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Abstract

Geb was the first artificial life system to be classified as exhibiting open-ended evo-
lutionary dynamics according to Bedau and Packard’s evolutionary activity measures and
is the only one to have been classified as such according to the enhanced version of that
classification scheme. Its evolution is driven by biotic selection, that is (approximately)
by natural selection rather than artificial selection. Whether or not Geb can generate an
indefinite increase in maximum individual complexity is evaluated here by scaling two
parameters: world length (which bounds population size) and the maximum number
of neurons per individual. Maximum individual complexity is found to be asymptotically
bounded when scaling either parameter alone. However, maximum individual complexity
is found to be indefinitely scalable, to the extent evaluated so far (with runtimes in years
and billions of reproductions per run), when scaling both world length and the maximum
number of neurons per individual, together. Further, maximum individual complexity is
shown to scale logarithmically with (the lower of) maximum population size and max-
imum number of neurons per individual. This raises interesting questions and lines of
thought about the feasibility of achieving complex results within open-ended evolution-
ary systems and how to improve on this order of complexity growth.

Keywords: open-ended evolution, biotic selection, ongoing growth of complexity, diver-
sity, indefinite scalability

1 Introduction

Perhaps the most important outcome of the First Workshop on Open-Ended Evolution (OEE)
was the distillation of previously disparate thoughts about OEE into something close to a con-
sensus about what the term OEE should mean: “Loosely defined, an open-ended evolutionary
system is one that is capable of producing a continual stream of novel organisms rather than
settling on some quasi-stable state beyond which nothing fundamentally new occurs. Some
definitions of OEE further require that the maximum complexity of organisms in the system
increases over time, or that ecosystem complexity increases.” Crucial in arriving at and re-
fining this loose definition was recognition of “the importance of distinguishing observable
behavioral hallmarks of systems undergoing OEE from hypothesized underlying mechanisms
that explain why a system exhibits those hallmarks.” While there are a range of opinions
about what underlying mechanisms may be necessary or sufficient for a system to exhibit
OEE, there is something close to a consensus about the observable behavioral hallmarks of
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OEE: “ongoing adaptive novelty” (for example new adaptations, new kinds of entities, major
transitions or the evolution of evolvability) and (some definitions of OEE further require)
“ongoing growth of complexity” of the most complex entities in the evolving population, or of
interactions among entities [27].

2 Ongoing Adaptive Novelty and the Accumulation of Adaptive
Success

At the core of Open-Ended Evolution is the ongoing evolution of adaptive novelty: “new com-
ponents flowing into the system and proving their adaptive value through their persistent
activity” [5] (components could be, for example, genes, organisms or species). However, an
evolutionary process could continue to generate adaptive novelty but lose what had previ-
ously been evolved at the same or a faster rate, cycling or idling with a limited extent of
adaptive success. Ongoing adaptive novelty alone would provide for a poor definition of
OEE, for a trivial system could generate evermore novel components. Ongoing progress, an
unbounded accumulation in adaptive success, is also core to OEE.

2.1 Unbounded Accumulation of Adaptive Success

Logically, unbounded accumulation of adaptive success can occur in an evolutionary system
through an unbounded increase in either (minimum, mean, median or maximum) adaptive
success per component or the diversity of adaptive components, or both. In a system of evolv-
ing entities (organisms, creatures, agents, etc.) and considering lower-level components (for
example genes), an increase in the diversity of adaptive components, i.e. the number of dif-
ferent adaptive components, can occur through an increase in either the number of different
adaptive components per entity (a simple measure of entity complexity) or the number of
different entities, i.e. the diversity of entities, or both.

Bedau, Snyder and Packard’s classification of long-term evolutionary dynamics [5] pro-
vided the field’s first “objective, quantitative test of success” [5]: a means to distinguish
those systems that exhibit unbounded evolutionary dynamics according to this classification
scheme from those that do not, rather than a definitive definition of open-ended evolution.
The classification scheme is based on elegantly simple evolutionary activity statistics that can
be computed for any evolving system with an available record of its components’ existence
times, making the scheme widely applicable across artificial and natural systems. It uses cu-
mulative evolutionary activity, based on adaptive persistence (specifically the length of time
that a component has existed, discounting any periods of absence), as “a measure of the
continual adaptive success of the components in the system” [5], that is as a measure of the
accumulation of a component’s adaptive success; and the sum of component activities (for
those components present, in use) as a measure of the system’s accumulation of adaptive
success, termed total cumulative evolutionary activity. Ongoing adaptive novelty is deter-
mined through new activity: the sum of newly adaptively-significant components’ activities,
divided by component diversity (the number of components present, in use). A component
is considered adaptively significant if its activity is above a threshold that screens out most
non-adaptive activity, as determined through the use of a shadow system that mirrors the
real system in every detail except that where selection (artificial or natural) operates in the
real system, neutral (random) selection is employed in the shadow. In line with the logic



above, total cumulative evolutionary activity can be considered as the product of component
diversity and mean evolutionary activity per component. The classification scheme requires
ongoing adaptive novelty, and unbounded total cumulative evolutionary activity (unbounded
component diversity or unbounded mean evolutionary activity per component), for a classifi-
cation of unbounded evolutionary dynamics.

