
Turning Models Inside Out
Alfa Yohannis, Dimitris Kolovos, Fiona Polack

Department of Computer Science
University of York

York, United Kingdom
{ary506, dimitris.kolovos, fiona.pollack}@york.ac.uk

Abstract— We present an approach for change-based (as
opposed to state-based) model persistence that can facilitate high-
performance incremental model processing (e.g. validation, trans-
formation) by minimising the cost of change identification when
models evolve. We illustrate a prototype that implements the
proposed approach on top of the Eclipse Modelling Framework
and we present a roadmap for further work in this direction.

Keywords—model-driven, persistence, incremental, change
events, notification

I. INTRODUCTION

To reap the benefits of Model-Based Software Engineering
in the context of large and complex systems, the ability to
process large models in an incremental fashion as they evolve
is essential. Current incremental model processing techniques
only deliver limited performance benefits due to slow and
imprecise model change detection capabilities or are limited
to a single-developer environment; not realistic for real-world
software development projects.

The research introduced in this paper aims at enabling
flexible and high-performance incremental model processing
through change-based model persistence. That is, instead of
persisting snapshots of the state of models, we propose turning
models inside out and persisting their change history. The
proposed approach has the potential to deliver step-change
performance benefits in incremental model processing, as well
as a wide range of other benefits and novel capabilities.

The rest of the paper is structured as follows. Section II
reviews the key-challenge of incrementality in MBSE. Section
III provides an overview of existing approaches for identifying
changes in models. Section IV overviews our proposed ap-
proach and Section V discusses our prototype implementation
on top of the Eclipse Modelling Framework. The potential
benefits and novel capabilities, as well as the challenges of
change-based model persistence, are presented in Sect. VI and
Sect. VII respectively. Section VIII presents our evaluation
strategy and Sect. IX concludes this paper.

II. THE KEY-CHALLENGE OF INCREMENTALITY

To illustrate the concept of incrementality, a contrived
running example is used where after every modification to
an organisational chart model (see Fig. 1), the model needs to
be:
• Validated against a domain-specific constraint (that no

employee directly manages more than 7 other employ-
ees).

• Transformed into a number of employee reports (plain
text files, one for each employee) through a model-to-text
transformation. Each report should contain the name of
the employee, and the names of her direct subordinates.

Figures 1 and 2 are two consecutive versions of a sample
organisational chart model. When the validation constraint
is evaluated against the first version of the model (Fig. 1),
it verifies that all three employees manage fewer than 7
other employees, and the model-to-text transformation then
produces three text files that correspond to the employees in
the model. In the sequel, in Fig. 2, the model is updated to
reflect that a new employee has been hired (Richmond) under
the management of Jen.

Kolovos Part B2 MODIO

ERC Starting Grant 2016
Research Proposal (Part B2)

Part B2: The scientific proposal

Section a. State-of-the-art and objectives

Model-Based Software Engineering (MBSE) is a software engineering approach that promotes mod-
els to first-class artefacts of the software development and maintenance lifecycle. In MBSE, rigor-
ously defined – and often domain-specific – models are used to capture the essence of (parts of) the
system under development at an appropriate level of abstraction, and are then used to reason about
properties of the system (e.g. via model checking and simulation), and eventually to produce low-level
implementation artefacts (e.g. source code, configuration scripts) in an automated fashion. MBSE
has demonstrated a strong potential to drastically improve productivity and consistency in software
development by reducing development time [1], cost [2] and the probability of human-induced errors
[3]. This is widely recognised in industry where studies (e.g. [4, 5]) have shown that model-based
development is used extensively.

The Key-Challenge of Incrementality

As MBSE is used for the development of larger and more complex systems in a variety of domains,
the ability to process (e.g. validate, transform, generate code from) large models in an incremental
fashion as they evolve becomes essential. “Incremental” in this context means that the amount of
time it takes to update the results of a model processing operation on a modified model, is generally
proportional to the size of the change, as opposed to the size of the model. To illustrate the
concept of incrementality, a contrived running example is used where, after every modification to an
organisational chart model (see Figure 3), the model needs to be:

• Validated against a domain-specific constraint (that no employee directly manages more than
7 other employees)

• Transformed into a number of employee reports (plain text files, one for each employee) through
a model-to-text transformation. Each report should contain the name of the employee, and the
names of her direct subordinates.

