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A technique involving the higher Wronskians of a
differential equation is presented for analysing the
dispersion relation in a class of wave propagation
problems. The technique shows that the complicated
transcendental-function expressions which occur in
series expansions of the dispersion function can,
remarkably, be simplified to low-order polynomials
exactly, with explicit coefficients which we determine.
Hence simple but high-order expansions exist which
apply beyond the frequency and wavenumber range
of widely used approximations based on kinematic
hypotheses. The new expansions are hypothesis-
free, in that they are derived rigorously from the
governing equations, without approximation. Full
details are presented for axisymmetric elastic waves
propagating along a tube, for which stretching
and bending waves are coupled. New approximate
dispersion relations are obtained, and their high
accuracy confirmed by comparison with the results
of numerical computations. The weak coupling limit
is given particular attention, and shown to have a
wide range of validity, extending well into the range
of strong coupling.

1. Introduction
The most common approach to analysing long wave
propagation in a waveguide is to make at the outset a
kinematic assumption about the shape of the field. This
gives excellent results if the frequency and wavenumber
are low enough, for example in an elastic waveguide
when the motion is such that ‘plane sections remain
plane’ [1–4]. Yet inevitably, as the kinematic assumption
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starts to break down at higher frequencies and wavenumbers, the method must lose accuracy and
ultimately fail, and it provides no way of finding a sequence of corrections.

An alternative is to start with the equations of motion and analyse their solutions where these
are available. For example, in linear problems with circular cylindrical geometry, the solutions are
often expressible in terms of Bessel functions, and the dispersion relation is then of determinant
form with entries evaluated at the waveguide boundaries [5,6]. In principle, the determinant may
be expanded in powers of the thickness of the waveguide, regarded as a small parameter, to give a
sequence of approximations to the dispersion relation. The terms in this sequence make it possible
first to check the validity of results obtained from a kinematic assumption, and second to extend
these results to higher frequency and wavenumber by including more terms in the series.

In practice, two difficulties arise in carrying out the above procedure. The first is that many
low order terms cancel, so that to obtain even a leading-order approximation can be beyond the
reach of hand calculation. However, this difficulty for our predecessors is now by-passed by the
use of algebraic software such as Mathematica, in which a short code can produce all the required
terms up to high order in at most a few minutes. The second difficulty is that the exact coefficients
in the thickness expansion are extremely complicated expressions in Bessel functions and their
derivatives. Thus at first sight the expansion is too unwieldy to be of use. The key finding of the
present paper is that by means of a mathematical technique involving identities in the higher
Wronskians of the underlying differential equations, all of these expressions may be shown to
simplify unexpectedly to low-order polynomials, moreover with simple coefficients which are
easily calculated exactly. These identities do not appear in reference works, e.g. [7–9], and appear
to be new.

A crucial aspect of the resulting series expansion is that the coefficients involve no assumption
that the frequency or wavenumber is small; the expansion is merely in the thickness, and the
coefficients are explicit low-order polynomials in the frequency and wavenumber, without any
approximation. This remarkable analytic structure, far simpler than might have been anticipated
from the transcendental starting-point, is the key to the new results presented here. It enables us
readily to determine the range of frequency and wavenumber for which a given truncation of
the series is accurate, by choosing appropriate scaling and considering the relative magnitude of
successive terms in the series [10,11]. The accurate numerical determination of this range, for the
most useful truncations, is an important part of the present paper, and is of particular relevance
to applications.