Earth’s biosphere was classified, through fossil record data on taxonomic families, as ex-
hibiting open-ended evolutionary dynamics according to Bedau, Snyder and Packard’s clas-
sification scheme [5]. Bedau et al. reasoned that it was not necessary to include a shadow
mechanism in this analysis; they considered “this normalization to be accomplished de facto
by the fossil record itself”, arguing that “the mere fact that a family appears in the fossil record
is good evidence that its persistence reflects its adaptive significance” (emphasis added) as
“[s]ignificantly maladaptive taxonomic families would likely go extinct before leaving a trace
in the fossil record” [5].

2.2 Component Activity Normalization and an Enhanced Classification Scheme
for Unbounded Evolutionary Dynamics

Channon [8, 9] presented improvements to Bedau et al.’s classification scheme. Resetting
the system’s shadow (including components and activity history) to be identical to the real
run immediately after each snapshot (when an entry is made in the component existence
record) allows us to compare inter-snapshot changes in activity in the real run with changes
we would expect from neutral (random) selection, the result being an improved generic shad-
owing mechanism. The shadow can then be used to normalize (exclude non-adaptive) evolu-
tionary activity at the component level (“component activity normalization”), giving a mea-
sure of each component’s adaptive evolutionary activity and so also component-normalized
(adaptive) measures of both ongoing adaptive novelty and total (and mean or better median)
cumulative evolutionary activity.

Stout and Spector [26] attempted to “break” the original and enhanced classification
schemes by achieving a classification of unbounded dynamics in “intuitively unlifelike” sys-
tems. They concluded that component activity normalization is “of particular importance to
the scheme’s robustness ... canceling out the potential for spurious results arising from the
(random) divergence of the real and shadow populations”. Bedau et al.’s reasoning that “the
mere fact that a family appears in the fossil record is good evidence that its persistence re-
flects its adaptive significance” [5] is generally accepted. But for artificial systems, Stout and
Spector’s findings support the argument for employing the enhanced classification scheme, at
least for cases (choices of component class) in which components can be maladaptive.

Geb is a two-dimensional environment populated with agents that move around and inter-
act with each other. Its evolution is driven by biotic selection, with no (or negligible) abiotic
selection [11, 12]. It was designed following the principles of Harvey’s Species Adaptation
Genetic Algorithms (SAGA) framework for incremental evolution [15-18] but with coevolu-
tionary feedback arising (rather than being specified, cf. ‘get cube’ [24]) via biotic selection
rather than abiotic fitness functions, that is (approximately) via natural selection rather than
artificial selection. In Geb, selection results from interactions which are activated by the
agents’ genetically specified neurocontrollers. So selection varies as the population and envi-
ronment of individuals evolves. This allows for the possibility of feedback in selection, and
of that driving the ongoing evolution of adaptive novelty. Novel adaptations reported include
behaviors such as following, fighting, fleeing, mimicking, and novel artifacts such as match-



ing input and output channels in agents’ neurocontrollers. Geb was the first artificial life
system to be classified as exhibiting open-ended evolutionary dynamics according to Bedau
and Packard’s evolutionary activity measures [5, 7] and is the only one to have been classified
as such according to the enhanced classification scheme [8, 9, 27]. It was shown to exhibit
ongoing adaptive novelty (positive component-normalized new activity per component) and
unbounded component-normalized median component evolutionary activity.

3 Ongoing Growth of Complexity

One of the most interesting questions that OEE systems can address is whether or not OEE
can be the cause of an unbounded increase in maximum individual (or group or system)
complexity. This, of course, requires a definition of complexity; and that our definition of
OEE does not already include ongoing growth of complexity [27], which would prevent us
from being able to address (or even ask) this important question.

