

Issue 12

Expected Publication Date: August 2020

ISSN: 2051-3593

Managing Editor

Dr. Russell Crawford

Administrator

Samantha Mottram

Telephone

+44 (0)1782 734436

Email

jade@keele.ac.uk

Web

https://www.keele.ac.uk/kiite/publications/jade/

Address

KIITE, Claus Moser Building, Keele, ST5 5BG

Article:

Foundations for Computing: Applying Pedagogy to a Foundation Year
Computer Science Module

Dr Adam Wootton

Lecturer in Mathematics, Computing and Physics; Foundation Year; Keele University

a.j.wootton@keele.ac.uk

Abstract

Computers and Programming is a core module for Foundation Year students at Keele University

intending to progress on to study Computer Science. This paper details a three-year reflection on how this

module could be better delivered. After several areas for address were identified, it was found that

changes to the structure, teaching activities and assessment of the module, in keeping with the principles

mailto:a.j.wootton@keele.ac.uk

of constructive alignment, led to significant improvement in student assessment performance. This work

was completed as part of the reflective portfolio for Keele’s MA Higher Education Practice Design and

Development in Higher Education module.

This paper presents a critical evaluation of a Foundation Year module at Keele

University, FYO-00096 Computers and Programming. This work was originally completed

as part of a reflective portfolio for Keele’s MA Higher Education Practice Design and

Development in Higher Education module.

1 Introduction to FYO-00096

FYO-00096 Computers and Programming was first introduced in the 2013-14 academic

year as a two-semester, 20 credit core module for Foundation Year students intending to

progress on to study Computer Science. It has a very wide remit in giving the students

an introduction to both computational theory and programming.

The intended learning outcomes for the module are as follows:

1. Demonstrate basic knowledge and understanding of computer architecture;

2. Describe and utilize various types of computer data, variables, programming

statements, procedures and functions;

3. Define a problem with regard to design of a computer animation;

4. Break a programming problem into components in a hierarchy diagram;

5. Design an algorithm to solve a problem;

6. Represent a hierarchy diagram as Structured English and develop appropriate
pseudocode;

7. Use a programming language to code an algorithm;

8. Produce a user manual for a piece of software and evaluate a piece of software;

9. Use binary arithmetic, boolean algebra and finite state machines to solve problems.

As a Foundation Year module, it also has a role in preparing students for a three-year

Computer Science degree programme. Accordingly, the module must also give students

a flavour of studying Computer Science. For example, the module should give a novice

programmer the opportunity to determine whether or not they enjoy working on coding

projects in their free time and, hence, if a full Computer Science degree programme is

suitable for them.

The module is split into two distinct strands: computational theory and programming.

These are taught and assessed separately, despite comprising the same module.

1.1 Module Changes, 2015 - Present

The review of the module began in the 2015-16 academic year, with one member of staff

responsible for changing the delivery and assessment for the theory side of the module.

In the 2017-18 academic year, the review also considered the programming side of the

module, leading to further changes.

1.2 Teaching

A breakdown of the teaching structure of the module prior to2015-16 is given in Figure
1.

The module outline specifies a total of 23 hours each for lectures, programming

laboratories and problem classes (i.e. one hour per week each). The theory side of the

module was entirely delivered through the weekly lectures, although seven of the 23

problem classes were also given over to theory content at various points in the year. The

remaining problem classes were used to teach the students about assembly language in

preparation for an assembly language assignment. The 23 programming laboratories

were used to teach the students about programming and program planning using the

Processing language.

1.3 Assessment

The intended learning outcomes are measured by three assessments, listed below.

1. A range of hardware and software tasks (25%): split into two separate

assignments, one theory assignment on logic gates (12.5%) and one assembly

language programming assignment (12.5%).

2. Algorithm and program design (50%): when the module was first written, this was

met by a portfolio comprising three separate elements, namely planning documents

(17.5%), a user manual (7.5%) and Processing code (25%). A later iteration of the

module added two formative and two assessed tasks in semester 1.

3. 2-hour examination (25%): a two hour examination on all elements of the theory

side of the module, held in semester 2.