The paper is arranged as follows. Section 2 gives the required theory for the curved
waveguide to be considered, namely an elastic cylindrical tube, using Bessel functions to describe
axisymmetric elastic waves propagating along the tube. Before deformation, the tube wall
occupies a cylindrical annulus. Section 3 analyses the resulting dispersion relation, with attention
to its analytic structure when expanded in powers of the wall thickness. We derive from first
principles the Wronskian identities required. Section 4 shows how the thickness expansion gives
not only the classical approximation to the dispersion relation for a thin cylindrical shell, but
also a family of correction terms to it. A noteworthy feature of the exact dispersion relation is
a prominent avoided crossing [12,13]: two main branches approach each other, but then veer
away. Sections 5–8 analyse the avoided crossing mathematically by first considering a special
limit of no coupling between two types of wave supported by the waveguide. In this limiting
case, the dispersion relation factorises, and crossing occurs. A perturbation analysis then gives a
weak coupling theory, providing several new families of approximations, suitable for different
regions of the frequency–wavenumber plane. These are shown numerically to have a wide
range of validity, in that they remain accurate even when the coupling is quite strong. Section 9
presents conclusions, especially regarding the scope of the Wronskian method in further work on
waveguide theory. The method is not restricted to elastic waves, but applies equally to waves in
fluid dynamics or electromagnetism, for example, provided there exists an underlying equation
for which a Wronskian can be defined.
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2. Elastic waves in a cylindrical tube

(a) Governing equations
We shall follow the notation of [6] and write the equation for the displacement u of a wave in an
isotropic elastic medium in the form

∂2u

∂t2
= (c21 − c22)∇∇ · u+ c22∇2u. (2.1)

The compression wave speed is c1 and the shear wave speed is c2, defined in terms of a reference
speed c0 by

c1 =

{
1− ν

(1 + ν)(1− 2ν)

}1/2

c0, c2 =
c0

{2(1 + ν)}1/2
, c0 =

(
E

ρ

)1/2

, (2.2)

where is ν is Poisson’s ratio, E is Young’s modulus, and ρ is the density. The tube wall is taken to
have thickness h, mean radius a, inner radius ai = a− h/2, and exterior radius ae = a+ h/2. The
dimensionless thickness is ε= h/a, and for a wave of frequency ω, the dimensionless frequency
is Ω = ωa/c0. In cylindrical coordinates (r, θ, z) the displacement is u= (u, v, w), and t denotes
time. The tube wall occupies the region ai < r < ae.

Our analysis is for axisymmetric waves without circumferential displacement, i.e. with v= 0.
Such waves may be written in terms of potentials φ̂= φ̂(r, z, t) and χ̂= χ̂(r, z, t) as [14, p. 1766]

u=∇φ̂+∇×∇× (χ̂ez), (2.3)

where ez is a unit vector in the z direction. These potentials separate compression from shear in
the bulk wave equations

∂2φ̂

∂t2
= c21∇2φ̂,

∂2χ̂

∂t2
= c22∇2χ̂, (2.4)

so that coupling occurs only at the boundaries r= ai and r= ae. In terms of the strain components

err =
∂u

∂r
, eθθ =

u

r
, ezz =

∂w

∂z
, erz =

1

2

(
∂w

∂r
+
∂u

∂z

)
, (2.5)

traction-free boundary-conditions are τrr = 0 and τrz = 0, where

τrr = ρ{c21err + (c21 − 2c22)(eθθ + ezz)}, τrz = 2ρc22erz . (2.6)

(b) Wave propagation
We consider displacements proportional to e−iωt+ikz , and omit this factor throughout. The
remaining part is a function of r only, so that

φ̂= iφ(r), χ̂= χ(r), (2.7)

and
∇φ̂= (iφr, −kφ), ∇×∇× (χ̂ez) =

(
ikχr, −

1

r
(rχr)r

)
. (2.8)

Here the subscript r denotes differentiation with respect to r. The frequency ω is real, but the
wavenumber k may be complex. By (2.3), the displacement is

