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AbstrAct
Objectives
To develop and validate a prediction model for fat 
mass in children aged 4-15 years using routinely 
available risk factors of height, weight, and 
demographic information without the need for more 
complex forms of assessment.
Design
Individual participant data meta-analysis.
setting
Four population based cross sectional studies and a 
fifth study for external validation, United Kingdom.
ParticiPants
A pooled derivation dataset (four studies) of 2375 
children and an external validation dataset of 176 
children with complete data on anthropometric 
measurements and deuterium dilution assessments 
of fat mass.
Main OutcOMe Measure
Multivariable linear regression analysis, using 
backwards selection for inclusion of predictor 
variables and allowing non-linear relations, was 
used to develop a prediction model for fat-free mass 
(and subsequently fat mass by subtracting resulting 
estimates from weight) based on the four studies. 
Internal validation and then internal-external cross 
validation were used to examine overfitting and 
generalisability of the model’s predictive performance 
within the four development studies; external 
validation followed using the fifth dataset.

results
Model derivation was based on a multi-ethnic 
population of 2375 children (47.8% boys, n=1136) 
aged 4-15 years. The final model containing predictor 
variables of height, weight, age, sex, and ethnicity 
had extremely high predictive ability (optimism 
adjusted R2: 94.8%, 95% confidence interval 94.4% 
to 95.2%) with excellent calibration of observed and 
predicted values. The internal validation showed 
minimal overfitting and good model generalisability, 
with excellent calibration and predictive performance. 
External validation in 176 children aged 11-12 years 
showed promising generalisability of the model (R2: 
90.0%, 95% confidence interval 87.2% to 92.8%) 
with good calibration of observed and predicted fat 
mass (slope: 1.02, 95% confidence interval 0.97 to 
1.07). The mean difference between observed and 
predicted fat mass was −1.29 kg (95% confidence 
interval −1.62 to −0.96 kg).
cOnclusiOn
The developed model accurately predicted levels 
of fat mass in children aged 4-15 years. The 
prediction model is based on simple anthropometric 
measures without the need for more complex forms 
of assessment and could improve the accuracy of 
assessments for body fatness in children (compared 
with those provided by body mass index) for effective 
surveillance, prevention, and management of clinical 
and public health obesity. 

Introduction
With the increasing prevalence of obesity in children 
globally,1 such as in the United Kingdom, where about 
one third of children aged 2-15 years are overweight 
or obese,2 high body fatness in childhood represents 
a serious public health problem. High levels of body 
fatness in childhood have been associated with both 
overweight and obesity and increased risks of non-
communicable diseases in adulthood—notably type 2 
diabetes and cardiovascular diseases.3-7

Accurate and practical methods for quantifying 
body fatness in children are essential for effective 
monitoring, prevention, and management of high 
body fatness, overweight, and obesity in childhood.8 9 
Body mass index (BMI), the most widely used marker 
of childhood body fatness in clinical and public 
health practice, has serious limitations as a marker 
of body fatness in children.9-11 Firstly, as a weight 
based measure, it does not discriminate between 
lean (fat-free mass) and fat mass, which can vary 
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WhAt Is AlreAdy knoWn on thIs topIc
Body mass index (BMI), the most widely used marker of body fatness, has 
serious limitations, particularly in children
As a weight based measure, BMI does not discriminate between lean and 
fat mass, which can vary greatly in those with a given BMI and might relate 
differently to risk of cardiometabolic disease
More accurate simple methods, based on routinely available measurements, are 
needed to improve the assessment of body fatness in childhood

WhAt thIs study Adds
A newly developed and validated prediction model to estimate fat mass levels 
in UK children aged 4-15 years allows for accurate discrimination of lean and fat 
mass
The equation is based on readily available markers of height, weight, age, sex, 
and ethnic group (when available), without the need for more costly forms of 
assessment
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substantially in those with a given BMI.10 Secondly, 
height squared provides poor height standardisation 
of weight in children—a higher power is needed to 
obtain height standardisation.12-14 Finally, BMI 
in childhood is not a consistent marker of body 
fatness across different ethnic groups. In the UK 
and the United States, BMI has been shown to 
overestimate body fatness in black African children 
and underestimate body fatness in children of Asian 
origin.15-19 Similar problems have been reported in 
other settings; BMI under estimates body fatness in 
South Asian girls and over estimates body fatness in 
Pacific Island girls in New Zealand.20

Although imaging (by dual energy x ray 
absorptiometry or magnetic resonance imaging), 
densitometric, and isotope dilution methods are 
available and accurate, they are unsuitable for routine 
clinical or public health assessment of body fatness.11 21 
Simple methods for body fatness assessment, based on 
routinely available measurements (particularly weight 
and height) and valid in a range of populations would 
be of considerable value.

