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Introduction
There is a growing body of evidence that diet and nutrition 
play a direct role in maintaining neuronal health. In particular, 
dietary factors can influence the onset and progression of 
Parkinson’s disease (PD), and potentially its amelioration.1,2 
The emerging pattern from this body of research is that there 
are clear consequences to an imbalance in dietary factors on the 
production and maintenance of mature neurons.

Our research and that of others suggest that vitamins are 
essential both for the formation of neurons and their survival. 
Here, we review nicotinamide and associated active metabo-
lites. We discuss nicotinamide’s role in the maintenance of 
mature central nervous system (CNS) neurons; its influence on 
neuronal health and survival during ageing, injury, and disease; 
and its potential as a therapeutic for neurodegenerative 
disease.

Vitamins and Their Role in Health
During the last century, a new class of nutritional supplements 
was identified. These ‘vitamins’ were defined as biologically 
active organic compounds essential for normal health and 
growth, which cannot, or can only partially, be synthesised by 
the human body. Grouped by their biological and chemical 
activity, 13 classes of vitamins (Table 1) are currently recog-
nised, having diverse biochemical functions such as regulation 
of cell and tissue growth, mineral metabolism, acting as coen-
zymes in metabolism, and directing cell differentiation.3 Thus, 
vitamins are essential for the development and maintenance of 
the body, with their deficiencies leading to conditions affecting 

multiple systems, such as pellagra, scurvy, rickets, bleeding dis-
orders, and vulnerability to infections.4 If untreated, vitamin 
deficiencies can lead to significant ill health and potentially 
death.

Nicotinamide, Nicotinamide Adenine Dinucleotide, 
and Neuronal Health
Nicotinamide, the water-soluble amide form of vitamin B3, is a 
key component of the metabolic pathway involved in the pro-
duction of nicotinamide adenine dinucleotide (NAD+). One 
source of nicotinamide is the diet, via intake of eggs, meat, fish, 
and mushrooms. A second source of nicotinamide is the 
metabolism of endogenous tryptophan, an essential amino 
acid. Nicotinamide can also be generated from niacin via the 
formation of NAD+.

Nicotinamide is stored in only small quantities in the liver, 
with most being either excreted or catabolised to provide other 
key metabolic products. It is difficult to achieve adverse effects 
from excessive intake, even with pharmacologically high doses, 
but overdose can cause hepatotoxicity in rare cases.5

The enzyme, nicotinamide phosphoribosyltransferase 
(NAMPT), catalyses the synthesis of nicotinamide mononu-
cleotide (NMN) from nicotinamide (Figure 1). Its role in the 
metabolic pathway for the biosynthesis of NAD (oxidised form 
NAD+; reduced form NADH) suggests its importance in cells 
that are sensitive to decreases in NAD levels, such as neurons.6 
NAD homeostasis has also been found to be altered with 
ageing7–10; thus, by influencing levels of NAD+ within neurons, 
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nicotinamide may play a key role in neuronal maturation and 
neuroprotection.

The enzyme NMN adenylyltransferase (NMNAT) con-
verts NMN to NAD+ (Figure 1). Three isozymes, NMNAT1, 
2, and 3, are localised to the nucleus, cytoplasm, or mitochon-
dria, respectively.11 An increase in NMNAT activity has been 
shown to lead to axonal protection in cultured neurons under-
going Wallerian degeneration, through a rise in nuclear NAD 
levels, leading to activation of the NAD-dependent protein 
deacetylase sirtuin 1 (SIRT1),12,13 implicating nicotinamide 
indirectly in neuroprotection.

In humans, nicotinamide undergoes some level of degrada-
tion, primarily through N-methylation to N-methyl nicotina-
mide via activity of the enzyme nicotinamide N-methyltransferase 
(NNMT). As mentioned above, the remaining metabolism of 
nicotinamide produces the NAD coenzymes in both the oxi-
dised and reduced forms (NAD+ and NADH) in addition to 
nicotinamide adenine nucleotide phosphate, which is vital in 
mitochondrial respiration to produce adenosine triphosphate 
(ATP), as well as being implicated in more than 200 enzymatic 

reactions including those conferring cell protective and antioxi-
dant roles (Figure 1).14–16