This is summarised in Figure 2, which shows how the three assessments actually

comprised eight summative assignments and two formative assignments, and that the

programming side of the module was subject to a greater amount of assessment.

1.4 Structure of Paper

The remainder of this paper is organised as follows. Section 2 critically evaluates the

module, identifying some areas that worked well alongside a number of possible

improvements. Following this, Section 3 details changes made to the module in light of

the reflection and Section 4 analyses the changes that this made to student performance.

Section 5 concludes the paper.

2 Reflection on module organisation

Some aspects of the module that worked well at the start of the project. The language

chosen for the programming portfolio, Processing, is particularly suitable for Foundation

Year study. Firstly, the majority of introductory programming courses use Java (Major,

Kyriacou and Brereton, 2012), including the Keele first year module CSC-10024

Programming Fundamentals. Processing is based on Java and uses much of the same

syntax, meaning that Computers and Programming prepares students for their first year

at Keele without replicating Fundamentals of Programming. Additionally, Processing is

purposely designed as a language for first-time programmers and is based around visual,

interactive media (Processing Foundation, 2019). This is important, since Cunniff, Taylor

and Black (2013) and Milne and Rowe (2002) found that graphical programming

languages can help beginners build a mental model of how programs work and eliminate

common bugs. Finally, a typical cohort has a wide range of programming experience. As

a less well-known language, Processing can level the playing field between complete

novices and students who may have used some more common programming languages.

The general concept of the program design assessment was also a strong point. The

self-directed coding project that formed the majority of the portfolio marks would take

place over an entire semester. Students would decide on a program to make and would

then spend the semester determining how best to do this using the taught Processing

techniques. While staff assistance would be available in the laboratory

classes, a good project would need a student to spend time developing their code

independently. This gives the students a valuable experience of how their future studies

could develop.

While the existence of a 20-credit module that is effectively split into two separate

parts may appear idiosyncratic, this does afford some benefits in terms of module

delivery. For example, it allows for flexible allocation of teaching time according to the

needs of each side of the module, while also allowing the students the time to develop

their programming skills over two semesters, rather than one. There are also

opportunities to draw common threads between aspects of programming and theory,

such as the theory of boolean logic and decisions in programs.

The project did, however, identify room for improvement. By the time that I became

involved in the theory side of the module (2015-16), the curriculum needed refreshing.

This is not unusual in the rapidly developing field of Computer Science. The biggest issue

with the theory side of the module was that it was principally delivered through a single

weekly lecture, with only sporadic support from other classes. While lectures are a

convenient method for delivering information, they only foster the development of the

lower level cognitive skills in Bloom’s taxonomy (Bloom, 1956). The provision of a single

hour of lecturing per week did not allow for the students to apply, analyse, synthesise or

evaluate meaningfully, meaning that their understanding of the module content was

poorly developed. Furthermore, Kolb (1984) emphasises the importance of

experimentation and reflection in learning, which was not amply provided by a single

weekly lecture. All of this is reflected in the relatively low mean exam marks of 51.20% in

2013-14 and 59.44% in 2014-151.

The programming side of the module also had scope for potential improvement.

Processing was taught in programming laboratory sessions, where a section of the

course notes (in .doc format) would be presented to the students, who would then be

given the majority of the session to ‘play around’ with Processing. Perkins, et al. (2013)

distinguished between two types of programming students: those who enjoy

experimenting and modifying code, and those who stop when confronted with a problem.

In a broader review of issues in teaching programming, Robins, Rountree and Rountree

(2003) noted differences between effective novices, who can learn without excessive

effort, and ineffective novices, who require close support while learning. It is easy to see

how the ‘play around’ approach might benefit the former without providing the latter with

adequate support.

Similarly, giving the students information on programming but leaving them to their

own initiative in applying this knowledge left the students underprepared for the program

design portfolio. Davies (1993) made a distinction between declarative programming

knowledge, where a student might know the purpose of a technique such as an IF

statement, and strategy, where a student knows when and why to apply this knowledge.

1 1These statistics, and all other module performance statistics reported, are calculated so as to not

include results for students who did not submit any work for one or more of the assessments, on the
basis that a zero mark in the exam for a student who was (for example) withdrawn by the University
during the second semester would distort the overall average.