This is closely related to the open question, can or under what conditions does biotic
(natural) selection lead to a sustained increase in maximum entity complexity? In particular
this is relevant to the debate as to whether or not it is natural selection that led to the increase
in maximum organism complexity observed in nature. Within both biology and artificial life,
doubts have been raised as to natural selection’s role as the drive for increasing complexity,
and arguments made on both sides [4, 10, 20, 21, 28, 29], with the suggestion put forward
that non-adaptive evolutionary forces (such as mutation, recombination and genetic drift)
or mathematical/statistical constraints may be the primary drives, through either a passive
increase in variance of complexity in the presence of a lower bound, or a constraint-driven
drive toward complexity.

One unsatisfactory general measure of complexity is the number of components in an
entity. A more satisfactory general measure of complexity is the number of different com-
ponents, sometimes referred to as the diversity of components. The number of different
components is still not a very satisfactory measure of complexity, just as it is not a very sat-
isfactory measure of diversity, but this does lead us toward the general idea that complexity
at one level of analysis (for example individual; species; or system) can be considered as
the diversity of components at the level(s) below (for example genes; genes or individuals;
genes or individuals or species). The same desirable tweaks to discount redundancy (such as
counting only adaptive components or measuring information content), and to include be-
haviors and interactions as well as artifacts, apply to both. Also, considering diversity at only
some component levels (for example just at a very low level: diversity of atoms in a biologi-
cal organism, logic gates in a computer’s processors, neuron types in a neurocontroller, etc.)
risks missing other diversity in a system and correspondingly underestimating the system’s
complexity; again, both diversity and complexity suffer from the same problem.

Within biology, it has long been understood that eukaryotic genome size (length) does
not correlate with organism complexity [22] but assumed that the number of distinct genes,
i.e. the diversity of genes, that an organism makes use of is a valid measure of its complex-
ity [6]. This assumption was called into doubt [14] following the first complete sequenc-
ing and analysis of plant and human genomes. However, subsequently Schad, Tompa and
Hegyi [23] demonstrated that organism complexity correlates significantly with gene number
(and more closely with proteome information content) in the absence of plant genomes. More
recently still, Chen, Bush et al. [13] reached the same finding. They also found that specific



protein-protein interaction and alternative splicing indices were better predictors; these have
no analogue in Geb.

In line with the logic above (section 2.1), in Bedau, Snyder and Packard’s classification of
long-term evolutionary dynamics [5], the class of systems with unbounded evolutionary dy-
namics can be divided into three subclasses: (a) those with unbounded diversity of adaptive
components but bounded adaptive success (cumulative evolutionary activity, based on adap-
tive persistence) per component; (b) those with bounded diversity but unbounded adaptive
success per component; and (c) those with unbounded diversity and unbounded adaptive
success per component.

Yet, while adaptive success per component can be truly unbounded (if measured based on
adaptive persistence and over unbounded time), the diversity of adaptive components (both
the number of different components per entity and the diversity of entities) is necessarily
bounded: in artificial systems by unavoidable physical limits such as computer memory, and
in nature (whether considering the biosphere or the universe) again by physical limits such
as number of atoms. A claim of unbounded diversity in the biosphere is really a claim that
diversity is not practically bounded, or that it has not reached the upper bound yet. A more
precise notion than “unbounded” diversity (of entities or of adaptive components per entity)
is needed.

3.1 Indefinite Scalability

Ackley’s concept of indefinite scalability, “defined as supporting open-ended computational
growth without requiring substantial re-engineering” [1] now enables us to address this. The
key criteria for indefinite scalability is that should an upper bound be reached, increasing the
values of physical limitations (such as available matter, population size or memory) should
enable an unbounded sequence of greater upper bounds to be achieved (after sufficient in-
creases in the limitations); in the case of diversity this means an unbounded sequence of
greater upper bounds on diversity.

However, it is not possible (in finite system time) to establish that a metric (for example a
measure of adaptive success per component) is truly unbounded. And it is not possible (over
a finite number of increases in system parameter(s)) to establish that a metric (for example a
measure of diversity) is infinitely scalable. Further, an increase in parameter(s) may require
a longer system (run) time before a greater scale (higher value metric) is achieved.

A practical (and the most literal) interpretation of indefinite scalability is that the se-
quence of greater upper bounds (on increasing the values of physical limitations) continues
to an unknown length, i.e. that no end to it has been been found. It is therefore best to
qualify any empirical claims by quantifying the extent to which indefinite scalability has been
established. Claims about systems can be expressed and evaluated in terms such as a metric
(for example a measure of adaptive success per component) increasing apparently without
bound up to a certain system time (or number of generations, etc.); or a metric (for example
diversity) increasing up to certain value(s) of system parameter(s) being reached, where it
was necessary to increase these to establish increases in scale (for example of diversity) over
successive runs.



