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The exogenous supply of nitric oxide (NO) can offer 

therapeutic benefit to a number of different medical conditions 

including those associated with blood flow, cancer and wound 

healing, in addition to many others.
1
 Since the discovery in the 

1980s
2
 of NO as an important signalling molecule in cells and 

tissues there have been many studies focusing on the design and 

synthesis of NO-donating compounds, leading to an extensive 

array of reviews on the topic.
3
 Of the dozen or so different classes 

of NO-donors that exist, the nitrates, furoxans, diazeniumdiolates 

and S-nitrosothiols are amongst those most commonly cited.
4 

The S-nitrosothiols, also known as the thionitrites or RSNOs, 

are a particularly interesting class of NO donor as there is clear 

evidence that these also exist endogenously, as NO reservoirs, by 

the in vivo nitrosation, of cysteine, glutathione, albumin and 

haemoglobin.
5
 These same thiols, can take part in NO transfer 

(transnitrosation) reactions when in the presence of RSNOs, thus 
allowing NO to effectively leap-frog from one thiol to another.6 

The homolytic cleavage of the S-N bond in such compounds 

generates nitric oxide as a stable free radical and the 

corresponding disulphide, which is formed in a termination step 

involving two thiyl radicals. This process, leading to the 

generation of one mole of NO for every mole of RSNO is 
particularly attractive and intriguing to chemists due to the colour 

changes associated with NO release. Whilst primary and 

secondary S-nitrosothiols, such as S-nitrosocysteine (SNO-Cys) 1 

and S-nitrosoglutathione (GSNO) 2 are characteristically pink or 

red in colour, tertiary derivatives, such as S-nitroso-N-acetyl- 

 

 

 

 

 

 

 

 

Figure 1 Previously reported S-nitrosothiols (1-5) 

penicillamine (SNAP) 3 give green compounds (fig.1).
3
 The 

release of NO from these RSNOs can be easily viewed by their 

ARTIC LE  INFO  ABSTRACT  

Article history: 

Received 

Revised 

Accepted 

Available online 

S-Nitrosothiols (RSNOs) remain  one  of the most popular classes of NO-donating compounds 

due to their ability to release nitric oxide (NO) under non-enzymatic means whilst producing an 

inert disulphide by-product. However, alligning these compounds to the different biological 

fields of NO research has proved to be problematic due to the inherent instability of such 

compounds under a variety of conditions including heat, light and the presence of copper ions. 

1,3,2-Oxathiazolylium-5-olates (OZOs) represent an interesting subclass of S-nitrosothiols that 

lock the –SNO moeity into a five membered heterocyclic ring in an attempt to improve the 

compound’s overall stability. The synthesis of a novel series of halogen-containing OZOs was 

comprehensively studied resulting in a seven-step route and overall yields ranging between 4% 

and 28%. The photochemical stability of these compounds was assessed to determine if S-

nitrosothiols locked within these mesoionic ring systems can offer greater stability and thereby 

release NO in a more controllable fashion than their non-cyclic counterparts. 

2009 Elsevier Ltd. All rights reserved.

 

Keywords: 

S-Nitrosothiols 

NO-donating 

Nitric oxide 

Oxathiazolylium-5-olates 

Photochemical stability 

 



  

loss of colour and more specifically, can be monitored by the 

degradation of characteristic λmax at 330-350nm and at 550-
600nm when using UV/Vis spectrophotometry.

3
 The conditions 

that bring about NO release from RSNOs include light, heat and 

the presence of copper ions (equation 1), with the latter being of 

particular interest since extensive work 20 years ago showed that 

Cu(I) rather than Cu(II) was responsible for weakening the S-N 

bond and catalysing this decomposition step.
7
 In a twist of added 

complexity the disulphide by-product (e.g. GSSG), formed 

following NO release from certain RSNOs (e.g. GSNO 2) can 

behave as a metal ion chelator and therefore remove copper from 

the solution resulting in the prolonged the existence of the RSNO 

whilst significantly reducing the levels of free NO.
8
  

(1) 

 