Figures 3 and 4 are two consecutive versions of a sample organisational chart model. When the
validation constraint is evaluated against the first version of the model (Figure 3), it verifies that all
three employees manage fewer than 7 other employees, and the model-to-text transformation then
produces three text files that correspond to the employees in the model.

Figure 3: Initial version of the organisational chart model

In the sequel, in Figure 4, the model is updated to reflect that a new employee has been hired
(Richmond) under the management of Jen.

A non-incremental model validation engine, would treat the model of Figure 4 as if it was a
new model and would evaluate the constraint above against every employee in the model. An in-
cremental model validation engine on the other hand would identify that the previously established

14

Fig. 1. Initial version of the organisational chart model.Kolovos Part B2 MODIO

Figure 4: Modified version of the organisational chart model of Figure 3

satisfaction of the constraint for employees Moss and Roy cannot have been possibly compromised
by the changes made, and would only re-evaluate the constraint for Jen and Richmond instead.

Similarly, a non-incremental model-to-text transformation, would generate all employee reports
from scratch (overwriting any previous versions of them19). On the contrary, an incremental model-
to-text transformation, would identify that it only needs to generate a new report for the new em-
ployee (Richmond), and to recompute and overwrite the contents of Jen’s report (as she is now
managing an additional employee) – but not the reports of Moss or Roy, as these cannot have been
affected by the changes made to the model.

While the overhead of executing transformations and validation constraints on small models like the
one in Figure 4 is negligible, non-incremental execution can become a significant bottleneck
for large evolving models. As stressed in Selic’s seminal work [6], with reference to model-to-text
transformation, “. . . this is particularly true in the latter phases of the development cycle, when pro-

grammers make many small changes as they fine-tune the system. To keep this overhead low, it is

crucial for the code generators to have sophisticated change impact analysis capabilities that mini-

mize the amount of code regeneration”.

As demonstrated by the pioneering work of Egyed [7], to achieve incremental re-execution of (deter-
ministic) queries on structured models, an execution engine needs to:

1. Record model element property accesses during the initial execution of the queries;

2. Identify new and deleted elements, and modified model element properties in the new version
of the model;

3. Combine the information collected in the steps above to identify the subset of (potentially) af-
fected queries that need to be re-executed.

To briefly illustrate Egyed’s approach, we use an OCL20 implementation of the domain-specific
constraint in Listing 3.

Listing 3: OCL constraint requiring that no employee directly manages more than 7 other employees
1 context Employee
2 inv NoMoreThan7: self.manages->size() <= 7

During the initial evaluation of the constraint on the model of Figure 3, an incremental OCL engine
would compute the property access trace displayed in Table 14 as a side-product. Now, when the
model is updated (Figure 4), the execution engine can identify that:
19Most code generation engines support preservation of hand-written content in existing files through “protected regions”

mechanisms, however this is not important for the purpose of this discussion.
20The Object Constraint Language is a constraint language standardised by the Object Management Group (OMG).

15

Fig. 2. Modified version of the organisational chart model of Fig. 1.

A non-incremental model validation engine would treat the
model of Fig. 2 as if it was a new model and would evaluate
the constraint above against every employee in the model.
An incremental model validation engine, on the other hand,
would identify that the previously established satisfaction of
the constraint for employees Moss and Roy cannot have been
possibly compromised by the changes made, and would only
re-evaluate the constraint for Jen and Richmond instead.

Similarly, a non-incremental model-to-text transformation
would generate and overwrite all employee reports from
scratch. On the contrary, an incremental model-to-text trans-
formation, would identify that it only needs to generate a new
report for the new employee (Richmond), and to recompute
and overwrite the contents of Jen’s report (as she is now



managing an additional employee)—but not the reports of
Moss or Roy, as these cannot have been affected by the
changes made to the model.

While the overhead of executing transformations and vali-
dation constraints on small models like the one in Fig. 2 is
negligible, non-incremental execution can become a significant
bottleneck for large evolving models. As stressed in Selic’s
seminal work [1], with reference to model-to-text transfor-
mation, “... this is particularly true in the latter phases of
the development cycle when programmers make many small
changes as they fine-tune the system. To keep this overhead
low, it is crucial for the code generators to have sophisticated
change impact analysis capabilities that minimize the amount
of code regeneration”.