(u,w) =
(
iφr + ikχr, −kφ−

1

r
(rχr)r

)
, (2.9)

from which (2.5) and (2.6) give the strain and stress. Recall that the circumferential displacement
is zero. The bulk equations (2.4) are

r2φrr + rφr + {(ωr/c1)2 − (kr)2}φ= 0, (2.10)

r2χrr + rχr + {(ωr/c2)2 − (kr)2}χ= 0, (2.11)
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which are each a form of Bessel’s equation of order zero, and the boundary conditions are

rφr + { 12 (ωr/c2)
2 − (kr)2}φ= kr2χrr, (2.12)

{ 12 (ωr/c2)
2 − (kr)2}χr = kr2φr. (2.13)

The general solution of (2.10)–(2.11) involves Bessel functions J0 and Y0 evaluated at Ω̃1 =

Ω̃1(r) = {(ωr/c1)2 − (kr)2}1/2 or Ω̃2 = Ω̃2(r) = {(ωr/c2)2 − (kr)2}1/2. We indicate which one
by a subscript 1 or 2, so that J0,2 represents J0(Ω̃2), for example. Any branch of the square roots
may be used, since in the dispersion relation the square roots occur in pairs to leave an expression
without branch points. Thus the solution of (2.10)–(2.11) is

φ=AJ
1J0,1 +AY

1 Y0,1, (2.14)

χ= ÂJ
2J0,2 + ÂY

2 Y0,2, (2.15)

whereAJ
1, A

Y
1 , Â

J
2 and ÂY

2 are modal coefficients. To obtain simpler formulae in what follows, we
use the quantitiesAJ

2 = kÂJ
2 andAY

2 = kÂY
2 , which have the same physical dimensions asAJ

1 and
AY
1 ; our starting-point (2.3) implies that the physical dimensions of φ and χ differ by a factor of a

length.
The boundary conditions (2.12)–(2.13) applied at r= ai = a− h/2 and r= ae = a+ h/2 may

be written

AJ
1 d

J
1i +AY

1 d
Y
1i =−A

J
2 e

J
2i −A

Y
2 e

Y
2i, (2.16)

AJ
1 d

J
1e +AY

1 d
Y
1e =−AJ

2 e
J
2e −AY

2 e
Y
2e, (2.17)

AJ
1 f

J
1i +AY

1 f
Y
1i =−A

J
2 g

J
2i −A

Y
2 g

Y
2i, (2.18)

AJ
1 f

J
1e +AY

1 f
Y
1e =−AJ

2 g
J
2e −AY

2 g
Y
2e. (2.19)

Here we make use of the functions

dJ(Ω̃,K) = 1
2 (Ω̃

2
2 −K2)J0(Ω̃) + Ω̃J ′0(Ω̃), (2.20)

eJ(Ω̃,K) = Ω̃{Ω̃J0(Ω̃) + J ′0(Ω̃)}, (2.21)

fJ(Ω̃,K) =−K2Ω̃J ′0(Ω̃), (2.22)

gJ(Ω̃,K) = 1
2 (Ω̃

2 −K2)Ω̃J ′0(Ω̃), (2.23)

and similarly (dY, eY, fY, gY), evaluated at the dimensionless frequencies

Ω̃1i = Ω̃1(ai), Ω̃1e = Ω̃1(ae), Ω̃2i = Ω̃2(ai), Ω̃2e = Ω̃2(ae) (2.24)

and wavenumbers (Ki,Ke) = (kai, kae) as indicated by subscripts; for example,

dJ1i = dJ(Ω̃1i,Ki), gY2e = gY(Ω̃2e,Ke). (2.25)

In the definition (2.20), the quantity Ω̃2
2 is not an argument of the function dJ (nor of dY); it is

evaluated at Ω̃2i or Ω̃2e, always with a subscript 2. This is a consequence of the way the term
(ωr/c2)

2 enters the boundary conditions (2.12)–(2.13). In comparing the coefficients in (2.10)–
(2.11) with those in (2.20)–(2.23), recall that the definitions of Ω̃2

