
Introduction
The	microbial	adaptive	immune	system	CRISPR	(clustered	regularly	interspaced	short	palindromic	repeats	(CRISPR)	offers	a	unique	and	highly	effective	toolbox	for	targeted	genomic	engineering,	providing	a	versatile	system

to	virtually	target	any	nucleic	acid	sequence	of	choice	with	the	sole	engineering	of	a	short	fragment	of	RNA.	In	a	seminal	paper	Jinek	et	alet	al.	proposed	to	harness	the	nuclease	power	of	the	type	IIA	CRISPR	system	of	Streptococcus

pyogenes	utilizing	a	single	CRISPR	associated	protein	(SpCas9)	and	a	single	sgRNA,	instead	of	the	two	RNAs	and	the	large	Cas	protein	complex	found	in	the	original	host	[1]	(Figure	2a).	Most	of	the	CRISPR	genome	editing	to	date	has

been	carried	out	with	the	type	II	nuclease	CRISPR	associated	protein	9	from	Streptococcus.	pyogenes	(SpCas9).	Redesigned	versions	were	also	generated	by	mutagenizing	the	key	residues	that	contribute	to	endonuclease	activity	[2]

and	 target	 specificity	 [3],	 by	 producing	 smaller	 protein	 variants	 [4]	 or	 assembling	 these	 into	 subunits	 to	 ease	 its	 delivery	 [5].	 Furthermore,	 an	 increasing	 number	 of	 Cas9	 orthologues	 and	 related	 effector	 proteins	 have	 been

characterised	from	diverse	bacterial	species,	some	of	which	exhibit	reduced	molecular	size	and	different	target	site	specificities	[6].	The	recently	characterised	type	II	CRISPR-associated	endonuclease	Cpf1,	also	called	‘Cas12a’,	for

instance,	shows	distinguishing	features	from	SpCas9.	Cpf1	requires	only	a	42-nt	CRISPR	RNA	(crRNA)	to	find	its	target	instead	of	the	∼100-nt	gRNA	for	SpCas9,	recognises	a	T-rich	protospacer-adjacent	motif	(PAM)	[7,8]	that	is	5′

instead	of	3′	of	the	target	site	(precisely	TTTV	for	Cpf1,	NGG	for	SpCas9),	has	intrinsic	RNase	activity	for	the	processing	of	multiple	crRNAs	from	a	single	transcript	[9,10]	and	makes	staggered	cuts	(5'′	overhang)	whilst	Cas9	makes

"blunt"‘blunt’	 cuts	 in	 the	genome	 [7].	CRISPR-associated	endonuclease	and	 related	gRNAs	can	work	heterologously	 in	most	 species	 to	produce	mutagenesis,	 gene	knockin/knockout	 and	 chromosome	deletion/translocations.	 If	 the

protein	 is	engineered	by	knocking	out	each	of	 its	 two	nickase	domains	 to	generate	 the	catalytically	 inert	proteins	 ‘dCas9’	and	 ‘dCpf1’,	 the	 sgRNA:dCas9	 (or	 sgRNA:dCpf1)	 complex	will	 remain	bound	 to	 its	double-stranded	DNA
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CRISPR-based	genome	editing	provides	a	simple	and	scalable	toolbox	for	a	variety	of	therapeutic	and	biotechnology	applications.	Whilst	the	fundamental	properties	of	CRISPR	proved	easily	transferable	from	the	native

prokaryotic	hosts	to	eukaryotic	and	multicellular	organisms,	the	tight	control	of	the	CRISPR-editing	activity	remains	a	major	challenge.	Here	we	summarise	recent	developments	of	CRISPR	and	riboswitch	technologies	and

recommend	novel	functionalised	synthetic-gRNA	(sgRNA)	designs	to	achieve	inducible	and	spatiotemporal	regulation	of	CRISPR-based	genetic	editors	in	response	to	cellular	or	extracellular	stimuli.	We	believe	that	future

advances	of	these	tools	will	have	major	implications	for	both	basic	and	applied	research,	spanning	from	fundamental	genetic	studies	and	synthetic	biology	to	genetic	editing	and	gene	therapy.
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(dsDNA)	substrate	[2].	As	many	other	DNA-binding	proteins,	such	as	the	popular	zinc	fingers,	sgRNA:dCas9	or	dCpf1	can	work	as	a	transcriptional	repressor	for	CRISPR	interfering	(CRISPRi)	without	further	engineering	[11,12]	or	by