Subtle structural differences, including even those between 

SNO-Cys 1 and SNAP 3, have been shown to dramatically alter 

the stability of these compounds and thus the rate at which they 

release NO.
9
 In the case of compound 3, the greater steric bulk 

(cf. to compound 1) offered by two methyl groups adjacent to the 
–SNO moiety to form a tertiary S-nitrosothiol can aid stability by 

reducing both the ease of copper complexation and thiyl radical 

dimerization.
10

 Such subtleties that influence NO release have 

fascinated the authors and co-workers over many years, which 

initially led to the synthesis of a large number of carbohydrate 

based S-nitrosothiols (including SNAG 4) to help explore the key 
chemical features effecting the stability of the –SNO moiety 

(fig.1).
11

 The key result of the carbohydrate-based work, which 

looked at varying the lipophilicity, sugar type and even the chiral 

form, was to confirm that such compounds are intrinsically 

unstable, with many decomposing upon the removal of solvent 

without the need for any of the aforementioned decomposition 
conditions. Rather than fine-tuning the stability, this emphasised 

the need for a much coarser handle on controlling RSNO stability, 

which led to interest in 4-aryl-1,3,2-oxathiazolylium-5-olates 

(OZOs) 5a (fig. 1), where the -SNO group is locked into a five-

membered heterocyclic ring in an attempt to gain greater control 

over NO release.
12 

Previous work involving carbohydrate based RSNOs, such as 

SNAG 4, showed by laser Doppler imaging to bring about a 

significant dose dependent vasodilator effect (P = 0.001) to 

forearm microvessels following transdermal delivery. A five-fold 

enhancement in peripheral blood flow over baseline was seen 

using the highest SNAG 4 concentration (0.75%, w/w) with intra- 
and inter-subject variability of 19% and 16%, respectively.

11
 Such 

applications, where the NO-donor is supplied at or close to the 

site of action circumvents, to some degree, the need for highly 

stable S-nitrosothiols since degradation is ultimately essential for 

the quick and local supply of NO. However, in an attempt to 

synthesise and test longer acting RSNOs with improved storage 
capabilities, the 4-aryl-1,3,2-oxathiazolylium-5-olates were 

studied with particular interest in the required ring-opening step 

prior to RSNO degradation and NO release.
 

Decomposition of 4-aryl-1,3,2-oxathiazolylium-5-olates by 

photochemical unimolecular reactions were reported over 30 

years ago
13

 whilst thermal degradation has also been described at 
temperatures of 80-140°C.

14
 More recently this same family of 

compounds were shown to decompose when exposed to pH 

values close to 5, which would match quite nicely to the skin pH 

range.
15

 In this latter work, the ring-opening step required prior to 

NO release was shown to depend on the type of substituent 

attached to the aryl ring. Based on these findings this work 
attempted to expand this family of compounds with a focus on 

chloro and fluoro derivatives, since previous findings reported 

that a 4’-chloro substituent added stability.
15

 The incorporation of 
halogens onto the aromatic ring may also serve to improve the 

overall lipophilicity of the OZO and thus make them attractive 

candidates to study as peripheral vasodilators via the transdermal 

delivery route. To further explore the role of the substituents, 

placement on the ring at the 2’, 3’ and 4’ positions was explored 

as well as di-substituted ring derivatives. As a control, the aryl 
ring with no substituents, which has been made previously,

13,15-17
 

was re-synthesised in this work and subjected to the same 

photochemical stability testing. All halogen-containing target 

compounds (5b-5g) are summarised in figure 2. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Target halogen-containing OZO compounds (5b-5g) 

The first successful OZO synthesis dates back to 1960 when 

Bacchetti and Alemagna chose to study such compounds with a 
view to taking advantage of the characteristic mesoionic ring.

17
 

Similar rationale led Gotthardt to propose a four-step synthesis in 

the 1970s and 80s,
13,18

 before Schaffer and Thompson outlined a 

six-step synthesis in the 1990s,
16

 by which time the significance 

of NO and the role of OZOs as NO-donors had been realised, 

leading to a patent on their potential use as cardiovascular 
agents.