We examined whether weight and height as opposed 
to BMI could provide more accurate assessments of fat 
mass, particularly using prediction methods that have 
shown promise in estimating disease risks.22-24

We report on the development and validation of a 
prediction model to estimate fat mass accurately in UK 
children aged 4-15 years of different ethnic origins, 
based on weight, height, and routinely available basic 
demographic information.

Methods
Data sources and study population
For this investigation we pooled data from four cross 
sectional studies for the development of a prediction 
model, with a fifth study (not available at the time of 
model derivation) for external validation. All studies 
included data on weight, height, and reference 
standard body fatness assessments based on the 
deuterium dilution method.

Derivation data
Data from four separate cross sectional studies17 25-27 
(supplementary table 1), identified as the four available 
UK population based studies, which contained 
deuterium dilution measurements together with weight 
and height measurements in more than 200 children 
aged 4-15 years, were obtained and pooled for analysis 
(n=2375). Each of these studies used a similar protocol 
when conducting the deuterium dilution method to 
measure total body water (and indirectly fat mass), 
as described elsewhere.15 Three of the four studies 
included multi-ethnic populations; assessment of 
ethnicity was based on a combination of self reported 
parental information on parental ethnicity17 and 
child ethnicity,17 26 27 with self reported participant 
information on ethnicity for older children.25 26 Ethnic 
group categories were based on the 2001 UK census 
(supplementary table 1).

external validation data
Data from a smaller separate UK cross sectional 
study at the 11 year follow-up visit within the Avon 
Longitudinal Study of Parents and Children (ALSPAC)28 
were obtained for external validation. ALSPAC is a birth 
cohort study containing detailed assessments from 
predominantly white children born in the Bristol area 
between April 1991 and December 1992, including 
information on height, weight, sex, ethnicity, and 
age. At the 11 year follow-up visit, a subsample of 
the cohort (stratified by sex and BMI to represent the 
whole cohort) was recruited to participate in a further 
study that involved assessment of fat mass using the 
deuterium dilution method alongside measures of 
height and weight taken simultaneously.29 Ethnicity 
was based on a combination of self reported parental 
information on parental ethnicity.

Defining the outcome of prediction models
Our primary aim was to develop a model for predicting 
fat mass in childhood, which could be estimated 
directly or indirectly (by predicting fat-free mass 
from models and then subtracting resulting estimates 
from known weight) based on deuterium dilution 
measurements. Firstly, we investigated the potential for 
modelling fat mass directly or indirectly by examining 
the distributions of fat mass and fat-free mass in 
relation to height (one of the strongest predictors of 
body composition) in boys and girls separately. This 
showed that a regression model for fat-free mass 
better met the assumptions of linear regression (more 
details in Appendix 1). The distribution of fat-free 
mass (both in boys and girls separately and combined) 
was positively skewed (supplementary figure 1) and 
showed increased heterogeneity with increases in 
height and weight. Fat-free mass, transformed using 
natural logarithms, was therefore the outcome in the 
main analyses.