adding	transcriptional	repression	domains	such	as	the	Krüppel	associated	box	(KRAB)	[13,14].	Deactivated	CRISPR-associated	endonucleases	can	be	engineered	to	function	as	transcriptional	activators	or	epigenetic	modifiers	other

than	being	utilized	for	high-resolution	genome	imagining	[15]	and	DNA/RNA	pull-down	[16].	Hereafter	we	will	refer	to	all	these	variants	as	CRISPR-editors.	At	least	in	theory,	it	is	possible	to	reprogram	CRISPR	specificity	to	recognizse

any	target	region	flanking	a	short	PAM	sequence	by	simply	providing	different	gRNA-spacers.	The	PAM	therefore	represents	the	sole	CRISPR-targetability	constraint,	which	has	been	shown	possible	to	broaden	by	mutating	the	PAM

interacting	domain	of	the	protein	[17,18].	These	findings	empowered	over	the	recent	years	a	vast	range	of	applications	from	basic	biology	to	biotechnology	and	medicine.	Nonetheless,	several	challenges	are	still	hampering	the	broad

applicability,	efficiency,	specificity	and	safety	of	CRISPR-editing	systems	(Figure	1).	Between	these,	the	precise	and	robust	spatiotemporal	control	of	the	nucleases	activity	which,	at	least	for	the	majority	of	the	current	designs,	relies

solely	upon	the	spatiotemporal	specificity	of	the	polymerase	II	promoter	used	to	transcribe	the	endonucleases	component	(generally	Cas9	or	Cpf1)	or	it	is	strictly	delivery-procedure	dependent	when	protein	or	RNA	are	directly	used	for

the	editing	[19].	Several	strategies	to	engineer	inducible	CRISPR	systems	have	been	proposed	over	the	recent	years	(some	of	these	are	summarised	in	Table	1).	In	the	following	we	will	focus	on	inducible	CRISPR	systems	based	on

riboswitch	regulation	by	giving	an	overview	of	the	existing	tools,	propose	new	designs	and	highlight	some	of	the	current	and	foreseen	applications.

Figure	1	Applications,	evaluation	criteria	and	challenges	of	CRISPR-mediated	editing.	(a)	Venn	diagram	showing	some	of	the	main	CRISPR	applications	in	human	health,	environment,	agriculture	and	biotech	and	evaluation	criteria	(outer	circle)	[94–96].	(b)

CRISPR-editing	challenges.	Target	site	selection:	target	site	and	PAM	specificity.	Spatiotemporal	activity:	e.g.for	example,	unexpected	leaky	expression	or	activity.	Resistance	to	cleavage:	pre-existing	polymorphisms	or	de	novode	novo	mutations	generated	by

end-joining	repairing	of	the	target.	Incidence	of	homology	directed	repair	(HDR)	versus	error	prone	non-homologous	end	joining	repair.	Off-targets:	promiscuous	cleavage	at	genomic	sequences	that	have	significant	similarity	to	the	target.	Delivery:

particularly	relevant	for	gene	therapy	applications	where	a	safe	and	efficient	delivery	of	the	CRISPR-editing	to	specific	tissues	and	cells	is	an	essential	requirement.	Confinement	and	containment:	physical,	reproductive,	ecological	or	molecular	barriers	to

limit	CRISPR-editing	to	the	target	organisms	o	species	[93,97,98].