While the students may have gained declarative knowledge, there was less opportunity

to learn strategy.

All of this is reflected in a number of the comments made by students in module

feedback forms. In 2015/16, a number of the suggestions for ‘what could be improved’

followed the same theme: that the module would have benefitted from providing a more

structured learning experience to help develop programming skills.

Ultimately, the problem this is best expressed using the 2001 revision of Bloom’s

taxonomy (Krathwohl, 2002). Both the programming portfolio and the assembly language

assignment asked the students to plan and produce an original programming project, all

of which requires the students to ‘create’, the highest level thinking skill in the taxonomy.

This is difficult when most students had little opportunity to progress beyond the lower

level thinking skills, ‘remember’ and ‘understand’. It is, therefore, not surprising that the

mean student mark for the programming portfolio at this time was 58.32%.

Given the study level and number of credits available for the module, the assessment

load was excessively heavy, with the three nominal assessments effectively comprising

ten different assignments. According to the principles of ‘constructive alignment’ outlined

by Biggs (1996), assessment should require students to evidence that they can match

the intended learning outcomes for the module. However, in FYO-00096, learning

outcomes 2, 3, 4, 5, 6, 7 and 8 are all met by the programming portfolio, rendering the

assembly language assignment and assessed programming tasks redundant. Given that

a typical Foundation Year student will be studying this module alongside ten other

modules over the course of the year, this goes against QAA’s guiding principles for

assessment (The Quality Assurance Agency for Higher Education, 2018). This sort of

overassessment has been associated with surface learning (George, 2009), poor

attendance (Jonkman, Boer and Jagielski, 2006) and stress (Cefai and Camilleri, 2009).

One final issue was that the program plans were submitted as part of the final portfolio,

meaning that most students based their plans on the finished program and did not meet

learning outcomes 4 and 6.

A more generic issue facing Computer Scientists is the disparity in the numbers of

men and women enrolled as students in the subject (Sax, et al., 2017). In the 2017/18

academic year, 12,885 female students (15% of total) and 71,125 male students (85% of

total) enrolled on undergraduate Computer Science degree programs in the UK. This is

in direct contrast to gender divide found elsewhere in UK higher education, where female

students comprised 55.89% of all students enrolling on undergraduate degree programs

(Higher Education Statistics Agency, 2019). The gender gap in FYO-00096 is broadly in

line with that seen nationally, with Table 1 showing how female students have never

made up more than 20% of a cohort.

Increasing female recruitment goes beyond the scope of this study, but providing an

inclusive student experience is a key part of Keele’s equality objectives for 2018 - 2022

(Keele University, 2018). It is vital to ensure that Computer Science classes provide a

safe, accessible and inclusive environment for all students.

3 Methods for Innovation

3.1 Changes to theory delivery

As mentioned in the previous section, lectures deliver information to students, but only

develop the lower level cognitive skills without additional support. Students must be given

concrete experiences to reflect on in order to truly learn (Kolb, 1984). The lectures were

changed to combine the delivery of information with regular example questions. For topics

where example questions are not applicable, other methods are used to give students

concrete experiences. For example, the lecture on internal hardware of a computer

combines lecture slides with a live dissection of a computer, where students could handle

individual components. Most importantly, these lectures were backed up with weekly

problem classes devoted to the topic of that week’s lecture. Work for these classes is

released immediately after the lecture for students to attempt before class. Students are

now able to have concrete experiences in the lectures, reflect on these between the

lecture and problem class, and to then attempt active experimentation when presented

with the problems.

These additional classes were supplemented with learning materials to be used

outside of taught sessions, catering for students with different learning methods. For

example, an interactive binary calculator was written in Excel, giving students visual

solutions to conversions between base numbers, as well as fixed and floating point binary

numbers. For those students with a less visual approach, the underlying formulae could

be accessed and deconstructed. Since the examination covered two semesters worth of

work, the students were also given an ‘Exam Survival Guide’ at the end of the second

semester. This 39-page document covered every examinable topic, required methods

and exam technique.