1 and Ω̃2
2 include a term −(kr)2.
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Figure 1. Dispersion relation for a cylindrical tube with Poisson’s ratio ν = 0.3 and dimensionless wall thickness ε=

h/a= 0.25. The axes are the radius-scaled frequency Ω = ωa/c0 and wavenumber K = ka. Exact dispersion curves

from the determinant equation (3.1) are (solid, black); approximate curves and their equation numbers in the text are (a)

(black, dashed): (3.19), (4.1); (b) (red, dashed): (4.4); (c) (blue, dash-dotted): (4.8); (d) (red, dash-dotted): (4.9); (e) (blue,

dotted): (5.13). On the second branch, curves (a) and (e) are indistinguishable. The upper placings of the letters indicate

the range of validity of the various approximations. For example, approximation (a) is valid up to about K = 3 on the first

branch, and K = 6 on the second branch. Note the very wide range over which approximation (b) is accurate.

3. The dispersion relation
The governing equations have a non-trivial solution when the determinant of equations (2.16)–
(2.19) for the modal coefficients (AJ

1, A
Y
1 , A

J
2, A

Y
2 ) is zero, i.e.∣∣∣∣∣∣∣∣∣∣∣

dJ1i dY1i eJ2i eY2i

dJ1e dY1e eJ2e eY2e

fJ1i fY1i gJ2i gY2i

fJ1e fY1e gJ2e gY2e

∣∣∣∣∣∣∣∣∣∣∣
= 0. (3.1)

As a relation between ω and k, this is the dispersion relation for axisymmetric waves with
meridional displacement. Numerical evaluation of the determinant gives the first branches of
the dispersion relation as the solid curves in figure 1, which is for Poisson’s ratio ν = 0.3 and
dimensionless thickness ε= h/a= 0.25. Our aim in what follows is to derive simple analytical
approximations to this dispersion relation, valid in as wide a range of frequency and wavenumber
as possible, by proceeding deductively from (3.1) rather than by making kinematic hypotheses.

When K = 0, the f terms defined by (2.22) are zero, and the block structure of (3.1) then gives
a factorisation into the product of the d terms and the g terms, i.e. as the product of two 2× 2

determinants. These give the cut-on frequencies, separated into two families according to the
type of displacement field. Later, we shall be interested in the special case ν = 0, for which the
two factors give the frequency equations

J ′′0,1i Y
′′
0,1e − Y ′′0,1i J

′′
0,1e = 0, J ′0,2i Y

′
0,2e − Y ′0,2i J

′
0,2e = 0. (3.2)

Here J ′′0,1i = J ′′0 (Ω1i), Y ′′0,1e = Y ′′0 (Ω1e), etc, where Ω1i = ωai/c1 and Ω1e = ωae/c1, and similarly
for the subscript 2, with c2 instead of c1. When ν = 0, the definitions (2.2) give c21 = c20, c22 = c20/2,
and c21 = 2c22; these relations are used in deriving (3.2).

Another feature of (3.1) when ν = 0 is that it contains Ω2 −K2 as a factor. This means that in
the positive quadrant of the (frequency, wavenumber) plane, exact crossings are possible of the
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straight lineΩ =K with other branches of the dispersion relation. A short analysis of (3.1), taking
account of the many zero terms which occur, and using L’Hôpital’s rule, shows that this occurs
when the frequency satisfies the first of equations (3.2). This is a remarkable result. It implies that
for ν = 0 the crossing frequencies are the same as those of one of the families of cut-on frequencies,
even though in the dispersion plane these points are remote from each other, and have no obvious
connection. We have checked numerically up to machine precision that in any dispersion diagram
for ν = 0, if a vertical line (parallel to the wavenumber axis) is drawn downwards from any
crossing point, it does indeed intersect the frequency axis at a cut-on frequency; and moreover,
the converse does not hold, in that the cut-on frequencies satisfying the second of equations (3.2)
cannot be obtained in this way. We make use of these facts in §8 in checking series expansions for
small Poisson’s ratio.