As demonstrated by the pioneering work of Egyed [2], to
achieve incremental re-execution of (deterministic) queries on
structured models, an execution engine needs to:

1) Record model element property accesses during the
initial execution of the queries;

2) Identify new and deleted elements and modified model
element properties in the new version of the model;

3) Combine the information collected in the steps above
to identify the subset of (potentially) affected rules/-
queries/templates that need to be re-executed.

To illustrate this, we use an OCL implementation of the
domain-specific constraint in List. 1.

Listing 1. OCL constraint requiring that no employee directly manages more
than 7 other employees.
1 context Employee
2 inv NoMoreThan7: self.manages->size() <= 7

During the initial evaluation of the constraint on the model
of Fig. 1, an incremental OCL engine would compute the
property access trace displayed in Table I as a side-product.
Now, when the model is updated (Fig. 2), the execution engine
can identify that:

• There is new element in the model (e4 - Richmond) for
which the constraint has not been evaluated;

• The value of the manages property of Jen (e3) has
changed, and as such, it needs to re-evaluate the con-
straint on this model-element.

TABLE I
PROPERTY-ACCESS TRACE OF THE EVALUATION OF THE CONSTRAINT IN

LIST. 1 ON THE MODEL OF FIG. 1.

Constraint Context Accessed
Element

Accessed
Property

Employee.NoMoreThan7 e1 e1 manages
Employee.NoMoreThan7 e2 e2 manages
Employee.NoMoreThan7 e3 e3 manages

Egyed has shown that the property-access recording ap-
proach is applicable to queries of arbitrary complexity, as long
as they are deterministic. More recent work has shown that
variants of this approach can be used to achieve incrementality
in a wide range of model processing operations, including

model-to-model transformation [3], model-to-text transforma-
tion [4], model validation, and pattern matching [5]—as long
as changes to models can be precisely identified (step 2 in the
list above).

III. IDENTIFYING CHANGES IN MODELS

There are two approaches in the literature for identifying
changes in models in order to enable incremental re-execution
of model processing operations.

Notifications. In this approach, the incremental execution
engine needs to hook into the notification facilities provided
by the modelling tool through which the developer edits the
model, so that the engine can directly receive notifications
as soon as changes happen (e.g. a new employee (e4) has
been added, the name property of employee e4 has been
changed to “Richmond”). This is an approach taken by the
IncQuery incremental pattern matching framework [5] and
the ReactiveATL incremental model-to-model transformation
engine [4]. The main advantage of this approach is that precise
and fine-grained change notifications are provided for free by
the modelling tool (and thus do not need to be computed by the
execution engine—which as discussed below can be expensive
and inefficient). On the downside, this approach is a poor
fit for collaborative development settings where modelling
and automated model processing activities are performed by
different members of the team.

Model Differencing. This approach eliminates the coupling
between modelling tools and incremental execution engines.
Instead of depending on live notifications, in this approach
the developer in charge of automated model processing, needs
to have access to a copy of the last version of the model
that the model processing program (e.g. the model-to-text
transformation) was executed upon, so that it can be compared
against the current version of the model (e.g. using a model-
differencing framework such as SiDiff [6] or EMFCompare1)
and the delta can be computed on demand. The main advantage
of this approach is that it works well in a collaborative
development environment where typically developers have
distinct roles and responsibilities. On the downside, model
comparison and differencing are computationally expensive
and memory-greedy (both versions of the model need to
be loaded into memory before they can be compared), thus
largely undermining the time and resource saving potentials
of incremental re-execution. This approach is adopted by the
Xpand model-to-text transformation language. According to
the developers of the language, using this approach, a speed-up
of only around 50% is observed compared to non-incremental
transformation2, which is consistent with our experience from
using Xpand.

In summary, incremental model processing currently deliv-
ers significant performance benefits only in a single-developer
environment where the modeller is also responsible for per-
forming all the (incremental) model processing operations.