candidate predictors
In the model development stage, we considered 
weight, height, age, sex, and ethnic group as 
candidate predictors (variables). Our derivation 
data, once restricted to those with fat-free mass or 
fat mass assessment, had no missing data on any of 
the candidate predictors. The sample size of 2375 
participants meant that the number of candidate 
predictors being considered (along with non-linear 
terms) far exceeded both the minimum 10 people per 
candidate predictor rule of thumb30 and the minimum 
sample size requirements for prediction models 
proposed elsewhere.31 Ethnicity was based on self 
reported parental information on parental ethnicity. 
For the present analyses, we categorised child ethnicity 
as white (European origin), black (black children of 
African and Caribbean descent), South Asian (children 
of Indian, Pakistani, Bangladeshi, and Sri Lankan 
descent), other Asian (predominantly East Asian 
origins), and other (predominantly mixed ethnicity) 
groups.
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statistical analysis for model development
Stata v14 was used for all analyses. We followed the 
TRIPOD (transparent reporting of a multivariable 
model for individual prognosis or diagnosis) guidance 
for development and reporting of multivariable 
prediction models.32 To avoid data splitting we used 
all four available studies for model development.33 A 
linear regression was used with the natural logarithm 
of fat-free mass as the outcome, and weight, height, 
age, sex, and ethnic group as candidate predictors 
(variables). Using a stepwise approach through 
backwards elimination, beginning with a model 
that included all predictors, we excluded candidate 
predictors from the saturated model based on their 
statistical significance (Wald test P>0.05). Non-linear 
relations between outcome and continuous predictors 
were considered by identifying, at each iterative step 
of the stepwise process, the best fitting fractional 
polynomial terms34 35 (using Stata command mfp36). 
This model development process led to a final model 
for the prediction of natural logarithm of fat-free mass 
(and subsequently for fat mass=weight−exp(prediction 
of natural logarithm of fat-free mass)) based on the 
selected predictors along with their corresponding 
estimated β coefficients and the associated intercept 
term. Although heterogeneity and clustering of patients 
across or within studies was not considered for model 
development, we checked the impact of this using an 
internal-external validation approach.

Model performance and internal validation
The performance of the final model was assessed using 
several approaches:

•	 R2—proportion of the variance in natural logarithm 
of fat-free mass explained by the included 
predictors

•	 Root mean square error (RMSE)—the average 
difference between the predicted and observed 
values. The RMSE of fat mass predictions was also 
assessed overall and within subgroups for age, 
ethnicity, and sex

•	 Calibration slope—based on model regressing 
observed on predicted values of natural logarithm 
of fat-free mass (with a slope of 1 being ideal)

•	 Calibration-in-the-large—intercept term from the 
model regressing observed on predicted values 
of natural logarithm of fat-free mass (with an 
intercept of 0 being ideal)

•	 Comparing mean observed with mean predicted 
values of natural logarithm of fat-free mass. 

Calibration was also assessed graphically by 
displaying fat-free mass and fat mass on a calibration 
plot with a local regression (loess) smoother fitted 
across all children

We carried out internal validation to estimate 
optimism (the level of model overfitting)32 and 
correct measures of predictive performance (R2, 
calibration slope, and calibration-in-the-large) for 
model overfitting by bootstrapping32 1000 samples 
of the derivation data (with replacement). The entire 

variable selection process, including the choosing of 
the fractional polynomial terms, was repeated within 
the model development for each of the 1000 bootstrap 
samples. This led to a set of 1000 bootstrap models 
that were derived using the same methods as in our 
original model development. We then applied each 
of these bootstrap sample models within the original 
dataset to estimate optimism in the performance 
statistics (difference in test performance and apparent 
bootstrap performance) of R2, calibration slope, 
and calibration-in-the-large (see Appendix 2 for 
further details), referred to as adjusted R2, adjusted 
calibration slope, and adjusted calibration-in-the-
large, respectively. To adjust for optimism after model 
development, we obtained estimates of a uniform 
shrinkage factor (the average calibration slope from 
each of the bootstrap samples) and multiplied these 
by the original β coefficients to obtain optimism 
adjusted coefficients.32 37 At this stage, we re-estimated 
the intercept of the model based on the adjusted 
coefficients to maintain overall model calibration,32 
producing a final model.

internal-external validation
It is important to examine the generalisability of 
a prediction model developed using the process 
discussed. Owing to the limited availability of 
appropriate external datasets, we conducted 
internal-external validation38 39 to further assess the 
performance of the derived model. This internal-
external approach38  39 involved cross validation, 
omitting one of each of the four studies in turn from 
the development dataset, and developing a model 
within the remaining three datasets. The following 
three steps were undertaken: (1) using the same model 
development strategy, we developed a model on three 
of the four studies and obtained the β coefficients from 
the model predicting natural logarithm of fat-free mass; 
(2) the predictive performance of the model from the 
first step was then assessed (overall and within sex and 
ethnic groups) within the fourth external validation 
study data in terms of accuracy of predicted fat mass 
(the primary outcome) by means of the calibration 
slope, calibration-in-the-large, and the R2 measures; 
and (3) we repeated the first two steps until we had 
assessed external validation for each of the four studies.