(a) Expansion in powers of the thickness
We now derive a series expansion of the dispersion relation in powers of the dimensionless
thickness ε= h/a. The quantities defined in and after (2.24) may be expressed in terms of central
values (Ω̃1a, Ω̃2a,K) = (Ω̃1(a), Ω̃2(a), ka) as

(Ω̃1i, Ω̃2i,Ki) = (1− 1
2 ε)(Ω̃1a, Ω̃2a,K), (3.3)

and similarly for (Ω̃1e, Ω̃2e,Ke) with 1 + 1
2 ε instead of 1− 1

2 ε. The individual entries in the
determinant (3.1) have series expansions in ε in which the coefficients involve the Bessel functions
(J0, Y0) and their derivatives evaluated at Ω̃1a and Ω̃2a. Hence the full determinant also has a
series expansion of this type.

At first sight, the series so obtained would appear to be of limited use because it involves
complicated expressions in high derivatives of Bessel functions. However, the symmetry of the
basic determinant (3.1) is such that the Bessel functions occur only in certain combinations which
we shall call higher Wronskians, and which are all expressible as polynomials in the reciprocal
of their arguments. Hence the series simplifies to a quite remarkable extent, and is in fact of
considerable use, not least in providing a rigorous check of the validity of any result derived from
a kinematic hypothesis. It must be emphasized that the coefficients finally obtained in the series
expansion in ε are exact polynomial expressions in the frequency and wavenumber; they are not
truncations of infinite series. That this occurs is a new feature of the present work.

(b) Wronskian identities
The Wronskian W =W (s) of Bessel functions (Jµ, Yµ) = (Jµ(s), Yµ(s)) is [9, p. 222]

W = JµY
′
µ − J ′µYµ =

2

πs
, (3.4)

where a dash denotes the derivative with respect to s. On differentiating this relation repeatedly
with respect to s, a set of identities is obtained which can be expressed in terms of the higher
Wronskians Wmn =Wmn(s) defined for non-negative integers m and n by Wmn = J

(m)
µ Y

(n)
µ −

J
(n)
µ Y

(m)
µ . The first two of these identities are

W02 =−
2

πs2
, W03 +W12 =

4

πs3
. (3.5)

The original Wronskian is W =W01, and we also have the basic relations

Wmn =−Wnm, W ′mn =Wm+1,n +Wm,n+1. (3.6)

In particular, Wmm = 0 and W ′m,m+1 =Wm,m+2 for all m. We shall often omit the term ‘higher’
when referring to higher Wronskians.
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A further set of identities is obtained by successively differentiating and cross-multiplying
Bessel’s equation for Jµ and Yµ, i.e.

pJ ′′µ + qJ ′µ + rJµ = 0, pY ′′µ + qY ′µ + rYµ = 0. (3.7)

Here p= s2, q= s, and r= s2 − µ2. (The variable r has temporarily a different meaning from
earlier.) The first two derivatives of the equation for Jµ, for example, are

pJ
(3)
µ + (p′ + q)J ′′µ + (q′ + r)J ′µ + r′Jµ = 0, (3.8)

pJ
(4)
µ + (2p′ + q)J

(3)
µ + (p′′ + 2q′ + r)J ′′µ + 2r′J ′µ + r′′Jµ = 0, (3.9)

and likewise for the Yµ equations, with the same coefficients. Continuing in this way, we obtain,
for m≥ 2, a set of equations with first terms pJ(m)

µ or pY (m)
µ . These equations contain binomial

coefficients, because the terms arise from successive derivatives of products.
Let us say that if we multiply the pY (n)

µ equation by J(m)
µ , and subtract the pJ(n)

µ equation

multiplied by Y (m)
µ , where n≥ 2 and m≥ 0, the result is the (m,n) equation. Then we obtain a

set of linear equations in the higher Wronskians, in which the (m,n) equation begins with the
term pWmn (unless m= n, in which case the term is absent). The coefficients in these equations
are the same as those in (3.8)–(3.9) and their higher derivatives. The set of Wronskians Wm′n′

appearing in these equations may be restricted to n′ >m′, by the anti-symmetry property in (3.6);
this has the effect of changing the sign of some of the terms.