NAD+ can also be generated via tryptophan metabolism 
within the liver and kidneys17 and from dietary nicotinic acid 
and niacin. Tryptophan can be metabolised into small amounts 
of nicotinic acid mononucleotide (NAMN) that can then be 
converted to NAD+. However, 60 mg of tryptophan is required 
to yield the equivalent amount of NAMN generated from 
1 mg of niacin.18 Therefore, tryptophan is not a necessary sup-
plement to many Western, niacin-rich diets,19 although trypto-
phan alone can be enough to prevent niacin deficiency.17 
Tryptophan metabolism is a 9-step process and the first part of 
this, known as the kynurenine pathway,17 is altered in a number 
of neurodegenerative diseases including PD, Huntington’s dis-
ease (HD), and Alzheimer’s disease (AD)20,21 as well as other 
neurological disorders.22 This disruption may increase the pro-
duction of neurotoxins21–23 while also reducing NAD+ levels, 
leaving neurons more susceptible to damage. Thus, the finely 
balanced relationship between nicotinamide and NAD+ may 
greatly influence neuronal health.

Table 1.  The thirteen recognised classes of vitamins and their roles.

Vitamin Other names Examples of physiological functions

Vitamin A Retinol, retinoic acid, 
retinal, carotenoid

Growth, maintenance of skin, bone development, maintenance 
of myelin, maintenance of vision

Vitamin B1 Thiamine Growth, appetite, digestion, nerve activity, energy production

Vitamin B2 Riboflavin Growth and development of foetus, redox systems, and 
respiratory enzymes; maintenance of mucosal, epithelial, and 
eye tissues

Vitamin B3 Nicotinamide, 
niacinamide, nicotinic 
acid, niacin

Maintenance of NAD and NADP, coenzyme in lipid catabolism, 
oxidative deamination

Vitamin B5 Pantothenic acid Lipid metabolism, protein metabolism, part of coenzyme A in 
carbohydrate metabolism

Vitamin B6 Pyridoxine, pyridoxol, 
adermine

Growth; protein, CHO, and lipid metabolism; coenzyme in amino 
acid metabolism

Vitamin B7 Biotin, protective factor X Growth; maintenance of skin, hair, bone marrow, and sex 
glands; biosynthesis of aspartate and unsaturated fatty acids

Vitamin B9 Folic acid, folacin, folinic 
acid

Synthesis of nucleic acid, differentiation of embryonic nervous 
system

Vitamin B12 Cobalamin Coenzyme in nucleic acid, protein, and lipid synthesis; 
maintenance of epithelial cells and nervous system

Vitamin C Ascorbic acid Absorption of iron, antioxidant, growth, wound healing, formation 
of cartilage, dentine, bone and teeth, maintenance of capillaries

Vitamin D Vitamin D3, cholecalciferol, 
calcitriol

Normal growth, Ca and P absorption, maintains and activates 
alkaline phosphatase in bone, maintains serum calcium and 
phosphorus levels

Vitamin E Tocopherol, Tokopharm, 
tocotrienols

Antioxidant, growth maintenance, aids absorption of unsaturated 
fatty acids, maintains muscular metabolism and integrity of 
vascular system and central nervous system

Vitamin K Prothrombin factor, 
menaquinones

Blood-clotting mechanisms, electron transport mechanisms, 
growth, prothrombin synthesis in liver
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Nicotinamide in the Peripheral Nervous System
Nicotinamide has been linked with Wallerian degeneration, ie, 
the axon degeneration that occurs distal to an injury or sever-
ance within axons of the peripheral nervous system. In periph-
eral nerve explants from a mouse mutant with slowed Wallerian 
degeneration (the Wlds mutation), Wlds acts to protect severed 
neurons, in conjunction with Nmnat1 and SirT1, with Nmnat 
overexpression also able to rescue degenerating axons.24,25 
More recent studies suggest that NMNAT acts as a molecular 
chaperone to prevent protein misfolding and so protect key 
processes within neurons.26 Another piece of evidence to sug-
gest a role for nicotinamide in axon degeneration is the obser-
vation that NMN accumulates after nerve injury but prior to 

peripheral axon degeneration, and this can be ameliorated by 
inhibition of NAMPT, involved in the conversion of nicotina-
mide to NMN.27

Nicotinamide has been proposed to be a key player in 
peripheral neuropathy within the eye. Overexpression of 
Nmnat1 protected retinal ganglion cells (neurons) from axonal 
degeneration and cell death after ischaemic insult and chronic 
elevation of intraocular pressure, a model for glaucoma.28 In an 
aged mouse in vivo model, oral delivery of nicotinamide or 
enhanced expression of the Nmnat1 gene prevented both reti-
nal ganglion cell soma loss and thinning of the retinal nerve 
fibre layer.29 Similarly, in a mouse model of diabetes-induced 
neuropathy, sensory nerve endings within the cornea were 

Figure 1.  Simplified schematic representation of the key pathways for the metabolism of nicotinamide, niacin, and tryptophan in the production of NAD+.
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protected through administration of nicotinamide riboside.30 
This effect could not be attributed to control of glucose alone, 
suggesting that other subcellular mechanisms are involved.