We assessed overfitting in each round of the cross 
validation and obtained a uniform shrinkage factor,37 
which was applied to the β coefficients from step 1. 
Calibration slope, calibration-in-the-large, and R2 
measures derived from this procedure for each of the 
studies were then pooled and estimated via a random 
effects meta-analysis to assess the heterogeneity across 
studies (with the τ2 statistic estimated using the Mantel-
Haenszel method). The variance of R2 was estimated 
using the Wald type method outlined previously40 and 
used to pool the values.

external validation
We applied our final prediction model to each 
participant in the external validation dataset based on 
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his or her respective predictor values. In a small number 
of children with missing ethnicity, we reclassified 
missing ethnicity data as white to produce an estimate 
of fat mass. The performance of the model for predicting 
fat mass, by sex and overall, was assessed using the 
calibration slope, calibration-in-the-large, R2, and 
RMSE and by comparing mean observed values with 
mean predicted values. We also assessed the overall 
calibration of the model graphically in terms of fat mass 
by plotting agreement between predicted and observed 
values across 10ths of predicted values. Finally, we re-
estimated the intercept term from the final model for the 
external data to maintain the calibration of the model 
and reassessed the performance statistics.

Patient and public involvement
No patients were involved in setting the research 
question or the outcome measures, nor were they 
involved in the study design or implementation. No 
patients were involved in the interpretation or writing 
up of results. There are no plans to disseminate the 
results of the research to study participants or the 
relevant patient community.

results
study population
The pooled derivation dataset (four studies) included 
2375 children, predominantly of white (37.3%, 
n=885), black (23.3%, n=553), and South Asian 
(24.7%, n=586) ethnicity, aged 4.0-15.9 years (median 
age 9.6 years, 47.8% (n=1136) boys) with complete 
information on anthropometric, demographic, and 
body fatness measurements (table 1). The external 
validation dataset included 176 children predominantly 
of white ethnicity and aged 11-12 years (47.7% boys, 
n=84), with complete data on anthropometric and 
body fatness measurements and missing data on 
ethnicity in a small number of children (<10%). For 
the pooled derivation dataset, the distribution of age 
within each of the four individual studies varied—one 
study contained children across the full age range 
(albeit children of only white ethnic origin), whereas 

the other three studies each contained a restricted age 
range, but with noticeable ethnic diversity.

Model development and apparent performance
The final multivariable model included all five 
candidate predictors of height, weight, age, sex, and 
ethnic group (ie, none were excluded). Fractional 
polynomial terms for the continuous predictors 
(height, weight, and age) were included in the final 
model to allow for non-linear relations (table 2). 
The model showed excellent apparent predictive 
performance for natural logarithm of fat-free mass 
(table 3; R2=94.8%, RMSE=0.068) and was perfectly 
calibrated in the development data (apparent slope=1, 
apparent calibration-in-the-large=0). This is confirmed 
by the calibration plot, assessing agreement between 
observed and predicted fat-free mass and fat mass 
(fig 1). The difference between the mean observed and 
mean predicted values of natural logarithm of fat-free 
mass was zero. The RMSE values for fat mass were 2.0 
kg in girls and 1.9 kg in boys and ranged between 0.9 
kg and 3.3 kg within the one year age groups. Within 
ethnic groups, the RMSE ranged between 1.7 kg among 
South Asian children and 2.4 kg among black children.

Model validation
Internal validation
Bootstrap internal validation showed little model 
overfitting, which was reflected in the similar apparent 
and optimism adjusted performance statistics 
(table  3). After we had adjusted for overfitting, the 
final prediction model maintained a high proportion 
of the variance in natural logarithm of fat-free mass 
with an adjusted R2 value of 94.8%. The bootstrapping 
approach provided a shrinkage factor of practically 1 
(ie, there was no important overfitting, with the mean 
calibration slope equal to 1 from the bootstrap models 
when tested in the original data). We also calculated 
the uniform shrinkage factors suggested previously,37 
and this gave a value of 0.99858, again close to 1. 
We chose to use this method because it was slightly 
smaller than the bootstrap value, which was applied 

table 1 | characteristics of participants within derivation and validation datasets. values are median (interquartile range) unless stated otherwise

characteristics
Derivation dataset* validation dataset (alsPac subsample)  