For illustration, the first two identities for m= 0 are

pW02 + qW01 = 0, (3.10)

pW03 + (p′ + q)W02 + (q′ + r)W01 = 0, (3.11)

the first two for m= 1 are

pW12 − rW01 = 0, (3.12)

pW13 + (p′ + q)W02 − r′W01 = 0, (3.13)

and the first two for m= 2 are

qW12 + rW02 = 0, (3.14)

pW23 − (q′ + r)W12 − r′W02 = 0. (3.15)

From the definitions of p, q, r after (3.7), the only derivatives needed in the identities are p′ = r′ =

2s, p′′ = r′′ = 2, and q′ = 1, since the higher derivatives are zero. In consequence, it is a simple
matter to express all higher Wronskians in terms of the basic Wronskian W =W01 = 2/(πs), and
so obtain explicit formulae for the Wmn in terms of s and µ. It is evident from the structure of
the equations that except for a factor of 1/π throughout, the Wmn are polynomials in 1/s with
coefficients which are polynomials in µ. The calculation lends itself to a short Mathematica code.
For example, some of the Wronskians for small (m,n) are

W03 =
−2s2 + 4 + 2µ2

πs3
, W12 =

2(s2 − µ2)
πs3

, W13 =−
2(s2 − 3µ2)

πs4
, (3.16)

and a Wronskian for somewhat higher (m,n) is

W34 =
2s6 − 6(1 + µ2)s4 + 6µ2(2 + µ2)s2 − 2µ2(4− 5µ2 + µ4)

πs7
. (3.17)

Not all of the identities are needed in calculating the Wmn. Those not needed are useful for
checking the code, since evaluation of their left-hand sides, using previously computed quantities,
must give zero.
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(c) Series expansion of the dispersion relation
We saw after (3.3) that the dispersion relation has a series expansion in ε= h/a with coefficients
involving the Bessel functions (J0, Y0) and their derivatives evaluated at the central values
Ω̃1a and Ω̃2a. This series in ε may be calculated in Mathematica, and then simplified by
applying the above identities for µ= 0. The result, which is far from obvious in advance, is
that no individual Bessel functions or their derivatives remain: the coefficients in the series are
polynomial expressions in the Wronskians Wmn(Ω̃1a) and Wmn(Ω̃2a), in combination with even
powers of K, Ω̃1a, and Ω̃2a. On clearing of common factors, including a factor ε2, the series takes
the form

a0 + a2ε
2 + a4ε

4 + · · ·= 0, (3.18)

in which only even powers of ε occur, and the coefficient a2l of ε2l involves Wronskians Wmn

up to m+ n= 2l + 3. Thus to obtain the expansion up to order ε4, for example, we need the
Wronskians up to m+ n= 7. The expressions for these Wronskians are short; for example, (3.17)
shows that W34(s) = 2(s2 − 3)/(πs3) for µ= 0. Thus the total simplification obtainable by the
Wronskian method is very great.

It is convenient to express the coefficients a2l in (3.18) in terms of the dimensionless frequency
Ω = ωa/c0 and use the notation α= (c1/c0)

2 and β = (c2/c0)
2, so that Ω̃2

1a = α−1Ω2 −K2 and
Ω̃2

2a = β−1Ω2 −K2. The first coefficient is

a0 =
α

4β(α− β)Ω
4 − (1 +K2)Ω2 +K2, (3.19)

which gives the leading-order approximation a0=0 to the dispersion relation. In deriving a0 we
have used the identity β(3α− 4β)/(α− β) = 1, which follows from the definitions of c1 and c2 in
terms of Poisson’s ratio, as given in (2.2).