Another disease affecting the retinal pigment epithelium 
(RPE), and thus indirectly the photoreceptors transmitting 
sensory information to the optic nerve, is age-related macular 
degeneration (AMD). In a recent study, nicotinamide was 
shown to ameliorate the disease phenotype in RPE cells gener-
ated from pluripotent stem cell lines derived from patients 
with AMD, with nicotinamide and its associated pathways 
being proposed as targets for therapies for AMD.31

Nicotinamide in the CNS
A number of studies indicate that nicotinamide is essential for 
the growth and maintenance of the CNS, acting to promote 
neuronal differentiation and neuronal survival, respectively. For 
example, nicotinamide appears to enhance and accelerate the 
conversion of embryonic stem cells to neural progenitors32,33 
and neuronal differentiation from precursors34 suggesting a key 
role in neural development.

There is a wealth of evidence to suggest that NAD+ 
metabolism has a direct influence on neuronal survival in 
the CNS.35,36 NAD+ is an important substrate that acts on 
3 major classes of enzymes: the sirtuin family (SIRTs), the 
poly(ADP-ribose) polymerases (PARPs) and related adeno-
sine diphosphate (ADP)-ribose transferases (ARTs), and 
the cyclic ADP-ribose (cADPR) synthases, CD38 and 
CD157. A by-product of SIRT, PARP, and ART activity is 
nicotinamide. Nicotinamide can inhibit the activity of these 
enzymes through binding to NAD+. In addition, neurons 
contain only low levels of the enzyme NAMPT, required for 
the first step in the conversion of nicotinamide to NAD+, 
potentially lowering its availability in these cells. NAD+ 
levels decrease with ageing10 and this may be linked to low-
ered levels of NAMPT (for an excellent review see the work 
by Verdin35). Further evidence to support this comes from 
studies where the class of aminopropyl carbazole chemicals 
P7C3 has been found to exert neuroprotective effects in 
models of PD,37 stroke,38 and amyotrophic lateral sclerosis39 
through activation of NAMPT.40

There is evidence that nicotinamide can freely cross the 
blood-brain barrier in both directions.41 Interestingly, one 
study has suggested that this transport is not affected in neuro-
degenerative disease, indicating that systemic nicotinamide 
could be given as a treatment without fear of reduced access to 
the CNS.42 The NNMT messenger RNA (mRNA) is expressed 
in multiple CNS regions including the spinal cord, temporal 
lobe, medulla, cerebellum, and within the basal ganglia in the 
subthalamic nucleus, caudate nucleus, and the dopamine neu-
rons of the substantia nigra, of particular relevance to PD.43 
These findings highlight the capacity of nicotinamide to influ-
ence neuronal differentiation and health, fuelling interest in 
potential applications as a neuroprotective agent.

The Role of Nicotinamide in Neuronal Injury, 
Ischaemia, and Stroke
Since the turn of the century, nicotinamide has been recog-
nised as a key player in neuroprotection and neurorestoration 
in animal models of ischaemia.44,45 Nicotinamide has been 
shown to protect neuronal cells in a rodent model of ischaemic 
stroke and this effect is concentration dependent. In the early 
stages of developing cerebral infarction in the ischaemic brain, 
decreased levels of NAD+ are observed, preceding neuronal 
apoptosis. Studies have shown that intraperitoneal injection of 
500 mg/kg nicotinamide up to 2 hours after ischaemia decreased 
the infarct volume of rats and improved both sensory and 
motor behaviour when compared with non-treated animals.46

Prolonged hypoxia followed by re-oxygenation (reperfu-
sion) of neural tissue leads to impairment of NAD+/NADH 
recycling, termed hyperoxidation. Pre-treatment with nicotina-
mide can improve neuronal function, reduce NADH levels, 
and restore ATP levels.47 A similar effect was observed when 
the PARP-1 inhibitor PJ-34 was applied. Nicotinamide can 
inhibit PARP activity, consequently enhancing NAD produc-
tion, and this may be one mechanism of neuroprotection (dis-
cussed later in this review). Niacin metabolism may lead to 
long-term restoration of the blood and oxygen supply to dam-
aged neurons. Niacin given 24 hours after induction of experi-
mental stroke in the rat significantly increased levels of 
high-density lipoprotein cholesterol. This in turn promoted 
angiogenesis, arteriogenesis, and local cerebral blood flow, 
reducing functional deficits.44