(n=176)abcc (n=1027) elbi (n=382) rc (n=369) slic (n=597) Overall (n=2375)
Age (years) 9.3 (8.7-9.7) 13.3 (12.4-14.3) 11.1 (8.5-13.1) 8.5 (7.1-10.1) 9.6 (8.6-11.1) 11.8 (11.8-12.0)
Height (m) 1.4 (1.3-1.4) 1.6 (1.5-1.6) 1.5 (1.3-1.6) 1.3 (1.2-1.4) 1.4 (1.3-1.5) 1.5 (1.5-1.6)
Weight (kg) 31.6 (27.3-38.1) 47.3 (39.2-58.8) 37.2 (27.4-48.5) 30.3 (24.2-40.1) 33.9 (27.4-43.8) 43.3 (37.2-50.2)
Fat mass (kg)† 8.5 (6.2-12.8) 10.4 (7.0-16.6) 7.8 (4.9-12.5) 7.4 (4.7-12.2) 8.4 (5.8-13.2) 9.5 (6.6-13.5)
Fat-free mass (kg)† 22.9 (20.4-25.9) 35.4 (30.4-43.3) 28.4 (21.9-36.3) 22.7 (18.7-27.9) 24.8 (20.8-30.6) 33.8 (29.8-37.4)
Boys (No (%)) 490 (47.7) 182 (48) 180 (49) 284 (47.6) 1136 (47.8) 84 (48)
Ethnic group (No (%))‡:
 White 290 (28.2) 91 (24) 369 (100) 135 (22.6) 885 (37.3) 161 (91)
 Black 252 (24.5) 119 (31) 0 (0) 182 (30.5) 553 (23.3) -
 South Asian 325 (31.6) 120 (31) 0 (0) 141 (23.6) 586 (24.7) -
 Other Asian 46 (4.5) 44 (12) 0 (0) 22 (3.7) 112 (4.7) -
 Other/missing 114 (11.1) 8 (2) 0 (0) 117 (19.6) 239 (10.1) 15 (9)
ABCC=Assessment of Body Composition in Children study; ELBI=East London Bioelectrical Impedance; RC=Reference Child; SLIC=Size and Lung function in Children study; ALSPAC=Avon 
Longitudinal Study of Parents and Children.
*No missing data.
†Assessed using deuterium dilution method.
‡Information on ethnic group was missing on a small number of children in the validation dataset.
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to the original β coefficients from the model to obtain 
optimism adjusted coefficients before re-estimation 
of the intercept term. Box 1 shows the prediction 
equation for the estimation of fat mass in children aged 
4-15 years, with examples of how to calculate fat mass 
using the equation.

Internal-external validation
Using the cross validation approach, we developed 
a model in each of the three studies and applied 
this within the fourth study. Assessments of model 
overfitting showed low levels of optimism at each 
round of cross validation (shrinkage factor=0.998 for 
each round). Within each of the studies being used as 
a validation dataset, after adjusting for optimism, the 
calibration slopes were close to 1 and the calibration-
in-the-large values were close to 0, suggesting 
excellent model calibration in each of these four study 
populations (fig 2, supplementary table 2).

The pooled calibration slopes and calibration-in-
the-large values across the four studies for fat mass 
were 1.00 (95% confidence interval 0.95 to 1.04) and 
−0.29 (−0.83 to 0.25), respectively, suggesting that, on 
average across the four populations, the model is likely 
to calibrate well. The pooled R2 value for fat mass was 
89.7% (95% confidence interval 87.8% to 91.7%), 
which indicates that the model, on average, explains 
a high proportion of the variance in fat mass. The τ2 
values for the calibration slope, calibration-in-the-
large, and R2 measures were 0.002, 0.267, and 0.0004, 
respectively, suggesting little heterogeneity across the 
four populations. The calibration slopes and calibration-
in-the-large values within sex and ethnic groups showed 
good calibration for all subgroups during each round of 
cross validation, suggesting that the final model is likely 
to calibrate well for children of both sexes and each 
ethnic group (supplementary figures 2 and 3).