3.2 Programming teaching and assessment

One of the biggest changes made to the programming side of the module was the removal

of the assembly language assignment, due to the intended learning outcomes being

covered elsewhere, the relative irrelevance of low-level languages and the amount of

assessment. However, assembly language was listed amongst the indicative content in

the module outline, and so was not removed from the module entirely. It was instead

incorporated into the theory side of the module as a part of the finite state machines topic.

The programming side of the module was completely restructured. Processing was

retained, but the first semester is now devoted to learning different transferable

techniques for coding in Processing. Each of these techniques is then assessed in the

final portfolio. The semester culminates in a lecture on program planning, with the

program planning assignment completed over the Christmas vacation. This feeds into

the second semester, where the lab sessions are used to develop a game based on the

plan. This is an example of the kind of problem-based learning that has previously been

used successfully to teach programming (O’Kelly and Gibson, 2006).

There are several advantages to this. Firstly, having the program plans submitted prior

to the second semester, rather than as part of the final portfolio, means that the students

think ahead about breaking down a problem into steps, rather than completing it based

on the final program design. This is more in keeping with intended learning outcomes 3,

4 and 6. Secondly, the portfolio assesses how well the students have met learning

outcomes 2, 3, 4, 5, 6 and 7, meaning that the programming side of the module is

constructively aligned (Biggs, 1996). Finally, by giving the students the opportunity to

direct their own learning in the second semester, the students gain independent study

skills that will benefit them on a Computer Science degree.

The changes to the programming labs drew on a range of literature. They now use a

scaffolding approach, where students are given support from staff when beginning to

learn new concepts before the level of support is gradually reduced over time (Wood,

Bruner and Ross, 1976), and a spiral curriculum, which begins with a relatively simple

concept that is then built upon until mastery of the subject is achieved (Bruner, 1996).

Tan, Ting and Ling (2009) found that programming students respond poorly to lecturing

and prefer to work from interactive examples, while Jenkins (2001) indicated that teaching

programming is not about transmitting information but motivating students to solve

problems and develop skills. In line with this, the lecturing time in the lab is kept to a

minimum and the students are given directed tasks. Each session now has a ten minute

lecture to introduce a topic, after which the students are given a lab task to complete by

midnight on the following Sunday evening. This sharply contrasts with the ‘play around

with it’ approach used previously, and was intended to help bridge the gap between

effective and ineffective novices (Robins, Rountree and Rountree, 2003). For example,

the final task introduces the students to arrays, but also requires that they use primitives,

variables, animation, loops, decisions and user input. The repetition of these topics as

part of new work allows the students to develop mastery. The fact that the majority of the

lab classes are given over to working on these tasks means that the students are able to

begin their work in a supportive environment with multiple staff members on hand to

assist, allowing them to address any problems before potentially completing the work at

home.

While these lab tasks were introduced as a part of the Range of Hardware and

Software Tasks assessment and contributed 10% of the overall module mark, they were

marked purely on engagement. There was one mark available for each section, and this

would be awarded if the student had made an honest attempt at completing that part. This

encourages engagement without deterring any ineffective novices.

The lab tasks allowed for the module assessment to be streamlined. Assembly

language is now assessed as part of the exam, rendering the assembly language

assignment unnecessary. Instead, the Range of Hardware and Software Tasks now

consists of the logic assignment (15% of the overall module mark) and the lab tasks (10%

of the overall module mark). The two formative and summative programming

assignments were also redundant and, hence, removed. This all meant that it was

possible to make the assignment more challenging by including a ‘functionality’ criterion

that assessed how well the final program fulfilled its purpose. The updated breakdown of

the module assessment is given in Figure 3. Overall, the number of assignments was

reduced from ten to six.

3.3 Inclusivity

The reasons for lower female retention in Computer Science are complex, with Beyer, et

al. (2003) citing the availability of same-sex peer support, characteristics of the faculty

and the community environment as key factors. While the first two items go beyond the

scope of this work, the classroom environment in FYO-00096 does not. The ideas of

problems with the environment, including perceived stereotypes, isolation from peers

outside of computing, sexual harrassment and a sense of belonging, have been echoed

in numerous past studies (Cheryan, et al., 2019; Giannakos, et al., 2017; Master, Cheryan

and Meltzoff, 2016; Michell, et al., 2017). Beyer, Rynes and Haller (2004), Malik and Al-

Emran (2018) and Sax, et al. (2017) also emphasised a need to show that computing can

help people, as female students were more motivated by being able to improve lives

through their work than by their future job prospects.