Table	1	Inducible	CRISPR-editors.	 (Text	repeated)CRISPR-editors	can	be	designed	to	function	as:	endonucleases,	in	the	form	of	catalytically	active	Cas9/Cpf1;	transcriptional	activators	(e.g.	dCa9-VP64,	dCas9-SAM,

dCas9-Suntag,	dCas9-VPR)	generally	referred	as	CRISPRa	(CRISPR	activation);	transcriptional	repressors	(e.g.	dCas9	only	or	dCas9-KRAB)	also	defined	as	CRISPRi	(CRISPR	interfering);	DNA	or	histone	modifiers,	by

fusing	dCas9	or	dCpf1	proteins	to	histone	demethylases	(LSD1),	histone	acetyltransferases	(p300),	DNA	methyltransferases	(DNMT3a)	or	DNA	demethylases	(TET1)	[95,98,99]
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CRISPR-editors

Endonucleases,	activators,	repressors,	modifiers

Inducible	CRISPR	systems Regulation

Types Examples Exogenous Endogenous

Cis-regulatory	elements Promoters,	enhancers,	insulators	and	silencers	(polymerase	II
or	III	responsive)

RNA	transcript	interactions
(riboregulators)

ncRNA Biological Source

Riboswitches Synthetic	or	heterologous/pathogenic	RNA,	DNA,	proteins	(e.g.
transcription	factors)

RNA	(mRNA	or	ncRNA)
DNA,	proteins,	pH,	temperature

Toehold	switches

Switch-gRNA

Split	system Intein-mediated Chemical Type

Rapamycin-mediated Tissue/cell-specific
Cellular	state-specific
(e.g.	quiescent/active,	stress	response,
mutations)
Organism/specie-specific
(e.g.	vector-specific	for	gene	drive
applications)

Magnet-mediated Drugs,	small	molecules

Cryptochrome-mediated

Allosteric	system Conformational	change	of	Cas9/Cpf1

Combinatorial	system Dimerization Physical

Inducible	promoters	(tetracycline,	doxycycline,	etc.) Light,	pH,	temperature

Recombinase-inducible	(Cre)

Inhibitory	molecules Anti-Cas9	proteins

Anti-gRNA

gRNA	mimics

CRISPR-editors	can	be	designed	to	function	as:	endonucleases,	in	the	form	of	catalytically	active	Cas9/Cpf1;	transcriptional	activators,	generally	referred	as	CRISPRa	(CRISPR	activation)	e.g.,	for	example,	dCa9-VP64,

dCas9-SAM,	dCas9-Suntag,	dCas9-VPR;	transcriptional	repressors	or	CRISPRi	(CRISPR	interfering)	e.g.,	for	example,	dCas9	only	or	dCas9-KRAB;	DNA	or	histone	modifiers,	by	fusing	dCas9	or	dCpf1	proteins	to

histone	demethylases	(LSD1),	histone	acetyltransferases	(p300),	DNA	methyltransferases	(DNMT3a)	or	DNA	demethylases	(TET1)	[95,98,99].

Riboregulation	and	riboswitches:	current	designs	and	applications
Natural	and	synthetic	riboswitches

Riboswitches	are	structured	cis-regulatory	segments	of	RNA,	mostly	found	in	bacterial	messenger	RNAs	(mRNAs),	capable	of	modulating	the	gene’s	protein	product	in	response	to	small	molecules	such	as	specific	metabolites.

These	usually	consist	of	an	aptamer	domain	that	binds	with	high	specificity	and	affinity	to	a	target	ligand	and	transduces	the	binding	signal	into	a	gene	expression	output.	Numerous	RNA	aptamers	have	been	discovered,	showcasing

alt-text:	Figure	1



their	 intrinsic	ability	 to	tightly	and	selectively	recognise	specific	molecules	and	to	trigger	 ligand-dependent	gene	regulation	 in	bacteria,	plants	and	fungi	 [20].	Riboswitch	engineering	requires	computational	analysis	and	design	of

aptamers	that	recognise	xenobiotic	compounds	as	well	as	the	development	of	new	testing	platforms.	In	natural	riboswitches,	the	nucleotides	within	the	aptamer	domain	responsible	for	ligand	binding	tend	to	be	evolutionary	conserved

and	when	mutated	can	result	in	changed	ligand	specificity,	usually	by	altering	the	hydrogen-bonding	pattern	of	the	domain	responsible	for	ligand	recognition.	A	large	number	of	riboswitch	designs	are	indeed	inspired	by	nature:	first,

natural	purine	(guanine	and	adenine)	riboswitches	[21,22],	widely	used	to	engineer	orthogonal	gene	activation	or	repression	counterparts	to	generate	riboswitch-based	controllers	of	cell	behaviour	and	physiology	in	bacteria	[23,24];

second,	PreQ1	 riboswitches	 from	a	queuosine	precursor,	 involved	 in	 the	bacterial	 transfer	RNA	 (tRNA)	 function	 [25,26];	 third,	Fflavin	mononucleotide	 riboswitches	 from	Rroseoflavin,	a	natural	product	whose	antibacterial	activity

involves	the	targeting	of	riboswitches	[27].	Other	classes,	such	as	 the	cyclic	dinucleotide	riboswitches	 (cdiG)	were	 instead	 identified	by	bioinformatics	analysis	as	 for	 the	highly	conserved	RNA	structured	element	 found	upstream