external validation
We applied our final prediction model (box 1) to the 
independent population of children aged 11-12 
years, reclassifying the small number of children with 

missing information on ethnicity as being from the 
white reference group. The resulting R2 value from the 
model was 90.0% (95% confidence interval 87.2% 
to 92.8%), with a moderate RMSE of 2.6 kg, and the 
model had average calibration in terms of fat mass 
(fig 3); with a slope of 1.02 (95% confidence interval 
0.97 to 1.07) and calibration-in-the-large of −1.58 kg 
(95% confidence interval −2.29 to −0.86 kg) (table 4). 
The mean difference between observed and predicted 
fat mass was −1.29 kg (95% confidence interval −1.62 
to −0.96 kg). The final model was observed to perform 
better in girls than in boys (table 4). After recalibration 
of the intercept, the R2 value from the model was 90.0% 
(95% confidence interval 87.1% to 92.8%), with a 
RMSE of 2.4 kg, and the model had a calibration slope 
of 1.06 (95% confidence interval 1.01 to 1.11) and 
calibration-in-the-large of 0.21 kg (95% confidence 
interval −0.42 to 0.85 kg).

sensitivity analyses
In our final model, we tested and found two-way 
interactions between sex and weight and sex and age 
(along with their appropriate non-linear fractional 
polynomial terms) to be statistically significant at the 
5% level. However, inclusion of additional terms for 
sex×weight and sex×age did not improve the apparent 
performance of the model (R2=94.9%, RMSE=0.068), 
with little difference between the Akaike’s Information 
Criterion (compares the relative quality of a set of 
statistical models for a given dataset) from models 
including and excluding these terms. Therefore, these 
interaction terms were not added to the previously 
described prediction model.

We also used two approaches to investigate the 
use of the proposed model to estimate fat mass in 
childhood when ethnic origins were unknown—
omitting ethnic group as a predictor from the model, 
and treating children of unknown ethnic origin as 
being white (reference group) for fat mass predictions. 
Both approaches were carried out and compared using 
an internal-external validation approach. Fat mass 
predictions from both approaches had similar levels 

table 2 | Final multivariable analysis model in derivation dataset and optimism adjusted β coefficients
variable Developed model: coefficients (95% ci) Final model coefficients after adjusting for overfitting
Height2 (m) 0.308 (0.289 to 0.327) 0.307
(Weight/10)−1 (kg) −1.003 (−1.090 to −0.916) −1.002
Weight/10 (kg) 0.046 (0.040 to 0.052) 0.046
Ethnicity:
 White Reference Reference
 Black 0.014 (0.007 to 0.022) 0.014
 South Asian −0.065 (−0.072 to −0.058) −0.065
 Other Asian −0.026 (−0.040 to −0.013) −0.026
 Other −0.017 (−0.027 to −0.008) −0.017
ln(age/10) (years) −0.919 (−1.086 to −0.753) −0.918
(Age/10)0.5 (years) 2.055 (1.708 to 2.401) 2.052
Sex:
 Girls Reference Reference
 Boys 0.047 (0.042 to 0.053) 0.047
Constant* 0.692 (0.373 to 1.011) 0.691
ln=natural logarithmic transformation.
Outcome of model was ln(fat-free mass).
*Constant term was re-estimated after adjustment for optimism (shrinkage factor=0.99858) to uphold overall model calibration.
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of bias when compared with observed fat mass values, 
suggesting that children of unknown ethnic origins can 
be treated as white with little effect on the predictive 
performance.

Finally, to investigate the direct approach 
of predicting fat mass, we repeated the model 
development strategy using the natural logarithm of 
fat-free mass as the primary outcome. The apparent 

performance of this model (R2=83.4%) was much less 
favourable than the performances of the main analyses 
using the natural logarithm of fat-free mass as the 
primary outcome.

discussion
We developed a new prediction equation, based on 
readily available measures of height, weight, age, sex, 
and ethnic group, to estimate fat mass levels (kg) for 
children aged 4-15 years using a large representative 
sample from the UK. We then validated the model 
both internally and externally—firstly using a cross 
validation approach within the derivation population 
and then within an independent dataset of children 
aged 11-12 years. Both overall and within age, sex, 
and ethnic subgroups, the developed model showed 
high predictive ability, with excellent calibration; low 
individual error, with root mean square error (RMSE) 
values less than 3.3 kg; and useful R2 values greater 
than 88% from the derivation, cross validation, 
and external validation datasets. The average 
individual error associated with the predictions in the 
independent dataset was low, with a RMSE of 2.6 kg.