Amongst issues such as a perception of computing being incompatible with communal

goals and a relative lack of experience, Beyer (2017) identified one key problem as a lack

of appealing role models. Hence, one of the simplest means of creating a more inclusive

environment was to have a five minute ‘heroes of computing’ section at the start of each

theory lecture. Each week, a relevant figure from the world of computing would be

introduced to the group with a short, humorous biography. While many of the key pioneers

from this time period come from a similar background (such as Boole, de Morgan and

Babbage, or Shockley, Brattain, Shannon and others from 1940 - 1980), this gives ample

scope to discuss important female computer scientists such as Margaret Hamilton, Sr.

Mary Kenneth Keller and Grace Hopper. There is also cultural diversity, with the history

of the binary number system covering Egypt, China, India and Mangareva. This all

emphasises that contributions have been made by both men and women of varied

backgrounds, which helps build a supportive environment. Additionally, humour and

storytelling have been shown to have a positive effect on learning (Garner, 2006; Nasiri

and Mafakheri, 2015; Papadimitriou, 2003; Short and Martin, 2011).

It is not easy to give a sense of Computing being used to help others during some of

the earlier topics such as base numbers and logic, but the inclusion of two lectures on big

data allowed for the presentation of case studies showing Computer Science in action,

such as helping to prevent influenza outbreaks and combat online extremism.

4 Results

Tables 2, 3 and 4 show how the mean mark for each assessment changed, and in each

case there is a clear improvement. Indeed, in all but one case, the increase was

equivalent to one or even two grade boundaries. Table 5, meanwhile, demonstrates the

significance of these changes, with particularly low P values seen for the Range of

Hardware and Software Tasks and Program Design assignment. It should also be noted

that this change comes in the face of rapidly increasing Foundation Year student numbers

and decreasing UCAS tariffs (88 UCAS points in 2015 compared to 64 UCAS points in

2018). Collectively, the data show that the changes to the module improved student

learning quantitatively.

Given some of the negative student feedback that the programming side of the module

had previously received, it should be noted that in the last two academic years, not a

single respondent has selected the ‘dissatisfied’ or ‘totally dissatisfied’ options for any

part of the module2.

5 Summary and Future Work

This critical reflection examined FYO-00096 and identified some positive aspects a

number of areas for improvement. It was then shown how these areas were remodelled

while the positive aspects were retained. A brief look at the module results showed that

these changes made a significant difference to student performance in the face of

increasing cohort sizes with lower entry requirements.

Despite this, there is still room to continue developing the module. One interesting

possibility would be to take a flipped classroom approach to the programming labs (Lage,

Platt and Treglia, 2000). By studying the lecture notes at home, the students would

maximise the time spent applying them in the labs. For the theory side, further resources

will be developed for learning outside of lectures. While recent research indicates that

conventional lecture capture may have a detrimental effect on studies (Edwards and

Clinton, 2019; Lyon, 2018), five minute video summaries of the key points from lectures

should provide support without discouraging attendance. Conventional problem sheets

will be replaced with homework, focusing problem classes on troubleshooting.

A repeated theme in the literature surrounding female Computer Science students is

that classes should strive to include a greater emphasis on collaboration and helping

others. With this in mind, the 2019/20 academic year will see the introduction of a

231 Total Respondents

Foundation Year Computer Science module based around collaborative design under

the instruction of a client.

References

Beyer, S., 2017. Women in Computer Science: Deterrents. In: Laplante, P. A. Encyclopedia of Computer
Science and Technology Volume II. 2nd ed. Boca Raton: CRC Press. Boca Raton.

Beyer, S., Rynes, K. and Haller, S., 2004. Deterrents to women taking computer science courses. IEEE
Technology and Society Magazine, 23(1), pp. 21–28. ISSN: 0278-0097. https://doi.org/10.1109/
MTAS.2004.1273468.

