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A drug discovery project needs a number of components for its success. From the point of view
of many medicinal chemists, tractable hit matter is one of the most important parts in such a project.
Without quality hits the projects grind to a halt and no further progress is possible, no matter how
promising the modulation of the said biological target is for a novel therapeutic approach. This is
obviously a very frustrating experience for all of the scientists involved and often the projects are
simply discontinued. Perhaps borne out of this frustration an array of different screening approaches
have been developed to mitigate the problem of no or poor quality hit matter, i.e., the more techniques
available for hit generation the better since each approach has its strengths and weaknesses. In this
special issue “Hit Generation and Verification for Novel Lead Compounds” (https://www.mdpi.
com/journal/molecules/special_issues/novel_lead_compounds), the focus was on this crucial part
of the drug discovery pathway and it is pertinent to keep in mind that the chain is as strong as its
weakest link.

In the special issue a range of different hit generation methods were reported such as the marriage
of the classical methods of natural products with structure based virtual screening, which were
successfully reported to identify cannabinoid receptor 1 inverse agonists for treating obesity [1] and
the generation of potent inhibitors of tyrosyl-DNA phosphodiesterase 1, a promising anticancer
target [2]. A fragment based screen was reported against the FIXa target for blood anticoagulation [3],
high content screen using zebrafish for cardiovascular issues focusing on the Fgf/Ras/Mapk activity
was reported [4] and finally an in vitro/in silico method was introduced for the modulation of the
Partial PPARγ receptor for the treatment of diabetes [5]. Additionally, more classical structural
activity relationships studies were reported such as cationic non-peptic small molecules as membrane
disruptors as antimicrobial agents [6] and the synthesis of proanthocyanidin derivatives as generally
interesting bioactive compounds [7]. Lastly, two reports on the anticancer compound class thieno [2,3-b]
pyridines were introduced where two major issues of small molecular drug discovery were addressed,
the lack of aqueous solubility [8] and the identification of the molecular targets modulated by the
molecules [9]. In the reported projects either natural products, and their derivatives, or synthetic small
molecules are used as screening collections, i.e., very different regions of chemical space are explored.
In general, the concept of chemical space is now well established and many researchers involved
in drug discovery projects apply these ideas [10,11]. Traditionally, the volume of chemical space is
reduced by molecular descriptors, such as molecular weight and lipophilicity (log P), and undesirable
chemical moieties where molecules are excluded from further consideration, shown graphically in
Figure 1 [12–16].
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Figure 1. A graphical representation of chemical space reduced with undesirable moieties and 

molecular descriptors in defining drug-likeness. Known drug space occupies larger volume in 

chemical space [17]. 

Known Drug Space (KDS) is a concept used to navigate chemical space to identify biologically 

benign volumes of small molecules as potential drug candidates [18–20]. E.g., frequency of atoms 

types and different substitution patterns can be derived and used as designing concepts [21–24]. KDS 

is defined as all small molecules in clinical use [25]. It has been shown that KDS has wider parameters 

in terms of both molecular descriptors and unwanted molecular moieties, resulting in a larger volume 

in chemical space compared to drug-like compounds, as shown in Figure 1 [26–28]. It is therefore 

clear that a more focused definition of biologically active compounds based on their physicochemical 

parameters would benefit the identification of quality hit matter enormously. This would have a 

beneficial knock-on effect on the drug discovery pathway where many of the problems of bio-

incompatibility will simply not be encountered. Currently, novel molecular descriptors derived from 

the density functional theory are being developed as well as an index, Known Drug Index, to improve 

our navigational skills in chemical space [17,29,30].  
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Figure 1. A graphical representation of chemical space reduced with undesirable moieties and
molecular descriptors in defining drug-likeness. Known drug space occupies larger volume in chemical
space [17].

Known Drug Space (KDS) is a concept used to navigate chemical space to identify biologically
benign volumes of small molecules as potential drug candidates [18–20]. E.g., frequency of atoms types
and different substitution patterns can be derived and used as designing concepts [21–24]. KDS is
defined as all small molecules in clinical use [25]. It has been shown that KDS has wider parameters in
terms of both molecular descriptors and unwanted molecular moieties, resulting in a larger volume in
chemical space compared to drug-like compounds, as shown in Figure 1 [26–28]. It is therefore clear that
a more focused definition of biologically active compounds based on their physicochemical parameters
would benefit the identification of quality hit matter enormously. This would have a beneficial
knock-on effect on the drug discovery pathway where many of the problems of bio-incompatibility
will simply not be encountered. Currently, novel molecular descriptors derived from the density
functional theory are being developed as well as an index, Known Drug Index, to improve our
navigational skills in chemical space [17,29,30].
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