1https://www.eclipse.org/emf/compare/
2http://wiki.eclipse.org/Xpand/New And Noteworthy#Incremental

Generation

https://www.eclipse.org/emf/compare/
http://wiki.eclipse.org/Xpand/New_And_Noteworthy#Incremental_Generation
http://wiki.eclipse.org/Xpand/New_And_Noteworthy#Incremental_Generation


Listing 2. Change-based representation of the model of Figure 2.
1 <session id="s1"/>
2 <create eclass="Employee" epackage="employee" id="0"/>
3 <add-to-resource position="0"><value eobject="0"/></add-to-resource>
4 <set-eattribute name="name" target="0"><value literal="Roy"/></set-eattribute>
5 <create eclass="Employee" epackage="employee" id="1"/>
6 <add-to-resource position="1"><value eobject="1"/></add-to-resource>
7 <set-eattribute name="name" target="1"><value literal="Jen"/></set-eattribute>
8 <create eclass="Employee" epackage="employee" id="2"/>
9 <add-to-resource position="2"><value eobject="2"/></add-to-resource>

10 <set-eattribute name="name" target="1"><value literal="Moss"/></set-eattribute>
11 <remove-from-resource><value eobject="0"/></remove-from-resource>
12 <add-to-ereference name="manages" position="0" target="1"><value eobject="0"/></add-to-ereference>
13 <remove-from-resource><value eobject="2"/></remove-from-resource>
14 <add-to-ereference name="manages" position="1" target="1"><value eobject="2"/></add-to-ereference>
15 <session id="s2"/>
16 <create eclass="Employee" epackage="employee" id="3"/>
17 <add-to-resource position="1"><value eobject="3"/></add-to-resource>
18 <set-eattribute name="name" target="3"><value literal="Richmond"/></set-eattribute>
19 <remove-from-resource><value eobject="3"/></remove-from-resource>
20 <add-to-ereference name="manages" position="2" target="2"><value eobject="3"/></add-to-ereference>

As a result, in collaborative development environments, de-
velopers need to either forgo incremental model processing
altogether or to work around this limitation by manually
steering model processing programs to process only subsets
of their models, which is cumbersome and error prone.

IV. PROPOSED APPROACH

The ambition of this research is to enable high-performance
incremental model management in collaborative software de-
velopment environments by challenging one of the funda-
mental assumptions of contemporary modelling frameworks
and tools: as opposed to persisting snapshots of the state
of models (which is what virtually all modelling tools and
frameworks currently do), we propose turning models inside
out and persisting their change history instead.

Listing 3. State-based representation of the model of Figure 2 in (simplified)
XMI.
1 <Employee xmi:id="e2" name="Jen">
2 <manages xmi:id="e1" name="Roy"/>
3 <manages xmi:id="e3" name="Moss"/>
4 <manages xmi:id="e4" name="Richmond"/>
5 </Employee>

To illustrate the proposed approach, List. 3 shows a state-
based representation of the model of Fig. 2 in (simplified)
XMI, and List. 2 shows the proposed equivalent change-based
representation of the same model. Instead of a snapshot of
the state of the model, the representation of List. 2 captures
the complete sequence of change events (create/set/add/re-
move/delete) that were performed on the model since its
creation, organised in editing sessions (2 editing sessions in
the case of this model). Replaying these changes produces
the same state as the one captured in List. 3, so the proposed
representation carries at least as much information as the state-
based representation.

Such a representation is particularly suitable for incremental
model processing. For example, if the model-to-text trans-
formation discussed above “remembers” that in its previous
invocation it had processed up to editing session s1 of the

model, it can readily identify the changes that have been made
to the model since then (i.e. in session s2 - lines 15-20) instead
of having to rediscover them through (expensive) state-based
model differencing.

V. PROTOTYPE IMPLEMENTATION

We have implemented a prototype3 of the change-based
model persistence format using the notification facilities pro-
vided by the Eclipse Modelling Framework. In our implemen-
tation we use the ChangeEventAdapter class, a subclass of
EMF’s EContentAdapter4, to receive and record Notification5

events produced by the framework for every model-element
level change.

Since not all change events are relevant to change-based
persistence (e.g. EMF also produces change notifications when
listeners are added/removed from the model), we have defined
a set of event classes to represent events of interest. The event
classes are depicted in Fig. 3 as subclasses of the ChangeEvent
abstract class.