comparison with other studies
To our knowledge, few previous studies have 
developed and validated prediction models to 
estimate fat mass in children and adolescents based 
solely on weight, height, and demographic factors.41 
Most previously derived models for this purpose 
have focused on older children and adolescents from 
the United States with body fatness assessed using 
dual energy x ray absorptiometry.41-46 Moreover, 
modelling has predominantly been based on the 
prediction of percentages and not absolute values 
of body fatness, making it difficult to compare the 
predictive ability of models. The developed models, 
which have been shown to estimate the percentage 
of body fatness to a high level, with R2 values greater 
than 82%, have relied on additional measurements, 
including skinfold thickness, waist circumference, or 
bioelectrical impedance to estimate body fatness.42-46 
However, a previously developed model in 12-20 
year-olds in the US included the same predictors as 
in our final model, of height and weight (in the form 
of a fractional polynomial non-linear term of body 
mass index, BMI) as well as sex, age, and ethnicity to 
estimate the percentage of body fatness.41 That model 
performed well, explaining a high proportion of the 
variance in body fatness percentage (R2=79.4%). 
The RMSE was not presented, however, making 
direct comparisons of accuracy between the models 
difficult.
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Fig 1 | assessment of model calibration for fat-free mass and fat mass. the developed 
model for predicting natural logarithm of fat-free mass was used to derive estimates of 
fat-free mass and fat mass, which were each used to assess model calibration. broken 
orange line represents a lowess smoother through the data points, showing a linear 
relation between observed and predicted values of both fat-free mass and fat mass

table 3 | Model performance statistics based on internal validation
Measure apparent performance average optimism Optimism corrected
R2 (%) 94.83 (94.43 to 95.23) 0.03 94.80
Calibration slope (95% CI) 1.00 (0.99 to 1.01) 1.63×10−9 1.00 (0.99 to 1.01)
Calibration-in-the-large (95% CI) (kg) 0.00 (−0.03 to 0.03) −3.54×10−9 0.00 (−0.03 to 0.03)
Outcome of model was natural logarithm of fat-free mass.
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strengths and limitations of this study
This study has several strengths. The derivation dataset 
was sufficiently large, with complete information on 
candidate predictors for children with information on 
fat-free mass, allowing all of the candidate predictors 
to be tested along with their respective non-linear 
terms while adhering to the 10 people per candidate 
predictor rule of thumb.30 The wide age range of 4-15 
years, including a range of ethnic origins, allowed 
derivation of a robust model applicable to a wider target 
population, with consistent performance of the model 

across the range of age, sex, and ethnic groups. Data 
collection for all four derivation studies was completed 
during 2009-13 and should have continuing relevance, 
with no indication that the associations between fat-
free mass and its predictors have changed. We were 
able to identify an additional independent dataset for 
external validation, although with a narrower range of 
age and ethnicity. The model is based on simple and 
already widely measured predictors. The performance 
of the model is strong and allows discrimination 
between fat mass and fat-free mass both in the whole 
study population and in specific ethnic groups, 
offering potential advantages over the ethnic specific 
BMI adjustments that we reported previously,15 
particularly if earlier reports suggested that fat mass 
is more strongly associated with long term health 
outcomes than is BMI.47 Although the inclusion of non-
linear polynomial terms makes the derived algorithm 
appear complicated for practical use, these terms have 
been integrated into a simple MS Excel calculator 
(supplementary file). The derivation of the model was 
based on the reference standard deuterium dilution 
method, which provides accurate, safe, and minimally 
invasive measurements of total body water (and fat-
free mass) with an error of less than 1%.48 49 Although 
potential differences might occur in the assessment of 
total body water and hydration between ethnic groups, 
previous studies have suggested that the hydration of 
lean body mass is highly consistent between people50 
and that ethnic variations in the hydration of lean body 
mass are small.51 Moreover, the predictive ability of the 
final model is strong across the whole study population 
and does not differ appreciably between ethnic groups. 
The final prediction models should therefore be widely 
applicable within the UK population and might also be 

box 1: Final equation for prediction of fat mass in children aged 4-15 years

Fat mass=weight−exp[0.3073×height2−10.0155×weight−1+0.004571×weight+ 
0.01408×BA−0.06509×SA−0.02624×AO−0.01745×other−0.9180×ln(age)+ 
0.6488×age0.5+0.04723×male+2.8055]