Traumatic brain injury (TBI) is an area where nicotina-
mide may have a role as a therapeutic agent. Although the 
initial impact causing the trauma is highly damaging, the sec-
ondary sequelae create much of the lasting damage, through 
mechanisms such as inflammation, free radical generation, 
and excitotoxic cell death. Nicotinamide’s wide ranging influ-
ence on different cellular processes has made it a molecule 
worth exploring in TBI. Vonder Haar et al showed that infu-
sion of nicotinamide via osmotic minipumps, starting 30 min-
utes following a controlled cortical impact injury, significantly 
reduced the lesion size. This neuroprotection was correlated 
with improvement of sensory, motor, and cognitive skills, 
with animals showing improved scores on the bilateral tactile 
adhesive removal task, locomotor placing task, and reference 
memory paradigm of the Morris water maze, respectively.48 A 
more recent study showed further improvements in reducing 
cortical neuron loss after a contusion injury when nicotina-
mide was co-administered with progesterone. Results showed 
a significant decrease in cavitation, degenerating neurons and 
reactive astrocytes. Transcriptional profiling suggested a 
reduction in genes in both inflammatory and immune path-
ways. Progesterone and nicotinamide–co-treated animals 
reached higher scores on adhesive removal and forelimb plac-
ing tasks, compared with groups that received either treat-
ment alone.49
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The Role of Nicotinamide in Neurodegenerative 
Disease
Alzheimer’s disease

Alzheimer’s disease is one of the most common neurodegen-
erative diseases, affecting perhaps 30 million people world-
wide,50 who suffer slow cognitive decline. The characteristic 
pathology of AD involves the presence of amyloid β (Aβ) 
plaques and neurofibrillary tangles.51 The exact cause of AD is 
unknown, although genetic, environmental, and developmental 
factors are thought to be involved.52 Cases are highest in devel-
oped countries and are expected to rise, with the biggest 
increase occurring in developing countries.53 There is an urgent 
need to identify neuroprotective, and ideally neuro-regenera-
tive, treatments for AD, but clinical trials have thus far failed to 
reliably demonstrate efficacy in a substantial number of 
patients. However, several lines of evidence suggest that nicoti-
namide or related molecules may offer therapeutic benefits for 
patients with AD.54–61

For example, severe tryptophan/niacin deficiency leads to 
the syndrome pellagra, where patients can develop neurological 
deficits manifesting as dementia, and described as ‘premature 
ageing’.62 Symptoms are similar to AD and include psychosis, 
disorientation, memory loss, and confusion, which can all be 
combated by niacin supplementation.63 Although pellagra is 
seen primarily in young people in areas where diets are based 
mainly on corn (eg, Africa and India), it also occurs in adult-
hood in Western societies, eg, in alcoholics who are usually 
deficient in numerous vitamins or as a consequence of eating 
disorders such as anorexia nervosa.14 Niacin deficiency in age-
ing populations has been linked with dementia. In a study 
between 1993 and 2002 in the Chicago community, dietary 
levels of niacin were shown to be inversely related to the onset 
of AD, measured through at least 2 clinical cognitive evaluations.64 
It is not clear from these data whether niacin or nicotinamide 
may be the more important metabolite.

Nicotinamide and niacin produce cellular and molecular 
effects that may be relevant to AD. Elevated total cholesterol 
and low-density lipoproteins are linked directly to the pathol-
ogy of AD.44 Cholesterol in neurons contributes to Aβ forma-
tion and accumulation, and it has been suggested that increased 
levels of membrane cholesterol can make hippocampal neurons 
more sensitive to insults such as tau toxicity.65 Niacin decreases 
cholesterol levels both in the serum and intracellularly, which 
may offer protection in AD. Niacin upregulates peroxisome 
proliferator–activated receptor γ (PPARG) mRNA expression, 
promoting cholesterol efflux and so reducing cellular levels. 
Niacin also has been shown to upregulate liver X receptors, 
stimulation of which facilitates clearance of Aβ42,44 and may 
improve memory in an AD mouse model.66