‘GEMM	motif’	(genes	for	environment,	membranes	and	motility)	[28].

The	 dynamic	 response	 and	 the	 high	 affinity	 for	 target	 ligands	 make	 riboswitch	 aptamers	 particularly	 suitable	 to	 function	 as	 recognition	 domain	 for	 the	 development	 of	 RNA-based	 fluorescent	 biosensors	 [29].	 Here	 the

riboswitch	is	fused	to	a	transducer	module	that	activates	a	signaling	domain	after	 ligand	binding.	Between	these,	Spinach,	Spinach2	and	Broccoli	aptamers	have	been	widely	used	to	build	 ligand-responsive	biosensors	for	 live-cell

imaging	of	 target	metabolites	by	producing	a	 fluorescent	output	upon	addition	of	a	 substrate	 [29–31].	Besides	being	widely	used	 to	engineer	biochemical	 reporters	 (e.g.	 responsive	 to	Vvitamin	B12	[32]	 and	 other	 enzyme	 mutants

[33,34]),	biosensors	and	for	in	vivo	imaging	of	small	molecules,	riboswitches	have	also	been	engineered	to	interact	with	xenobiotic	molecules	to	control	gene	expression	in	a	wide	range	of	prokaryotic	microorganisms	(e.g.	Escherichia

coli,	 Acinetobacter	 baumannii,	 Bacillus	 subtilis,	 Mycobacterium	 smegmatis,	 Mycobacterium	 tuberculosis	 and	 other	 streptomyces	 and	 cyanobacterial	 species	 [35–40]),	 yeasts	 [41–44],	 fungi	 [45],	 plants	 [46]	 and	 mammalian	 cells	 [47,48].

Riboswitches	are	also	suitable	for	the	engineering	of	more	complex	regulations	through	the	implementation	of	biochemical	logic	gates	and	feedback	systems	[49–51].	RNA-based	biosensors	are	also	extensively	used	for	the	engineering

of	metabolic	pathways	to	optimise	the	production	of	small	molecules	such	as	industrial	and	fuel	compounds	[52],	or	for	the	sensing	of	intracellular	behaviours	and	environmental	conditions	[53].

RNA-responsive	riboswitches
Synthetic	trans-activating	RNAs,	generally	 called	 ‘riboregulators’,	 are	 one	 of	 the	 first	 examples	 of	 synthetic	 translational	 activators	 described	 to	 function	 as	 ligands.	 When	 added	 to	 the	 5’′-UTR	(untranslated	 regions)	 these

structures	can	be	used	to	control	gene	translation	by	relaxing	the	structural	blockade	of	hairpins	designed	to	cis-repress	ribosomal	binding	[54,55].	A	re-engineered	version	named	as	‘toehold’	[56 (We	would	like	to	include	here	this	citation:

"https://doi.org/10.1073/pnas.1203831109")]	notably	 improved	 the	 range	and	 the	dynamic	of	post-transcriptional	 control	 for	 the	development	of	RNA-nanodevices	 to	evaluate	complex	 logic	circuits	 in	 living	cells	 [57••].	Longer	mRNA

transcripts	can	also	function	as	translational	triggers	[56 (We	would	like	to	include	here	this	citations:	"https://doi.org/10.1073/pnas.1203831109"	and	"https://doi.org/10.1093/nar/gkx698"),57••]	providing	the	means	to	build	low-cost	diagnostic

platforms	based	on	toehold	designs	[58].