3.2 Indefinitely Scalable Complexity

If the diversity of adaptive components is accepted as a simple measure of system complexity,
and the number of different adaptive components per entity as a simple measure of entity
complexity, then it follows trivially from the logic above (section 2.1) first that indefinitely
scalable system complexity can occur through indefinite scalability in either entity complexity
or entity diversity, or both; and second that indefinite scalability in the accumulation of adap-
tive success can occur through indefinite scalability in either adaptive success per component
or system complexity, or both.

The above reasoning follows only for the case of complexity equating to diversity of adap-
tive components (in the system or per entity). It would be perfectly reasonable to use al-
ternative complexity metrics, and to then ask such questions as under what conditions do
OEE systems exhibit indefinitely scalability in those measures of entity complexity. Likewise
it is reasonable to ask under what conditions do OEE systems evolve (increasingly) inter-
esting, surprising (not predictable) or impressive artifacts and behaviors [19]. Complexity
metrics include simple counts of the number of bases (genome size), genes, cell types, neu-
rons, synapses, species and behaviors; and measures of information content, again genetic,
cellular, neural (for example [29]), ecological and behavioral.

4 Evaluating Indefinite Scalability in Geb

This work investigates whether or not the observed maximum complexity of any individual
is indefinitely scalable in Geb [7-9], where an individual’s complexity is measured as the
diversity of components in it. Note that if the diversity of components in an individual is
indefinitely scalable, then so is the diversity of components in the system, so the question of
which subclass (a, b or ¢) Geb is in is also being addressed.

As in previous work analyzing Geb’s long-term evolutionary dynamics, a component is,
in loose terms, an active gene: a gene involved in the agent’s neural development; see [9]
for details. So, here, an individual’s complexity is measured as the number of different genes
involved in its neural development.

Two parameters cause diversity to be bounded in Geb: 1. a limit on the maximum number
of neurons an agent can have; and 2. the 2D world’s length L, as there can be at most
L? individuals in the population at any one time. These are the two parameters that are
scaled. Results are reported below for world lengths 10, 20 (the original system’s value for
this parameter), 40 and 80; and with the maximum numbers of neurons per individual set
at 20 (the original system’s value for that parameter), 40, 80 and 160. These ranges avoid
edge effects that arise from smaller values of these parameters. 20 runs were carried out for
each combination (value pair) of these parameters, and the average (over 20 runs) maximum
individual complexity recorded and graphed using a running average of length 100 to reveal
underlying trends.

5 Results and Analysis

The basic plots of maximum individual complexity against time indicate that maximum indi-
vidual complexity may be asymptotically bounded when scaling just the maximum number
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of neurons per individual together, through their common dependence on the variable scale
graphed on the x-axis, as indicated in the legend. Error bars show 95% confidence intervals
based on the replicate populations. Shown with linear-fit model and 95% confidence regions
for the regression fit.

of neurons per individual (figure 1). Likewise, maximum individual complexity appears to be
asymptotically bounded when scaling just world length (figure 2).

Figure 3 gives the first indication that maximum individual complexity may be indefinitely
scalable, i.e. scalable to the extent evaluated so far (with runtimes in years and billions of
reproductions per run), when scaling both the maximum number of neurons per individual
and world length together.

Figure 4 demonstrates this more conclusively. It shows maximum individual complexity
averaged over time steps 2 million to 3 million and over 20 runs, with world lengths scaling in
conjunction with the maximum number of neurons per individual as shown. The fitted lines
are the result of linear regression on the logarithm of scale (see horizontal axes), with re-
sulting R?=0.855, F} 53=341, P<10~1 (top: world length=20%scale); R2=0.794, F} 7s=301,
P<1071 (middle: world length=20%*scale/2); and R*=0.741, F} 53=166, P<10~'° (bottom:
world length=20%*scale/4).

The simplest function of two variables (z and y) that is bounded when each is increased
alone but unbounded when both are increased together is min(z,y): the minimum (lower)
of the two values. The function softmin(z,y) = —log(e™* + e~¥) is a smooth approximation
to this. It is bounded within [min(z,y) — log(2), min(z,y)).