Within the neuron, NAD+ serves as a substrate for the syn-
thesis of cADPR, used in calcium signalling, important for syn-
aptic plasticity. This is particularly important in the hippocampus, 
a structure critical for learning and memory. Thus, through 

maintaining levels of NAD+, nicotinamide could protect against 
age-dependent neuronal degeneration in the hippocampus. 
Interestingly, however, Young and Kirkland showed that 
decreased niacin intake and cADPR levels actually led to 
enhanced ability for spatial learning in adult male rats. When 
the diet was supplemented with nicotinamide, spatial learning 
ability then decreased.67 This suggests that nicotinamide’s rela-
tionship with hippocampal neurons and learning and memory 
may be more complex than predicted. Interestingly, the enzyme 
Nmnat2, which is involved in the conversion of nicotinamide to 
NAD+, has been linked to neuroprotection against tauopathy in 
a mouse model of dementia. Nmnat2 transcription was seen to 
be downregulated prior to neurodegeneration in a transgenic 
mouse model possessing a mutation associated with frontotem-
poral dementia. Injection of adeno-associated viruses overex-
pressing Nmnat2 in the hippocampus of these mice from 
6 weeks of age reduced the extent of neurodegeneration observed 
at 5 months.68 Lower levels of Nmnat2 mRNA and protein have 
also been observed in patients with AD, and its activity is linked 
to tau clearance.69 Green et al55 report that oral nicotinamide 
selectively reduces phosphoThr231-tau in a mouse model of 
AD, through a mechanism similar to SirT1 inhibition. This 
increased levels of microtubule stability–associated proteins and 
reduced cognitive deficits but did not affect Aβ pathology.

Mitochondrial dysfunction and bioenergetic deficits inter-
rupt synaptic plasticity and impair learning and memory. These 
mechanisms are increasingly proposed to be key to AD.56 
Neuronal mitochondrial function can be improved through 
increased NAD+ and the activity of SIRT1 and SIRT3.56 This 
has been achieved in a mouse model of AD, where nicotina-
mide treatment diminished learning and memory impair-
ment.59 Nicotinamide has also been shown to reduce oxidative 
stress in ex vivo and in vivo rat models of AD.61,70

The evidence outlined above has underpinned several clini-
cal trials for AD, using nicotinamide or NADH. In 1996, 
NADH was reported to improve mini mental state examina-
tion scores in patients with AD, although this was an open-
label trial for 8 to 12 weeks, with only 17 subjects and no 
controls.71 Rainer et  al72 failed to detect improved cognitive 
effects of NADH in patients with dementia (including AD). 
In 2004, a randomised double-blind clinical trial using NADH 
with patients with AD reported a halt in cognitive decline and 
superior verbal fluency (compared with placebo; n = 12 in treat-
ment group).73 A 2017 nicotinamide clinical trial (Safety Study 
of Nicotinamide to Treat Alzheimer’s Disease; NCT00580931) 
reported no increase in adverse events, supporting the relative 
safety of high (1500 mg, twice daily) nicotinamide doses.74 No 
improvements in the monitored cognitive functions were 
detected as the number of patients was small (n = 15) and the 
time-course was relatively short (24 weeks).74 A further clinical 
trial is investigating the effects of nicotinamide on the phos-
phorylation of tau (Nicotinamide as an Early Alzheimer’s 
Disease Treatment [NEAT]; NCT03061474) and is due to be 
completed in February 2019.
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Parkinson’s disease

One particular neurodegenerative disorder that may be influ-
enced by diet and nutrition is PD. A significant hallmark of 
this disorder is the death of midbrain dopamine neurons within 
the substantia nigra, leading to an imbalance in activity within 
the basal ganglia circuitry deep within the brain, manifesting in 
reduced movement (akinesia), rigidity, and tremor. About 95% 
of cases of PD cannot currently be attributed to genetic defects; 
therefore, science research has focussed on environmental fac-
tors that may influence the health of mature substantia nigra 
dopamine neurons.

Parkinson’s disease is characterised by neuronal inclusions 
comprising α-synuclein aggregates. Although the cause of the 
disease is currently unknown, one hypothesis is that the dopa-
mine neurons are compromised through oxidative stress, and 
more recently, it has been suggested that this oxidative stress 
may originate in the gastro-intestinal tract, leading to neuronal 
damage. People with PD have been shown to have increased 
intestinal permeability as well as α-synuclein aggregates and 
higher levels of oxidative stress in the gastro-intestinal tract. 
Although there is only limited evidence for a direct link 
between diet and PD, these data suggest that diets high in 
saturated fat from animal sources may have a negative impact 
on neuronal health, whereas unsaturated fats and foods con-
taining antioxidants may be protective, by reducing inflamma-
tion and oxidation.75