Beyer, S., Rynes, K., Perrault, J., Hay, K. and Haller, S., 2003. Gender Differences in Computer Science
Students. In: Proceedings of the 34th SIGCSE Technical Symposium on Computer Science Education.
SIGCSE ’03. Reno, Navada, USA: ACM, pp. 49–53. ISBN: 1-58113-648-X.

Biggs, J., 1996. Enhancing teaching through constructive alignment. Higher Education, 32(3), pp. 347–
364.ISSN: 1573-174X.

Bloom, B. S., 1956. Taxonomy of Educational Objectives: The Classification of Educational Goals.
Cognitive Domain. New York: David McKay Company.

Bruner, J. S., 1996. The Culture of Education. Cambridge: Harvard University Press.

Cefai, C. and Camilleri, L., 2009. Healthy students healthy lives: the health of Maltese university students.
Malta: University of Malta European Centre for Educational Resilience and Socio-Emotional Health.
Malta.

Cheryan, S., Lombard, E. J., Hudson, L., Louis, K., Plaut, V. C. and Murphy, M. C., 2019. Double isolation:
Identity expression threat predicts greater gender disparities in computer science. Self and Identity,
0(0), pp. 1–23.

Cunniff, N., Taylor, R. P. and Black, J. B., 2013. Does Programming Language Affect the Type of
Conceptual Bugs in Beginners’ Programs? A Comparison of FPL and Pascal. In: Soloway, E. and
Spohrer, J. C. Studying the Novice Programmer. New Jersey: Psychology Press, pp. 419–430.

Davies, S. P., 1993. Models and theories of programming strategy. International Journal of Man-Machine
Studies, 39(2), pp. 237 –267. ISSN: 0020-7373.

Edwards, M. R. and Clinton, M. E., 2019. A study exploring the impact of lecture capture availability and
lecture capture usage on student attendance and attainment. Higher Education, 77(3), pp. 403–421.
ISSN: 1573-174X.

Garner, R. L., 2006. Humor in Pedagogy: How Ha-Ha can Lead to Aha! College Teaching, 54(1), pp. 177–
180.

George, J. W., 2009. Classical Curriculum Design. Arts and Humanities in Higher Education, 8(2), pp. 160–
179.

Giannakos, M. N., Pappas, I. O., Jaccheri, L. and Sampson, D. G., 2017. Understanding student retention

in computer science education: The role of environment, gains, barriers and usefulness. Education and
Information Technologies, 22(5), pp. 2365–2382. ISSN: 1573-7608.

Higher Education Statistics Agency, 2019. Table 9 - HE student enrolments by subject of study 2014/15 to
2017/18. Available at: <https://www.hesa.ac.uk/data-and-analysis/students/table-9>.

Jenkins, T., 2001. Teaching Programming - A Journey from Teacher to Motivator. In: Proceedings of 2nd

Annual conference of the LSTN Centre for Information and Computer Science.

Jonkman, M, Boer, F. G. de and Jagielski, J., 2006. Are We Over-assessing Our Students? The Students’
View. In: Proceedings of the 17th Annual Conference of the Australasian Association for Engineering
Education.

https://doi.org/10.1109/MTAS.2004.1273468
https://doi.org/10.1109/MTAS.2004.1273468
https://www.hesa.ac.uk/data-and-analysis/students/table-9

Keele University, 2018. Keele University Equality, Diversity and Inclusion Strategy 2018 - 2022. Keele
University. Available at: <https://www.keele.ac.uk/media/keeleuniversity/equaldiversity/ Equality %
20and % 20Diversity % 20Strategy % 202015 - 2020 % 20FINAL . pdf> [Accessed 29th May 2019].

Kolb, D. A., 1984. Experiential learning: experience as the source of learning and development. Englewood
Cliffs, NJ: Prentice Hall. Available at: <http : / / www . learningfromexperience . com / images /
uploads/process-of-experiential-learning.pdf>.

Krathwohl, D. R., 2002. A Revision of Bloom’s Taxonomy: An Overview. Theory into Practice, 41, 4, pp.
212–218.