Figure 5 confirms that maximum individual complexity is asymptotically bounded when
scaling just the maximum number of neurons per individual. At each constant world length,
the observed maximum individual complexities are fitted very closely by the model a + b
softmin(lw,lm), where a and b are the regression parameters, lw = log(worldlength) and
Im = log(maxneurons). That complexity is bounded when scaling just the maximum number

10



Maximum individual complexity

Maximum individual complexity

e World length = 80
= World length = 40
¢ World length = 20
4 World length = 10

8 — softmin fit
— softmin fit
6 — softmin fit
softmin fit
4
2
0
20 40 80 160

Maximum number of neurons

Figure 5: Bounded maximum individual complexity (averaged over time steps 2 million to
3 million of 20 runs) when scaling just the maximum number of neurons per individual (at
different world lengths). Error bars show 95% confidence intervals based on the replicate
populations. Shown with softmin-fit model.
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Figure 7: Indefinite scalability of maximum individual complexity (averaged over time steps
2 million to 3 million of 20 runs) when scaling both world length and maximum number of
neurons per individual, together. Shown with softmin-fit model. The softmin-fit curves are
indistinguishable (to the human eye) from the those of the linear-fit model (figure 4).

of neurons per individual rules out the possibility that the key finding (that complexity is in-
definitely scalable when scaling both the maximum number of neurons per individual and the
maximum population size, together) is due to increases in this resource constraint allowing
for drift to increasing levels of noise in the neural development process and so to unbounded
individual complexity (number of different genes involved in neural development).

Figure 6 confirms that maximum individual complexity is asymptotically bounded when
scaling just world length. At each constant maximum-number-of-neurons, the results are
fitted very closely by the model b x softmin(lw + ¢,im), where b and c are the regression
parameters. That complexity is bounded when scaling just maximum population size (world
length squared) rules out the possibility that the key finding is due to increasing the sample
size over which maximum individual complexity is measured.

Figure 7 shows that when scaling both the maximum number of neurons per individual
and world length, together, maximum individual complexity is again closely fitted (residual
standard error and R? equal to those from the linear model above, to at least eleven significant
figures) by the model a + b * softmin(lw,lm), which is unbounded. Unsurprisingly this
resembles the linear model very closely: softmin(x,y) = x — log(2) when y = z and in the
more general case y = ¢ * = (for some constant ¢ within (0, 1]) softmin(x,y) is bounded
within [y — log(2), y) and can be empirically shown to be within y * (1 — 1075, 1) for x > 20,
y>1landc < % Indeed, the linear and softmin regression curves are indistinguishable to
the human eye.
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6 Conclusions and Discussion

According to this analysis, the only bounds to complexity and diversity are time and com-
puter memory (similar to nature) and, taking this finding in combination with those from the
analysis of evolutionary activity in [9], Geb is in subclass c.

The order of complexity growth has significant implications for the prospects of achieving
complex results from an open-ended evolutionary system within feasible timescales. The anal-
ysis above shows that, in Geb, maximum individual complexity scales logarithmically with
(the lower of) maximum population size and maximum number of neurons per individual.
This would be sufficient for achieving the evolution of more complex artifacts and behaviors
(arising from evolutionary changes rather than from a very small number of mutations from
a hard-coded ancestor) than have been seen (evidenced by phenotypes rather than by met-
rics) to date. It would also be sufficient to achieve non-trivial long (evolutionary) sequences of
evolved artifacts or behaviors. Again, we have not seen these yet, evidenced by phenotypes
evolved within an ALife system. In terms of these two goals, Geb is lacking in its behav-
ioral transparency, preventing the direct observation of artifacts and behaviors much beyond
those noted in section 2.2, as discussed in [9]. This highlights the need to develop future
systems such that behavioral descriptions are as easy to generate as possible, for example by
constructing systems such that behaviors will be transparent to human observers.

The evolution of artifacts and behaviors of much greater complexity, for example compa-
rable to those in nature, within feasible timescales, will almost certainly require a higher order
of complexity scaling. How to achieve this is an open question. Perhaps the most promising
line of thought here relates to establishing the requirements for evolution to itself generate
(perhaps an open sequence of) major transitions. Following its very earliest phases, our uni-
verse has evolved from a sparse fog of hydrogen and helium atoms. Its history includes the
emergence of complex molecules, replicators, single- and multicellular life, brains, sociality,
users and manufacturers of simple and compound tools, cultural learning and technology, to
highlight just a few of the major transitions [2, table 1]. Aunger divides big history into four
eras: material, biological, cultural and technological [3, table 2]. Some evolutionary innova-
tions increase the evolvability (capacity for adaptive evolution) of their lineages [25]. It is not
computationally feasible (even if we knew how) for an OEE simulation to start from a sparse
fog of hydrogen and helium and transition to a biological-level era, so it is clearly necessary to
skip over or engineer in at least some complex features that arose through major transitions
in our universe. Geb can be used as an example to inform decisions about engineering in such
features, through its demonstration of a feature set that is sufficient for achieving open-ended
evolutionary dynamics and indefinitely scalable complexity.
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