Riboswitch	designs	and	validation(This	should	be	same	font	as	the	two	subtitles	above:	"Natural	and	synthetic	riboswitches"	and	"RNA-responsive
riboswitches"	)

Rational	or	semi-rational	designs	can	be	performed	by	decoupling	expression	platforms	from	the	activity	of	the	natural	aptamer	domain	followed	by	the	integration	of	foreign	aptamers	that	are	responsive	to	different	ligands	[59].	A	major	challenge

faced	during	the	aptamer	screening	and	selection	phase	is	to	address	the	requirement	of	maintaining	functional	gene	regulation	in	vivo	[60].	For	instance,	the	most	common	methods	to	generate	riboswitches,	such	as	the	in	vitro	systematic	evolution	of

ligands	by	exponential	 enrichment	 (SELEX),	 can	generate	aptamers	and	expression	platforms	 that	do	not	 always	 function	 in	vivo	[61,62]	 and	 therefore	 require	downstream	 screening	 steps	 for	 a	 comprehensive	 characterization	 of	 their	 outputs	 [63].

Computational	modeling	offers	a	valuable	option	to	generate	 functional	riboswitches	 for	 in	vivo	applications	by	using	 the	 folding	energy	of	 the	riboswitch	combined	with	 the	 free	energy	change	resulting	 from	ribosome	binding	 to	 the	RBS	[35]	or	by

analysing	 co-transcriptional	 RNA-–ligand	 interaction	 dynamics	 [64,65,66•].	 A	 number	 of	 expression	 platforms	 have	 been	 described	 over	 the	 last	 few	 years	 and	 classifiable	 as:	 first,	 co-transcriptional	 regulation,	 where	 the	 ligand-binding	 attenuates

transcription	by	forming	a	terminator	hairpin	(e.g.	PreQ1	riboswitches)	[25,26,67]	or	interfering	with	rho	dependent	transcription	termination	(e.g.	the	E.	coli	thiM	riboswitch	and	the	Salmonella	corA)	[68,69];	second,	inhibition	of	translation,	with	ligand

binding	forming	an	alternative	structure	that	occludes	the	ribosome-binding	site	(RBS)	and	prevents	initiation	of	translation	(e.g.	thiC	riboswitch)	[70];	third,	mRNA	degradation,	caused	by	ligand-induced	ribozyme	activity	(e.g.	the	Bacillus	subtilis	glmS

RNA)	[71].	Fourthinally,	RNA	splicing	regulation,	where	the	ligand	binding	leads	to	changes	in	splice	sites	to	form	alternate	mature	mRNA	by	addition	of	open	reading	frames	(ORF),	inclusion	of	premature	stop	codon	(e.g.	thiamin	pyrophosphate	(TPP)

riboswitches)	[72,73]	or	via	exclusion	of	the	polyadenosine	(poly-A)	tail	followed	by	mRNA	degradation	(e.g.	flowering	plants	THIC	genes)	[74,75].	Interestingly,	TPP	riboswitches	are	the	sole	type	of	natural	riboswitches	being	described	in	plants,	marine

protists	and	fungi	[42].	There	are	examples	of	artificial	expression	platforms	shown	to	function	in	eukaryotes	such	as:	first,	ribosome	blocking,	where	the	aptamer-–ligand	interaction	inhibits	the	ribosome	scanning	from	the	5’′	7-methylguanosine	cap	to	the

translation	start	site	preventing	translation	in	yeast	(it	is	yet	to	be	confirmed	whether	the	mammalian	ribosomes	may	or	not	be	able	to	scan	through	structured	RNAs	positioned	upstream	the	start	codon	[76]);	second,	ligand-responsive	ribozymes	(also

called	‘aptazymes’)	to	promote	cleavage	of	5’′-UTRs	(untranslated	regions),	where	the	 loss	of	 the	5’′-cap	prevents	ribosome	 initiation,	or	3’′-UTRs	 followed	by	 loss	of	 the	poly-A	tail	and	degradation	of	 the	mRNA	transcript	 [47,48,77];	 third,	aptazymes

associated	to	micro	RNA	(miRNA)	precursors	[78,79]	or	orthogonal	tRNAs	for	unnatural	amino	acid	incorporation	and	studies	of	ribosome	function	(e.g.	T	box	riboswitches)	[37].