Lage, M. J., Platt, G. J. and Treglia, M., 2000. Inverting the Classroom: A Gateway to Creating an Inclusive
Learning Environment. The Journal of Economic Education, 31(1), pp. 30–43. ISSN: 00220485,
21524068.

Lyon, S. D., 2018. Relationship between attendance, academic performance, and lecture-capture among
veterinary students. MA. Oklahoma State University.

Major, L., Kyriacou, T. and Brereton, O., 2012. Systematic literature review: teaching novices
programming using robots. English. IET Software, 6, 6, 502–513(11). ISSN: 1751-8806.

Malik, S. and Al-Emran, M., 2018. Social Factors Influence on Career Choices for Female Computer
Science Students. International Journal of Emerging Technologies in Learning (iJET), 13(05), pp. 56–
70. ISSN: 1863-0383. Available at: <https://online-journals.org/index.php/i-jet/article/view/ 8231>.

Master, A, Cheryan, S. and Meltzoff, A. N., 2016. Computing Whether She Belongs: Stereotypes
Undermine Girls’ Interest and Sense of Belonging in Computer Science. Journal of Educational
Psychology, 108, 3.

Michell, D., Szorenyi, A., Falkner, K. and Szabo, C., 2017. Broadening participation not border protection:
how universities can support women in computer science. Journal of Higher Education Policy and
Management, 39(4), pp. 406–422.

Milne, I. and Rowe, G., 2002. Difficulties in Learning and Teaching Programming—Views of Students and

Tutors. Education and Information Technologies, 7(1), pp. 55–66. ISSN: 1573-7608.
Nasiri, F. and Mafakheri, F., 2015. Higher Education Lecturing and Humor: From Perspectives to

Strategies. Higher Education Studies, 5(5), pp. 26 –31.

O’Kelly, J. and Gibson, J. P., 2006. RoboCode & Problem-based Learning: A Non-prescriptive Approach to
Teaching Programming. In: Proceedings of the 11th Annual SIGCSE Conference on Innovation and
Technology in Computer Science Education. ITICSE ’06. Bologna, Italy: ACM, pp. 217–221. ISBN: 1-
59593-055-8.

Papadimitriou, C. H., 2003. Mythematics: Storytelling in the Teaching of Computer Science and
Mathematics. In: Proceedings of the 8th Annual Conference on Innovation and Technology in
Computer Science Education. ITiCSE ’03. Thessaloniki, Greece: ACM, pp. 1–1. ISBN: 1-58113-672-2.

Perkins, D. N., Hancock, C., Hobbs, R., Martin, F. and Simmons, R., 2013. Conditions of Learning in Novice
Programmers. In: Soloway, E. and Spohrer, J. C. Studying the Novice Programmer. New Jersey:
Psychology Press, pp. 261–280.

Processing Foundation, 2019. Overview. A short introduction to the Processing software and projects
from the community. Available at: <https://processing.org/overview/> [Accessed 22nd May 2019].

Robins, A., Rountree, J. and Rountree, N., 2003. Learning and Teaching Programming: A Review and

Discussion. Computer Science Education, 13(2), pp. 137–172.

Sax, L. J., Lehman, K. J., Jacobs, J. A., Kanny, M. A., Lim, G., Monje-Paulson, L. and Zimmerman, H. B.,
2017. Anatomy of an Enduring Gender Gap: The Evolution of Women’s Participation in Computer
Science. The Journal of Higher Education, 88(2), pp. 258–293.

https://www.keele.ac.uk/media/keeleuniversity/equaldiversity/Equality%20and%20Diversity%20Strategy%202015-2020%20FINAL.pdf
https://www.keele.ac.uk/media/keeleuniversity/equaldiversity/Equality%20and%20Diversity%20Strategy%202015-2020%20FINAL.pdf
https://www.keele.ac.uk/media/keeleuniversity/equaldiversity/Equality%20and%20Diversity%20Strategy%202015-2020%20FINAL.pdf
http://www.learningfromexperience.com/images/uploads/process-of-experiential-learning.pdf
http://www.learningfromexperience.com/images/uploads/process-of-experiential-learning.pdf
https://online-journals.org/index.php/i-jet/article/view/8231
https://online-journals.org/index.php/i-jet/article/view/8231
https://processing.org/overview/

Short, F. and Martin, J., 2011. Presentation vs. Performance: Effects of Lecturing Style in Higher Education
on Student Preference and Student Learning. Psychology Teaching Review, 17(2), pp. 71 –82.

