure and disease-control timeline  355 

A) Schematic showing the lifecycle of P. falciparum.  Approximate parasite numbers shown 356 

at each stage highlight the severe bottlenecks and massive expansions at various stages.  357 

In the mosquito vector the sexual cycle occurs: pre-gametes called gametocytes are 358 

taken up in a blood meal from an infected human; these mature into gametes, mate and 359 

form a motile zygote called an ookinete which crosses the gut wall and encysts to form an 360 

oocyst.  In the oocyst, asexual replication occurs and sporozoites are released to migrate 361 

to the salivary glands, whence they are injected into another human host during a 362 

mosquito bite.  Sporozoites migrate from the bite site to the liver, where they multiply 363 

asexually inside hepatocytes over a period of ~7 days and then release merozoites which 364 

infect erythrocytes.  In erythrocytes, 48-hour cycles of asexual replication, cell lysis and 365 

reinvasion occur, causing all the symptoms of malaria.  A small subset of these parasites 366 

differentiates into gametocytes ready for mosquito transmission.   367 

B) Structure and organelles of P. falciparum.  The apical complex that facilitates host cell 368 

invasion includes rhoptries, micronemes and dense granules, all containing proteins that 369 

are released during host cell invasion.  The merozoite surface is densely coated with 370 

proteins that aid host cell attachment and are cleaved and shed during invasion.  The two 371 

endosymbiont-derived organelles, mitochondrion and plastid, are also shown. 372 

C) Timeline showing malaria control interventions and the global burden of malaria deaths 373 

from 1990 to 2015 (+/- 95% confidence intervals).  Data are from the Global Burden of 374 

Disease study (58), which records data from 1990 onwards; comparable global data prior 375 

to 1990 are lacking.  376 
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