Vitamin B3 intake has been suggested to play both protec-
tive and detrimental roles in PD.14 NAD+ levels are found to 
be decreased in patients with PD76 and a reduced risk of PD is 
associated with higher consumption of foods containing 
niacin.77,78 The patients with PD taking niacin supplementa-
tion for other disorders reported an easing of the symptoms, 
although doses were stopped due to adverse side effects.79,80

NADH is fundamental for the normal functioning of 
mitochondrial complex 1, which is established to be defec-
tive in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-
induced parkinsonism81 and idiopathic PD.82,83 NADH is also 
integral to the production of tetrahydrobiopterin,84 a co-factor 
necessary for tyrosine hydroxylase, the rate-limiting enzyme in 
catecholamine biosynthesis, also deficient in PD. In addition, 
NADH is linked to reduced glutathione, an important antioxi-
dant shown to be insufficient at the early stages of PD.15,85 
Thus, the ability for nicotinamide to increase levels of NADH 
or ATP might be therapeutic for compromised midbrain dopa-
mine neurons. In 2 mouse models of PD, nicotinamide has 
demonstrated neuroprotective properties by attenuating stri-
atal dopamine depletion and protecting substantia nigra pars 
compacta neurons in acute MPTP-treated mice.16

Levels of nicotinamide- NNMT have been shown to be 
increased in the cerebrospinal fluid and within specific neuron 
populations including the midbrain dopamine neurons, of 
patients with PD, suggesting a role in pathogenesis.43,86 Higher 

NNMT levels have been proposed to cause an increase in con-
version of nicotinamide to N-methyl nicotinamide, structurally 
related to the toxin N-methyl-4 phenylpyridinium (MPP+), 
the active MPTP derivative that selectively destroys dopamine 
neurons.85 In addition, increased NNMT activity leads to low-
ered mitochondrial complex 1 activity and impaired mitochon-
drial function, resulting in neurodegeneration.15,87 Given this, a 
high level of nicotinamide obtained from meat-rich diets has 
been proposed as a nutritional factor that, in excess, may pre-
dispose dopamine neurons to mitochondrial stress, triggering 
neuronal apoptosis and leading to PD.62,88 In support of this 
theory, our own work has shown that cultured stem cell–derived 
neurons respond positively to supplementation with nicotina-
mide within a dose range of 5 to 10 mM in vitro, but that a 
20-mM dose is highly toxic to all neurons.32

Altering the course of PD through dietary means is diffi-
cult, and further experimentation is needed to determine 
whether this modulation is impactful; however, potential exists 
for supplements such as prebiotics to beneficially modify the 
gut milieu, reducing constipation in individuals with PD. Due 
to the potential role of the gastrointestinal barrier in exposure 
to injurious factors, therapeutic intervention through whole 
foods, dietary patterns, and supplemental nutrition (probiotics, 
prebiotics, and synbiotics) may positively impact intestinal 
milieu and result in reduced inflammation and oxidation and 
reduced risk for PD.

Huntington’s disease

Similar to PD, neurodegeneration in HD has been associated 
with impaired mitochondrial function. Loss of GABAergic 
medium spiny projection neurons in the striatum is thought 
to occur through the mutant form of the protein huntingtin 
interfering with normal cellular processes such as respiration 
and energy metabolism, leading to neuronal dysfunction. 
Potential downstream effects on the neurons include altered 
protein trafficking and synaptic transmission, excitotoxicity 
through overstimulation of excitatory glutamatergic recep-
tors, altered calcium levels, generation of free radicals, and 
neuronal apoptosis. For over 2 decades, it has been known 
that mitochondrial toxins such as malonate or 3-nitropropi-
onic acid (3-NP) administered to rodents can induce striatal 
neuron degeneration.89–91 Administration of nicotinamide 
can attenuate the extent of striatal lesions produced by 
malonate and this effect has been seen both with a continual 
release paradigm (via infusion pump over 7 days) or when 
nicotinamide was given intraperitoneally just prior to and fol-
lowing the lesion surgery.92 There was an additive effect on 
neuroprotection when nicotinamide was delivered in combi-
nation with coenzyme Q10, an essential component of the 
electron transport chain and a free radical scavenger, suggest-
ing that multiple pathways may be involved in the neuropro-
tection observed.92
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Metabolic toxins such as malonate provide a crude insult to 
medium spiny striatal neurons. More recent research has 
assessed the effect of nicotinamide in a transgenic model of 
HD (the B6.HDR6/1 mouse model that expresses a mutant 
form of the human HD gene where exon 1 contains an 
expanded stretch of approximately 125 CAG repeats), thought 
to more closely replicate the disease process. Nicotinamide 
delivered either through an osmotic minipump or in the drinking 
water increased brain levels of brain-derived neurotrophic fac-
tor (BDNF) and PPARG (PGC-1α) concomitantly improv-
ing movement control, measured in the open-field, rotarod, 
and balance beam tasks. Interestingly, behavioural improve-
ment was not associated with any decrease in abnormal aggre-
gation of Huntington protein and did not prevent late-stage 
weight loss.93 Conversely, nicotinamide administered to an 
alternate transgenic model (YAC128 mice, expressing the 
entire human HD gene with exon 1 containing 128 CAG 
repeats) did not lead to an improvement in motor behaviours 
and in wild-type control animals actually worsened their motor 
performance.94 The latter study compared nicotinamide 
directly against resveratrol to investigate their effects as either a 
SirT1 inhibitor or activator, respectively. In contrast to nicoti-
namide, resveratrol improved motor performance. Interestingly, 
both molecules had a positive effect on cultured striatal and 
cortical neurons derived from YAC128 mice, suggesting that 
opposed actions on SirT1 could lead to a similarly positive sur-
vival outcome.94