Tan, P., Ting, C. and Ling, S., 2009. Learning Difficulties in Programming Courses: Undergraduates’ Per-
spective and Perception. In: 2009 International Conference on Computer Technology and Development.
Vol. 1, pp. 42–46.

The Quality Assurance Agency for Higher Education, 2018. UK Quality Code for Higher Educaton: Advice
and Guidance - Assessment. Available at: <https://www.qaa.ac.uk/docs/qaa/quality-code/advice-and-
guidance-assessment.pdf?sfvrsn=ca29c181_4> [Accessed 30th May 2019].

Wood, D., Bruner, J. S. and Ross, G., 1976. The Role of Tutoring in Problem Solving. Journal of Child
Psychology and Psychiatry, 17(2), pp. 89–100. ISSN: 1469-7610.

https://www.qaa.ac.uk/docs/qaa/quality-code/advice-and-guidance-assessment.pdf?sfvrsn=ca29c181_4
https://www.qaa.ac.uk/docs/qaa/quality-code/advice-and-guidance-assessment.pdf?sfvrsn=ca29c181_4

Figure 1: The division of taught sessions between theory and programming prior to the 2015-16 academic

year.

Figure 2: The assignments for FYO-00096 prior to my involvement, group according to the assessment

that they contributed to. Assignments relating to theory are coloured in red, while those relating to

programming are coloured in blue.

Figure 3: The revised breakdown of assessments for FYO-00096. Assignments relating to theory are

coloured in red, while those relating to programming are coloured in blue.

Year Male Female

2013-14 85.71% 14.29%

2014-15 100.00% 0.00%

2015-16 80.65% 19.35%

2016-17 93.10% 6.90%

2017-18 80.00% 20.00%

2018-19 92.86% 7.14%

Table 1: The percentage of FYO-00096 students identifying as male compared to the percentage of

students identifying as female, 2013 - 2019.

Year Mean Mark (%) Change from Before

2013-16 (Before) 57.02 N/A

2017-18 (After) 74.98 17.96

2018-19 (After) 77.29 20.28

Table 2: The effects of the changes to the module on the student marks for the ‘Range of Hardware and

Software Tasks’ assignment. Note that the results for the 2016-17 cohort are not included in ‘before’ due

to changes in the assessment caused by unexpected staff absence that year. Results for students who did

not engage with one or more assignments are not included in the analysis.

Year Mean Mark (%) Change from Before

2013-17 (Before) 58.32 N/A

2017-18 (After) 72.39 14.08

2018-19 (After) 77.56 19.24

Table 3: The effects of the changes to the module on the student marks for the ‘Program Design’

assignment. Results for students who did not engage with one or more assignments are not included in

the analysis.

Year Mean Mark (%) Change from Before

2013-15 (Before) 58.32 N/A

2015-16 (After) 69.37 13.72

2016-17 (After) 65.29 9.65

2017-18 (After) 71.01 15.37

Table 4: The effects of the changes to the module on the student marks for the exam. Results for

students who did not engage with one or more assignments are not included in the analysis.

Assignment N Before N After Mean Before Mean After P Value

H&S Tasks 34 43 57.02 76.38 0.0002

Program Design 57 35 58.32 75.05 0.0001

Exam 13 61 55.64 68.33 0.0175

Table 5: The number of samples N, mean marks and P values obtained for each assessment before and

after the module changes using an unpaired t test. Note that the ‘Range of Hardware and Software Tasks’

results for the 2016-17 cohort are not included in ‘before’ due to changes in the assessment caused by

unexpected staff absence that year. Results for students who did not engage with one or more

assignments are not included in the analysis. Results for 2018-19 were only available for the ‘Range of

Hardware and Software Tasks’ and ‘Program Design’.