•	exp=exponential function, ln=natural logarithmic transformation
•	Score 1 if child is of black (BA), south Asian (SA), other Asian (AO), or other (other) 

ethnic origins and score 0 if not
•	If child is of unknown ethnic group, treat as of white ethnic origins
•	Height is measured in metres, weight in kilograms, age in years, and fat mass in 

kilograms
•	Example 1
•	For a 6 year old white boy of height 1.4 m and weight 37 kg, fat mass would be 

estimated as:
•	=37−exp[0.3073×1.42−10.0155×37−1+0.004571×37+0.01408×0–0.06509×0–

0.02624×0–0.01745×0−0.9180×ln(6)+0.6488×60.5+0.04723×1+2.8055=37−
exp[3.2979]=37–27.0549=9.95 kg

•	Example 2
•	For a 12 year old black girl with a height of 1.6 m and a weight of 42 kg, fat mass would 

be estimated as:
•	=42−exp[0.3073×1.62−10.0155×42−1+0.004571×42+0.01408×1–0.06509×0–

0.02624×0–0.01745×0–0.9180×ln(12)+0.6488×120.5+0.04723×0+2.8055
•	=42−exp[3.5262]=42−33.9929=8.01 kg
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Fig 2 | assessment of calibration slope and calibration-in-the-large for fat mass and fat-free mass from internal-
external cross validation. calibration slopes and calibration-in-the-large (and respective 95% confidence intervals) 
were obtained by fitting the final model in three studies and assessing the external validity in terms of the slope 
and intercept for fat-free mass and fat mass in the data from the fourth study. this was repeated until each of the 
four studies had been used as a validation dataset. a random effects meta-analysis was used to obtain the pooled 
estimates (95% confidence intervals) along with the τ2 statistic for heterogeneity. also see supplementary table 2 
for data in tabular form. abcc=assessment of body composition in children study; elbi=east london bioelectrical 
impedance, rc=reference child, slic=size and lung function in children study
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applicable in a range of other populations, although 
separate validation studies will be needed before such 
application.

implications for clinicians and policymakers
The availability of a prediction model that can accurately 
assess fat mass in UK children has important potential 
implications for practice and policy. The model could 
be used to assess fat mass in individual children as a 
guide to clinical management, particularly when used 
as a height standardised indicator. The Excel calculator 
(supplementary file) would allow simple calculation of 
fat mass from the relevant predictor variables. An early 
application could be in the interpretation of routine 
surveillance of adiposity in children, particularly 
in the National Child Measurement Programme, in 
which all the parameters needed for the prediction 
model are routinely measured. This would allow direct 
assessment of geographical, ethnic, socioeconomic, 
and temporal variations in fat mass rather than reliance 
on weight based measures, which do not distinguish 
between fat mass and fat-free mass.

Further research
Future research should seek to obtain clear evidence 
on the benefits of this approach compared with 

conventional weight-for-height measures. It will also 
require the documentation of normal ranges for the 
relevant fat mass parameters in different age and sex 
groups and explore whether body fatness in childhood 
is more strongly associated than BMI with adult health 
outcomes, particularly the incidence of type 2 diabetes 
and cardiovascular disease. Finally, for international 
applications of the models, further validation in a 
range of different populations is needed.
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table 4 | external validation: model performance* statistics before recalibration of intercept in children aged 11-12 
years
Measure boys girls Overall
R2 (95% CI) (%) 87.9 (83.1 to 92.8) 91.6 (88.4 to 94.9) 90.0 (87.2 to 92.8)
Calibration slope (95% CI) 1.05 (0.97 to 1.14) 1.04 (0.97 to 1.10) 1.02 (0.97 to 1.07)
Calibration-in-the-large (95% CI) (kg) −1.38 (−2.41 to 0.36) −2.25 (−3.27 to −1.23) −1.58 (−2.29 to −0.86)
Statistics presented before intercept term were re-estimated for external data.
*Fat mass predictions.

Predicted fat mass (kg)

O
bs

er
ve

d 
fa

t m
as

s 
(k

g)

0 10 20 30 40 50
0

20

30

50

40

10

Fig 3 | calibration plot of mean observed against mean predicted values, across 10ths 
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points are mean predicted against mean observed fat mass within 10ths of predicted 
fat mass. individual level data points not shown for confidentiality reasons. broken 
orange line represents a local regression smoother through individual level data points. 
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