Mechanisms for neuroprotection by nicotinamide

Rather than just being a nutritional factor, nicotinamide has 
been shown to both prevent and reverse the injury of neuronal 
and endothelial cells. Nicotinamide can support DNA stability 
and can maintain membrane integrity, preventing cellular 
injury, phagocytosis, apoptosis, and vascular clot formation.45

One mechanism by which nicotinamide may act is simply to 
restore ATP levels within neurons. For instance, MPTP, used 
to create a model of PD, inhibits the mitochondrial complex 1 
selectively within dopaminergic neurons, leading to ATP 
depletion and formation of reactive oxygen species (ROS), ulti-
mately leading to cell death. Anderson et al16 propose that sub-
acute MPTP exposure leading to an energy crisis in the neurons 
can be ameliorated by nicotinamide, through restoration of 
intracellular NAD+ and ATP levels.

Nicotinamide’s neuroprotective capacity has been linked to 
PARP, an enzyme implicated in DNA repair and cell death 
that, in excess, causes depletion of both NAD+ and ATP.  
PARP is activated in response to DNA damage, possibly through 
oxygen-free radicals, where it catalyses NAD+ into ADP-
ribose and nicotinamide.95 Overactivation of PARP leads to 
NAD+ depletion and lowers ATP levels.62 Nicotinamide can 
inhibit the activity of PARP, thereby protecting cells from oxi-
dative stress, apoptosis, and necrotic forms of cell death.

The importance of nicotinamide in replenishment of NAD+ 
levels also links with the transmembrane glycoprotein CD38. 
Through consumption of NAD+, CD38 synthesises and 
hydrolyses cADPR and ADP-ribose96 and may have a role in 
regulating NAD levels.97 The activity of this NADase has been 
found to increase with age and is responsible for age-related 
decline of NAD.98 Cells overexpressing CD38 not only have 
lower NAD levels but also have a reduction in proteins associ-
ated with antioxidant defence, leaving them more susceptible 
to oxidative stress.99 CD38 is also implicated in the degrada-
tion of NMN98 meaning that an increase in activity could not 
only degrade NAD but also lower production levels, necessitat-
ing the need for extra nicotinamide. Another protein responsi-
ble for NAD depletion is sterile alpha and TIR motif containing 
1 (SARM1). After axonal damage expression of SARM1 
mediates axon degeneration while depleting NAD+, however, 
degeneration can be blocked by expression of NMNAT1 and 
Nampt.100,101

An alternative mechanism of action for nicotinamide is 
through inhibition of the NAD-dependent deacetylase SIRT1. 
SIRT1 is expressed throughout the CNS, predominantly within 
the nucleus of neurons, and is found within brain regions that 
are susceptible to neurodegeneration seen with ageing.102 It has 
been associated with the conversion of neural progenitors to a 
neuronal fate103 and then to specific neuronal phenotypes, 
including motor neurons of the spinal cord.104 Changes in 
SIRT1 levels have also been implicated in neuronal ageing and 
neurodegeneration.12,105 Increased SIRT1 levels have been 
associated with neuroprotection in AD through targeting both 
Aβ and tau proteins. In PD, SIRT1 may protect dopamine neu-
rons through activating heat shock factor 1 (HSF1) levels in 
dopamine neurons, and in HD, through activation of CREB-
regulated transcription coactivator 1 (TORC1) and subse-
quently BDNF levels.105 However, experimental data have to be 
interpreted in the context of NAD levels within neuronal popu-
lations as sirtuins require NAD for their bioactivity and there-
fore SIRT1 may show opposite effects when present with either 
low or high levels of NAD, respectively.