Riboswitches	and	toehold	riboregulators	have	been	engineered	for	a	wide	number	of	applications	from	basic	genetic	studies	to	the	production	of	synthetic	compounds	and	diagnostic	tests	[53,80–82].	Beyond	addressing	the	technical	limitations,



one	of	the	major	and	most	exciting	challenges	is	the	development	of	novel	approaches	that	would	allow	to	broaden	the	use	of	riboswitches	to	eukaryotic	systems,	currently	hindered	by	the	cell-specific	properties	of	aptamers	or	ligands,	and	the	significant

differences	between	the	transcription	and	translation	machinery	employed	by	prokaryotic	and	eukaryotic	systems.

In	the	following,	we	will	describe	how	novel	riboswitch	designs	can	be	combined	with	the	pre-existing	CRISPR-editing	components	to	engineer	specific	and	sensitive	molecular	tools	to	achieve	targeted	and	inducible	genetic	editing	in	a	wide	range

of	prokaryotic	and	eukaryotic	hosts.	We	believe	that	these	technologies	could	be	potentially	transferrable	to	any	CRISPR-based	application.

CRISPR	gRNA	riboswitches:	new	designs	and	future	applications
Riboswitches	have	been	extensively	engineered	to	control	gene	expression	by	incorporating	aptamers	that,	after	 ligand	binding,	produce	a	conformational	change	to	trigger	the	expression	of	a	downstream	gene.	A	similar

strategy	can	be	applied	to	sense	CRISPR-sgRNAs	(Figure	2a)	by	grafting	an	aptamer	domain	into	an	allosteric	structure	that	hybridises	an	obliterates	the	sgRNA	binding	to	the	target.	The	interaction	with	the	ligand	stabilises	the

aptamer	to	create	a	conformational	change	where	the	guide	sequence	is	fully	exposed.	This	has	already	been	tested	successfully	in	eukaryotes	using	Cas9	[83]	or	Cpf1	[14].	We	have	also	adapted	theophylline	sensing	designs	previously

developed	in	our	lab	[77,84]	to	generate	sgRNAs	in	E.	coli	(unpublished)	(Figure	2b).	Aptazymes	developed	to	create	UTR-linked	riboswitches	(described	above)	can	be	adapted	to	control	sgRNA	activity	by	adding	the	corresponding

sequence	to	its	5’′-end	to	repress	the	guide	sequence	in	the	unbound	conformation	and	reconstitute	the	active	conformation	after	ligand	binding	(Figure	2c)	[85••,86].	Potentially	any	ligand-responsive	riboswitch	could	be	adapted	for

sgRNA	sensing.	For	example,	light	or	temperature	sensing	sgRNA	could	be	generated	by	replacing	the	aptamers	in	the	designs	represented	in	Figure	2B	and	2Cb	and	c	with	an	aptamer	that	interacts	with	a	photo-switchable	molecule

[87]	or	using	temperature	riboswitches	to	regulate	the	initiation	of	translation	or	the	transcription	termination	[88].	The	main	limitation	of	CRISPR-based	riboswitches	is	represented	by	the	nature	and	properties	of	the	ligand-–aptamer

interaction.	If	RNA	molecules	are	adapted	to	function	as	a	trigger	to	sense	sgRNA	activity,	these	molecular	tools	could	be	utilized	to	regulate	CRISPR-editing	activity	in	response	to	endogenous	or	exogenous	RNAs	and,	at	least	in

theory,	could	be	used	for	any	application	and	organism	where	specific	spatiotemporal	or	conditional	regulation	may	be	required.

Figure	2	CIRSPR	gRNA	riboswitch	designs.	(a)	Diagram	showing	the	interruption	of	transcription	elongation	when	the	dCas9	(or	dCpf1,	details	not	shown	here)	endonuclease	binds	to	the	PAM	sequence,	unwinds	the	dsDNA	and	the	guide	sequence	region	of

the	gRNA	binds	to	its	target	in	the	non-template	strand	or	generates	a	double-strand	break	when	the	active	Cas9	(or	Cpf1)	is	used.	(b)	The	gRNA	is	designed	with	an	extra	sequence	at	the	5’′-end	that	hybridises	with	the	guide	sequence,	which	prevents	the