The ChangeEvent class has a multi-valued values attribute
which can accommodate both single-valued (e.g. set/add) or
mutli-valued events (e.g. addAll/removeAll). ChangeEvent can
also accommodate different types of values, such as EOb-
jects for EReferenceEvents, and primitive values (e.g. Integer,
String) for EAttributeEvents. The ChangeEvent class also has
a position attribute to hold the index of an EObject or a literal
when they are added to a Resource, EReference, or EAttribute
with multiple values (Lst. 2, line 3, 6, 9, 12, 14, 17, 20).

Every time an EObject is added to the model, a CreateEOb-
jectEvent and an AddToResourceEvent are recorded (lines 2-3,
5-6, 8-9, and 16-17 in Lst. 2). When an EObject is deleted, or
moved to a containment EReference deeper in the model (Lst.

3The prototype is available under https://github.com/epsilonlabs/emf-cbp.
4http://download.eclipse.org/modeling/emf/emf/javadoc/2.11/org/eclipse/

emf/ecore/util/EContentAdapter.html
5http://download.eclipse.org/modeling/emf/emf/javadoc/2.11/org/eclipse/

emf/common/notify/Notification.html

https://github.com/epsilonlabs/emf-cbp
http://download.eclipse.org/modeling/emf/emf/javadoc/2.11/org/eclipse/emf/ecore/util/EContentAdapter.html
http://download.eclipse.org/modeling/emf/emf/javadoc/2.11/org/eclipse/emf/ecore/util/EContentAdapter.html
http://download.eclipse.org/modeling/emf/emf/javadoc/2.11/org/eclipse/emf/common/notify/Notification.html
http://download.eclipse.org/modeling/emf/emf/javadoc/2.11/org/eclipse/emf/common/notify/Notification.html


Fig. 3. Event classes to represent changes of models.

2, line 12, 14, 20), a RemoveFromResourceEvent (Lst. 2, line
11, 13, 19) is recorded.

The ChangeEventAdapter receives EMF change notifica-
tions in its notifyChanged() method and filters and transforms
them into appropriate change events. As an example of how
notifications are filtered and transformed, Listing 4 shows how
we handle Notification.UNSET events based on the type of the
changed feature i.e. an UnsetEAttributeEvent is instantiated if
the feature of the notifier is an EAttribute, or an UnsetERef-
erenceEvent is created if the notifier is an EReference. The
transformed instances are then stored into a list of events in
ChangeEventAdapter (changeEvents) for persistence.

Listing 4. Simplified Java code to handle notification events.
1 public class ChangeEventAdapter extends EContentAdapter

{
2 ...
3 @override
4 public void notifyChanged(Notification n) {
5 ...
6 switch (n.getEventType()) {
7 ... // other events
8 case Notification.UNSET: {
9 if (n.getNotifier() instanceof EObject) {

10 EStructuralFeature feature = (EStructuralFeature)
n.getFeature();

11 if (feature instanceof EAttribute) {
12 event = new UnsetEAttributeEvent();
13 } else if (feature instanceof EReference) {
14 event = new UnsetEReferenceEvent();
15 }
16 } break;
17 }
18 ... // other events

To integrate seamlessly with the EMF framework and to
eventually support multiple concrete change-based serialisa-
tion formats (e.g. XML-formatted representation for read-
ability and binary for performance/size), we have created
the CBPResource abstract class, that extends EMF’s built-
in ResourceImpl class. The role of the abstract class is to

encapsulate all change recording functionality while the role
of its concrete subclasses is to implement serialisation and
de-serialisation. For example, CBPXMLResourceImpl persists
changes in a line-based format where every change is serialised
as a single-line XML document. In this way, when a model
changes, we can append the new changes to the end of the
model file without needing to serialise the entire model again.
We have also implemented a CBPXMLResourceFactory class
that extends EMF’s ResourceFactoryImpl, as the factory class
for change-based models. Figure 4 shows the relationships
between these classes.

Fig. 4. Factory, resources, and ChangeEventAdapter classes.

VI. BENEFITS AND NOVEL CAPABILITIES

Beyond facilitating incremental processing, the proposed
representation also has the potential to deliver a wide range
of benefits and novel capabilities, compared to the currently
prevalent state-based representations, some of which are dis-
cussed below.
• With appropriate tool support, modellers will be able to

“replay” (part of) the change history of a model (e.g. to



understand design decisions made by other developers,
for training purposes). In state-based approaches, this can
be partly achieved if models are stored in a version-
control repository (e.g. Git). However, the granularity
would only be at the commit level.