Nicotinamide has also been shown to influence DNA deg-
radation via a number of cell pathways, eg, activating protein 
kinase B (Akt), which phosphorylates the forkhead transcrip-
tion factor (FKHRL1), inhibiting apoptosis. Activation of Akt 
maintains mitochondrial membrane polarisation, preventing 
the release of cytochrome C, thus averting cellular injury.45 
Nicotinamide can also act as an inhibitor of caspase 1, caspase 
3, and caspase 8 during cellular injury, in turn preventing the 
release of cytochrome C and inhibiting apoptosis.45,106

Nicotinamide may also act to prevent neurodegeneration 
through altering calcium signalling. Calcium signalling plays a 
major role in many neuronal processes including axon elonga-
tion and response to external stimuli. However, there is evidence 
from studies on Wallerian degeneration and neurodegenerative 
disease that axonal degeneration leads to an inability to control 
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calcium levels, and that a rise in calcium within the axon creates 
neurotoxicity, causing neuronal death.107 Aberrant calcium 
signalling has also been implicated in the mechanism by which 
neuroinflammation causes neurodegeneration, suggesting 
that calcium receptors may be a target for neuroprotective 
therapies.108 Nicotinamide has been shown to be an inhibitor of 
cADPR in sea urchin eggs by interfering with the mobilising 
activity of the key intracellular signalling molecules: β-
NAD+, cyclic GMP, and nitric oxide – modulators of cADPR 
synthesis.109

Nicotinamide and NAD also have implications in immune 
cell modulation110 and with activated microglia found at sites 
of neurodegeneration,111 these molecules could work through 
anti-inflammatory means. GPR109A, an anti-inflammatory 
G-protein receptor present on macrophages, has been found in 
higher levels in patients with PD76; however, treatment with 
niacin reduces these expression levels.80

More evidence for the mechanisms by which nicotinamide 
confers neuroprotection comes from studies of the vascular 
system. A body of evidence suggests that vascular ageing and 
associated endothelial breakdown are linked to an increase in 
ROS within vascular cells such as the progenitors that are 
required for endothelial repair.112 Lowering levels of ROS, eg, 
through dietary caloric restriction may stimulate ROS-
dependent protective pathways, such as those involving SIRT1, 
and have anti-inflammatory effects on endothelial cells.113 
Nicotinamide itself has been investigated in mouse models as a 
treatment option for pre-eclampsia. Increased dietary intake of 
nicotinamide was shown to improve the health of both moth-
ers and pups, decreasing blood pressure and endotheliosis. The 
authors suggest that the mode of action of nicotinamide was 
through restoration of foetal ATP synthesis, mostly likely 
through inhibition of cADPR.114

Clearly, there are a number of mechanisms implicated for 
nicotinamide’s role in neurodegeneration or neuroprotection, 
due to its activity in so many cellular processes conferring 
energy generation and cellular protection and repair, and evi-
denced from numerous body systems as well as the CNS. 
Teasing out specific downstream effects of nicotinamide’s 
activity remains a challenge, but one worth exploring.

Summary
There is a growing body of evidence that nicotinamide is 
implicated in neuronal differentiation and health, neuronal 
injury, and neurodegeneration in the CNS. Changes in nicoti-
namide levels have been linked with AD, PD, and HD, and 
nicotinamide treatment in animal models has shown ameliora-
tion of neurodegeneration and associated behavioural recovery. 
Equally, there is evidence of nicotinamide being used as a 
restorative agent in animal models of neuronal injury and 
ischaemia.

The plethora of intracellular systems influenced by nicoti-
namide levels makes it difficult to determine precise mechanisms 
of action by this dietary metabolite. However, it is becoming 

clear that nicotinamide should be titrated to balanced levels in 
the CNS to avoid neural sequelae caused by either too little or 
too much nicotinamide within mature neurons.

With this in mind, supporting neuronal health through 
good dietary supplementation and management of small bio-
active molecules such as nicotinamide appears an exciting and 
achievable prospect.
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