binding	of	the	gRNA-endonuclease	complex	to	its	target.	Addition	of	the	theophylline	ligand	during	gRNA	transcription	stabilises	an	open	conformation	with	free	guide	sequence,	which	will	repress	transcription	after	binding	to	the	inactivated	protein	or

cleavage	with	the	active	nuclease.	(c)	Design	of	a	gRNA	with	a	non-functional	ribozyme	on	its	5’′-end	hybridising	with	the	guide	sequence.	Binding	of	the	ligand	stabilises	the	ribozyme,	which	self-cleaves	and	the	gRNA	with	free	guide	sequence	will	complex

to	the	protein	for	repression	or	cleavage.	These	designs	could	be	also	adapted	to	dCas9	or	dCpf1	linked	to	activators	(e.g.	VP64,	SAM,	Suntag,	VPR),	repressors	for	CRISPR	interfering	(e.g.	KRAB),	DNA	or	histone	modifiers	(e.g.	histone	demethylase	LSD1,

histone	acetyltransferase	p300,	DNA	methyltransferase	DNMT3a,	DNA	demethylase	TET1).



With	this	aim,	we	designed	cis-repressed	switching-sgRNA,	termed	‘interacting	guide	RNA’	(igRNA)	that	change	conformation	and	switch	to	their	active	forms	upon	the	binding	of	trigger-RNAs	(trRNA)	in	the	form	of	sRNA	or

mRNA.	The	first	approach	is	based	on	previously	described	synthetic	riboregulator	properties	[89],	where	the	trRNA-–igRNA	pair	is	analogous	to	a	trans	activating	riboregulator-5’′-UTR	pair.	Here	the	trRNA	strand	directly	hybridises

with	the	guide	counterpart	hampering	the	flexibility	of	guide	and	trigger	sequence	design	(Figure	3Aa).	To	overcome	this	limitation	the	stem	loop	can	be	redesigned	to	flank	the	clamp	sequence	with	two	variable	regions	that	hybridise

with	the	trigger	sequence	(Figure	3Bb).	The	strategies	in	Figure	2b	and	c	could	also	be	adapted	by	replacing	the	ligand	with	a	trRNA	to	stabilise	the	sgRNA	stem	to	its	open	conformation	(Figure	3c	and	d).	Leveraging	the	intrinsic

multiplex	capacity	of	the	Cpf1	platform,	the	designs	proposed	in	Figure	3	could	also	be	adapted	to	Cpf1	gRNAs	to	streamline	the	engineering	of	complex	genetic	circuits	for	gene	perturbation	studies	[90–92]	and	for	a	number	of	other

applications	where	inducible	and	multiplexed	CRISPR-editing	activity	may	be	required	(Figure	1).	We	are	currently	applying	our	RNA-triggered	igRNA	designed	to	sense	the	cell	state	in	E.	coli	and	in	mosquito	vectors	of	infectious

diseases	to	activate	CRISPR-Cas	endonucleases	in	response	to	tissue	specific	endogenous	transcripts.

Conclusions
Non-coding	RNAs	have	been	engineered	for	a	wide	range	of	applications	and	it	has	been	shown	recently	that	similar	techniques	can	be	used	to	engineer	gRNAs	able	to	interface	with	the	cellular	environment	by	sensing	small-

molecules,	 temperature	and	 light.	We	have	described	gRNAs	with	allosteric	properties	 that	allow	 for	 signal	 transduction,	 cascading,	computation,	as	well	as	 the	monitoring	and	actuation	of	 the	 transcriptome.	The	CRISPR-gRNA

strategies	described	here	could	also	be	combined	among	themselves	or	with	other	regulatory	systems	(Table	1)	to	tackle	complex	roadblocks	that	are	still	hindering	CRISPR-editing	technologies	(Figure	1).	We	envision	that	igRNA

alt-text:	Figure	2

Figure	3	Endogenous	or	exogenous	RNA	could	be	sensed	by	a	switchable	‘interacting	guide	RNA’	(igRNA).	(a)	Design	of	a	gRNA	with	upstream	sequence	hybridising	against	the	guide	sequence.	When	a	trigger	RNA	(trRNA)	-	 — such	as	mRNA,	sRNA,	gRNA,

etc.	-	 — is	present	during	gRNA	transcription,	the	trigger	sequence	binds	to	the	gRNA	stabilising	a	conformation	where	the	guide	sequence	is	freed.	The	complex	binds	to	the	dCas9	(or	dCpf1)	to	repress	transcription	of	a	gene	containing	the	target	sequence