16
 In 2007, Wang proposed an additional route in four-

steps with overall yields ranging from 39-50%, which to date, are 

the highest to be reported for this compound class.
15

 In common 

with all earlier examples, the work reported here uses the 

mandelic acids as starting materials to outline a synthetic route, 

which the authors believe to be more robust and reliable than 
previous methodology (Scheme 1). 

From all previous synthetic approaches the Mitsunobu 

reaction, as described by Wang,
15

 was initially seen as the most 

attractive and efficient means of replacing the benzylic secondary 

alcohol in 6a with an S-acetyl group.  This chemistry relies on the 

formation of a complex between diisopropyl azodicarboylate 
(DIAD) and triphenyl phosphine, which then deprotonates the 

benzylic alcohol before thiolacetic acid is added, to provide the S-

acetyl derivative. However, this approach could not be replicated 

in this work despite manipulating the order of addition and 

reaction times, as well as tinkering with the number of 

equivalents of each reagent. The lack of desired product was 
attributed to the carboxylic acid being by far the most acidic 

group and therefore being the preferred site of de-protonation. 

With this in mind, the carboxylic acid was converted into the 

methyl ester 7a. This step, using sulphuric acid and methanol, 

proceeded without the need for further purification in a 90% 

yield, which is consistent with literature values.
19

 The Mitsunobu 
reaction involving 7a still proved to be problematic even when 

the thiol was replaced with the thiolate in an attempt to produce a 

better nucleophile. 



  

Attention switched to a bromination and S-acetylation as two 

separate steps, using HBr to yield 8a
20

 and 1.1 equivalents of 
KSAc to give 9a (see scheme 1). When repeated on a larger scale 

it was found that PBr3 was a preferable route to 8a, which mirrors 

the approach taken by Schaffer and Thompson.
16

 After washing 

through a silica pad, brominated product 8a was obtained in 80% 

yield and in pure form, whilst S-acetyl 9a gave an orange oil in a 
yield of 95% that did not require further purification. Unlike  

 

 
 

Scheme 1 The preferred synthetic route for OZO 5a and the halogenated OZOs (5b-5g). (i) H2SO4, MeOH, 60°C, 4hr. (ii) 1.1 equiv. PBr3, CHCl3, r.t., 96hr. (iii) 

1.1 equiv. KSAc, MeOH, r.t., 4hr. (iv) NaOMe / MeOH, r.t., 5hr. (v) H2SO4 / H2O, 0°C, 24 hr. (vi) 2 equiv. iBuONO / CH2Cl2, 0°C, 2 hr. (vii) 1 equiv. polymer 

bound DCC, CH2Cl2, 0°C, 2 hr. 

 

Schaffer and Thompson, the best brominations involving PBr3 

took place in dry chloroform at room temperature, rather than 
using refluxing conditions. Dry dichloromethane, carbon 

tetrachloride and tetrahydrofuran were also tested in parallel as 

potential solvents for the bromination step at temperatures 

ranging from 0°C to 60°C, but chloroform proved to be the best 

compromise with regards to safety, yield and reaction time. 

The de-S-acetylation step used the same methodology as 
Wang

15
 to yield the free thiol 10a in 95%, without the need for 

purification as none of the corresponding disulphide was 

identified. Hydrolysis of the methyl ester to give 11a proved more 

difficult due to the generation of disulphide when using basic 

conditions. As a result, a variety of different reagents and 

conditions were studied and the deprotection sequence for the S-

acetyl and methyl ester groups was also reversed and attempted in 

a single step, without success. After multiple attempts involving 

NaOH, LiOH, NaOMe, HCl and BBr3, the best compromise was 

found to be the use of dilute sulphuric acid at 0°C, which gave 

pure 11a in 93% yield. 

Nitrosation of the thiol to give the desired S-nitrosothiol has 

previously been attempted
20,21

 using tert-butyl nitrite, ethyl nitrite 

and iso-butyl nitrite, with the latter proving to be the preferred 

reagent in this work to give 12a, which was immediately reacted 

on to give the ring-closed OZO compound 5a. Attempts were also 

made to nitrosate using the N2O4 and N2O3 fuming method,
11

 

however, nitrosation of the ethanol solvent
10

 led to the 
requirement for an inert gas to be bubbled through the product in 

order to remove excess fumes, and nitrous acid was also formed 

as a by-product, which was seen as a major disadvantage. Hart’s 

sodium nitrite method
22

 was also trialled here using an acidified 
aqueous mixture that relies on precipitation when the reaction 

mixture is cooled, but in this work no solid product was seen 

using this approach.  