• By analysing models serialised in the proposed represen-
tation, modelling language and tool vendors will be able
to develop deeper insights into how modellers actually
use these languages/tools in practice and utilise this
information to guide the evolution of the language/tool.

• By attaching additional information to each session (e.g.
the id of the developer, references to external docu-
ments/URLs), sequences of changes can be traced back
to the developer that made them, or to requirements/bug
reports that triggered them.

• Persisting changes to large models after an editing session
will be significantly faster compared to serialising the
entire state of the model, as only changes made during
the session will need to be appended to the model file.

• The performance and precision of model comparison and
merging can be substantially improved, particularly for
large models with shared editing histories.

VII. CHALLENGES AND FUTURE WORK

The proposed approach also comes with a number of
challenges that this research will need to overcome.

Loading Overhead. While, as discussed above, persisting
changes to large models is expected to be much faster and
resource-efficient compared to state-based approaches, loading
models into memory by naively replaying the entire change
history is expected to have a significant overhead. To address
this challenge, we will develop dedicated algorithms and data
structures that will reduce the cost of change-based model
loading (e.g. by recording and ignoring events – events that
are later overridden or cancelled out by other events).

Fast-Growing Model Files. Persisting models in a change-
based format means that model files will keep growing in
size during their evolution significantly faster than their state-
based counterparts. To address this challenge, (1) we will
propose sound change-compression operations (e.g. remove
older/unused information) that can be used to reduce the
size of a model in a controlled way. (2) We will develop
a compact textual format that will minimise the amount of
space required to record a change (a textual line-separated
format is desirable to maintain compatibility with file-based
version control systems). (3) We will propose a hybrid model
persistence format which will be able to incorporate both
change-based and state-based information.

VIII. EVALUATION STRATEGY

The findings of the research will be evaluated in the small
in the context of the tasks in which they will be developed,
and in the large through industrial case studies. For the first
type of evaluation (in the small), where there are existing
approaches that the algorithms and tools developed in this
research seek to outperform (e.g. change-based incremental

validation vs. state-based incremental validation), comparative
evaluation will be conducted to assess the benefits and limita-
tions of our approaches. For algorithms and tools that have no
direct competitors in the literature, their contributions will be
assessed in comparison to the baseline they seek to improve
(e.g. in this case, persisting full change histories).

IX. CONCLUSIONS

Through turning models inside out and persisting their
change history, this research aims at enabling high-
performance incremental model processing in collaborative
development settings. The proposed approach also has the
potential to enable model analytics, more fine-grained tracing
and to improve the precision and performance of model
comparison and merging. A prototype implementation of a
change-based persistence format has been presented, the main
envisioned challenges have been listed and an evaluation
strategy has been outlined.

ACKNOWLEDGMENTS

This work was partly supported through a scholarship
managed by Lembaga Pengelola Dana Pendidikan Indonesia
(Indonesia Endowment Fund for Education).

REFERENCES

[1] B. Selic, “The pragmatics of model-driven development,” IEEE software,
vol. 20, no. 5, pp. 19–25, 2003.

[2] A. Egyed, “Automatically detecting and tracking inconsistencies in
software design models,” IEEE Transactions on Software Engineering,
vol. 37, no. 2, pp. 188–204, 2011.

[3] F. Jouault and M. Tisi, “Towards incremental execution of atl transfor-
mations.” ICMT, vol. 10, pp. 123–137, 2010.

[4] B. Ogunyomi, L. M. Rose, and D. S. Kolovos, “Property access traces
for source incremental model-to-text transformation,” in European Con-
ference on Modelling Foundations and Applications. Springer, 2015, pp.
187–202.

[5] I. Ráth, Á. Hegedüs, and D. Varró, “Derived features for emf by integrat-
ing advanced model queries,” Modelling Foundations and Applications,
pp. 102–117, 2012.

[6] U. Kelter, J. Wehren, and J. Niere, “A generic difference algorithm for
uml models.” Software Engineering, vol. 64, no. 105-116, pp. 4–9, 2005.


	Introduction
	The Key-Challenge of Incrementality
	Identifying Changes in Models
	Proposed Approach
	Prototype Implementation
	Benefits and Novel Capabilities
	Challenges and Future Work
	Evaluation Strategy
	Conclusions
	References