(that	is	also	complementary	to	the	trigger	in	this	case)	or	to	generate	double-strand	break	if	the	active	endonucleases	are	used.	(b)	Modification	of	the	previous	design,	where	part	of	the	guide	sequence	is	initially	hybridised,	but	the	regions	complementary

to	the	trRNA	are	only	in	the	exposed	5’′-end	and	loop,	and	not	in	the	region	hybridising	to	the	target	sequence.	This	allows	the	design	of	universal	target	sequences	with	no	trRNA	or	gRNA-target	constraints.	(c)	The	strategy	in	Figure	2b,	where	the	ligand

(here	the	trRNA)	stabilises	a	conformation	in	which	the	gRNA	sequence	is	no	longer	hybridised.	(d)	The	strategy	in	Figure	2c,	where	a	destabilised	hammerhead	ribozyme	gets	reconstituted	after	binding	to	the	trRNA.	As	for	the	configurations	represented	in

Figure	2,	also	these	designs	could	be	adapted	to	any	other	type	of	Cas9	or	Cpf1	CRISPR-editor	that	may	function	as	inducible	endonuclease,	transcriptional	activator	or	repressors,	DNA	or	histone	modifier.

alt-text:	Figure	3



riboswitches	have	great	potentials	for	broadening	the	variety	of	applications	beyond	the	development	of	components	for	standard	biotechnology	purposes.	CIRSPR-based	riboswitches	represent	a	versatile	in	vivo	post-transcriptional

regulation	toolbox	for	the	engineering	of	customizable	and	highly	specific	CRISPR-editors	that	can	be	designed	for	targeted	genome	editing,	transcriptional	activation/repression	or	epigenome	modification	and	imaging,	exclusively

within	 specific	 cells,	 tissues	or	 species	where	 the	 triggering	molecular	 component	 is	present.	The	CRISPR-igRNA	designs	overviewed	 in	Figure	3	 could	be	used	 to	 achieve	 spatiotemporal	 control	 of	 eukaryotic	 genome	editing	 in

response	to	RNA	transcripts	that	may	be	specific	for:	first,	pathogenic	conditions,	such	as	invading	viral	RNAs,	mRNA	transcripts	carrying	photogenic	mutations	or	produced	upon	cellular	stress	conditions,	etc.;	second,	tissue/cell,

developmental	stage	or	condition,	 for	applications	spanning	 from	gene	 therapy	all	 the	way	 to	 the	genetic	control	of	 invasive	species	such	as	malaria	 transmitting	mosquitoes.	Here	 the	 igRNA	could	be	designed	to	generate	more

effective	CRISPR-based	gene	drives	by	restricting	the	CRISPR-nuclease	activity	to	the	germline	[93],	generate	self-contained	gene	drive	systems	active	only	in	laboratory	strains	(e.g.	by	using	synthetic	mRNA	triggers	not	present	in

wild-type	species)	or	even	to	engineer	suicidal	transgenes	that	respond	to	specific	adverse	gene	mutations	(such	as	the	ones	causing	insecticide	resistance	in	the	mosquitoes).

Whilst	we	believe	that	ad	hoc	computational	tools	and	novel	in	vivo	based	selection	methods	will	be	required,	we	envision	that	the	development	of	CRISPR-gRNA	based	riboswitches	designs	described	here	will	be	extremely

valuable	to	tackle	most	of	the	challenges	that	are	still	impeding	the	deployment	of	CRISPR-mediated	genome	editing	and	engineering.
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Highlights

• Riboswitches	and	CRISPR-editing	challenges,	current	and	future	applications.

• Riboswitches	can	be	applied	to	sense	CRISPR-sgRNAs.

• CRISPR	gRNA	riboswitches	can	function	in	all	kingdoms	of	life.

• Combined	in	vivo	screening	and	computational	analysis	to	improve	riboswitch	regulation.