The ring-closing dehydration step was previously described 

using DCC,
15

 however, following filtration through a celite pad to 

remove excess iso-butyl nitrite and column chromatography, the 
desired product 5a was found to co-elute with residual DCC. Due 

to this, EDC was substituted in placed DCC, which led to a very 

low yield due to solubility issues during the aqueous work-up. In 

light of these yield and purification problems, polymer bound 

DCC was instead used, since this was simply filtered off 

following the ring-closure reaction, to give OZO 5a in 90% from 

the free thiol 11a, after column chromatography.  

This modified seven-step synthesis, which is clearly a longer 

route than those previously described,
13,15-17

 was seen as a reliable 

and robust method to give OZO 5a in a yield of 13%. Despite this 

pathway having a yield that was 38% lower than that reported 

elsewhere15 this method consistently converted starting materials 

6a-6g into OZOs 5a-5g in overall yields ranging between 4 and 

28%, with five of these products being novel OZO examples. 

The instability of S-nitrosothiols under a variety of different 

conditions has been well documented over the last twenty-five 

years with reported half-lifes ranging from 2 seconds to in excess 

of 9.5 months (see equation 1).23 This work does not wish to 

address the relative stability of S-nitrosothiols 12a-12g, rather, the 



  

focus here was to ascertain if any improvements in photochemical 

stability can be achieved with ring-locked RSNOs; thus the ring 
opening of OZOs 5a-5g was monitored. With this in mind, a 

decomposition study was designed to establish the time and 

conditions required to convert 5a-5g into 13a-13g. Identification 

of ring-opened derivatives (13a-13g) was best achieved in one-

pot using the Saville reaction in combination with the Griess test 

as presented in Scheme 2.
24 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 2 Monitoring the ring opening step using UV/Vis spectrophotometry 

in a one-pot method utilising the Saville reaction in combination with the 

Griess test. 
 

Previous work has shown that OZOs will photochemically 
ring-open via one of two different pathways, which is dependent 

on the polarity of the solvent used.
25

 The photochemical reaction 

in benzene results in a phenylthiazirine intermediate on route to a 

phenylnitrile derivative, whilst in ethanol the free S-nitrosothiols 

derivatives 13 are formed, which subsequently results in NO 

release; thus the latter solvent model was adopted in this work. 
Photochemical decomposition at room temperature was studied 

over a 40-minute period at an absorbance of 496nm to monitor 

the formation of the purple azo dye 16 following the Saville and 

Griess reactions (Scheme 2).
24

 This model NO releasing system, 

which was calibrated using GSNO 2, allowed the rate of ring-

opening to be monitored and compared for 5a-5g. All OZO 
compounds were dissolved in EtOH:H2O (1:1) at an initial 

concentration of 75mM and an equimolar concentration of HgCl2, 

sulphanilamide 14 and N-(1-naphthyl)ethylenediamine 15 was 

included in each sample. 

The first series of experiments examined NO release at room 

temperature under dark conditions. This highlighted 5a, 5c, 5e 
and 5g as being the least stable with all four showing between 

40% and 80% ring opening without any light exposure. Since 

compounds 5b, 5d and 5f showed greater stability these were 

further explored in the presence of ambient daylight conditions, 

alongside 5e, which served as a comparison from the less stable 

derivatives. The results of this work are displayed in figure 3. 

From this photochemical stability study three key observations 
were identified: (1) the fluoro OZOs were generally less stable 

than the chloro OZOs (cf. para fluoro 5e showed 76% 

decomposition versus 42% for para chloro 5d); (2) in the chloro 

series the stability order was ortho, 5b > para, 5d > meta, 5c; (3) 

in the fluoro series the ortho and para di-substituted derivative 5f 

was more stable than the mono-substituted para fluoro derivative 
5e. This latter observation is consistent with the ortho position 

providing greater stability as explained by observation (2).  

 

 

 

 

 

 

 

 

Figure 3 The percentage ring-opening of OZOs (5b, 5d, 5e & 5f) after 40 

minutes at 25°C when either left in the dark (black shading) or exposed to 

ambient daylight levels (grey shading). 

 

Whilst it is fascinating to observe these stability differences, it 
is challenging to rationalise how such subtle substituent changes 

can afford such large variability in the rate of the photochemical 

ring-opening step. As outlined in previous work,
15

 there is clearly 

a link between OZO stability and the level of electron-donation or 

electron-withdrawal provided by the substituent on the benzene 

ring, with the latter reducing stability and the former prolonging 
the existence of the OZO compound when in solution.  

For OZO 5a previous work found 7% overall decomposition 

and NO release when exposed to light over a 3-hour period,
15

 

however, in this work 48% decomposition was observed in the 

dark over a 40-minute period. Although this would tend to 

suggest a large discrepancy between studies, it is very important 
to note that this study is designed to only focus on the ring-

opening event as beyond this step all RSNO is instantly degraded 

by HgCl2, as was desired by the authors, thus the two sets of data 

should not be directly compared. The OZOs in this series clearly 

release NO over a greater time period than suggested by the data 

in figure 3 as these results are based on the complete breakage of 
the S-N bond upon generation of the free S-nitrosothiol due to the 

presence of HgCl2 which enables the Saville reaction to yield the 

nitrosonium ion that is needed for the generation of the azo-dye 

from the reaction with 14 and 15. Whilst the purple dye acts as 

marker for OZO decomposition in this stability model, in reality, 

the free S-nitrosothiol will exist in solution and therefore release 
NO over a greater time period. As such, it is important to reiterate 

that this study was only concerned with monitoring the added 

stability, if any, that the mesoionic rings provide to such 

compounds. 

In summary, when dissolved in a dilute ethanolic solution the 

OZO compounds described in this work provide only a minimal 
advantage over their ring-opened counterparts. It is fair to 

conclude that whilst OZOs do not fully address the issues 

surrounding S-nitrosothiol instability in solution, they do afford 

analogues that can be isolated and stored more easily in the solid 

form than some acyclic –SNO moeities (e.g. SNAG, 4), which 



  

spontaneously decompose in the solid state.
25

 This particular issue 

explains the one-pot method used for steps 6 and 7 of the OZO 
synthesis outlined in this work (Scheme 1) where the free RSNO 

form was not isolated on route to the final ring-closed OZO 

products. Furthermore, in solution, it has been shown here that 

OZOs do provide extra stability, due to the added necessity of the 

ring-opening step, albeit not the kind of stability that is optimal 

for the slow, controlled delivery of NO over many hours. OZOs 
should therefore be viewed as a partial rather than the complete 

answer to enhancing RSNO stability. In addition to expanding the 

number of OZO derivatives for applications tailored towards NO 

related studies, the improved synthetic methodology outlined in 

this work will undoubtedly interest those wishing to further 

explore cycloaddition reactions involving OZO compounds.
25

 

The modified synthetic sequence described in this work 

successfully yielded five novel OZO derivatives (5b, 5c, 5e-g), 

which in solution were shown to ring-open within minutes when 

exposed to ambient light conditions and thus produce the naked, 

acyclic form of the S-nitrosothiol. As such the improved stability, 

in solution, gained by these ring-locked S-nitrosothiols was only 
considered to be a partial success. The added synthetic challenge 

in forming these mesoionic rings was rewarded with RSNOs of 

greater stability in the solid form when compared to acyclic 

RSNOs (e.g. SNAG, 4), however, in solution these compounds 

did not provide the level of tailored stability that is desired by 

those wishing to further investigate the role, if any, of exogenous 
NO when delivered to a variety of different biological models. So, 

whilst S-nitrosothiols remain one of the most attractive categories 

of NO-donor available, the focus on improving the overall 

stability should consider studying the importance that other 

functionality has on the rate of NO release from the -SNO moiety.  

In short, the medicinal chemist’s work is far from complete in 
identifying the key structural features that have the greatest 

influence on the rate of NO release from this intriguing class of 

compounds. 
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