The equation a0 = 0 is the membrane-theory approximation [2] to the dispersion relation, in
which the bending stiffness of the tube wall is ignored. The higher coefficients a2l contain even
powers K2σΩ2τ up to σ + τ = l + 2, with σ≥ 0 and τ ≥ 0, but excluding σ= τ = 0; thus a2l for
l≥ 1 contains (l + 2)(l + 5)/2 terms. Hence a2 has 9 terms, and a4 has 14. These numbers of terms
are one less than triangular numbers; for l= 0 the number is two less, because both K4 and the
constant term are absent.

The second coefficient a2 in (3.18) may be written
∑3

0 a2,2τΩ
2τ , where

a20 =
αK2(−3 + 2K2) + 2β(α− β)K6

6α
, (3.20)

a22 =
α2(6−K2 − 8K4)− αβ(6 + 5K2 − 12K4) + 4β2K2(2−K2)

12α(α− β) , (3.21)

a24 =
α2(−3 + 16K2) + 8αβ(1−K2)− 4β2(2 +K2)

48αβ(α− β) , a26 =−
α+ β

24β2(α− β)
. (3.22)

Here the terms are grouped in powers of (α, β), rather than (Ω,K).
The third coefficient a4 in (3.18) has the form

∑4
0 a4,2τΩ

2τ , in which a4,2τ is a polynomial in
K of degree 8− 2τ , containing even powers of K only, but we shall need only the highest degree
terms in this expression. Their sum is ã4 =

∑
ã2σ,2τK

2σΩ2τ , where σ + τ = 4 and

ã80 =
2β(α− β)

45α
, ã62 =

−5α2 + 2αβ + β2

45α2
, ã44 =

8α3 − 4α2β − 5αβ2 + 2β3

90α2β(α− β)
, (3.23)

ã26 =
−9α3 − 9α2β + 9αβ2 + β3

360α2β2(α− β)
, ã08 =

(3α+ β)(α+ 3β)

1440αβ3(α− β)
. (3.24)

4. Elementary theory for a thin-walled tube
Truncations of the series (3.18) give accurate approximations to the exact dispersion relation (3.1).
For example, if terms up to order ε4 are retained, the result is accurate up very high frequencies
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and wavenumbers even for a thick-walled tube; and if only the first term a0 is retained, this
still provides a good approximation up to (Ω,K) = (1, 1). Intermediate approximations are also
available. These remarks are amplified in what follows, based on numerical evaluation of the
exact dispersion relation and its various approximations.

(a) Leading order terms
The leading-order approximation a0 = 0 is curve a in figure 1, which is for Poisson’s ratio ν = 0.3

and dimensionless thickness ε= 0.25. This approximation has two branches, and from the identity
4β(α− β)/α= 1/(1− ν2) we may write its equation a0 = 0, except when Ω2 = 1, in the form

K2

1− ν2
=Ω2

{
Ω2 − (1− ν2)−1

Ω2 − 1

}
. (4.1)

Thus unless ν = 0, the approximation a0 = 0 gives a frequency gap in the range

1<Ω2 <
1

1− ν2
, (4.2)

for which there are no real values of K. (We treat the case ν = 0 in detail in §5.) In the exact
dispersion relation, this gap exists up to K somewhat greater than 1, beyond which the first
branch bends over to the right, a feature not captured by the approximation a0 = 0. The steeply
rising part of the dispersion curve at and just above K = 1 is evident in all the curves in figure 1,
and corresponds to a (frequency, wavenumber) region of low group velocity. At first sight, the
two parts of curve a with slopes near 1 appear to be close to two parts of a straight line. However,
(4.1) shows that the two parts have different slopes, since Ω2 'K2 near the origin, but Ω2 '
K2/(1− ν2) on the other branch. Hence the two parts are not asymptotes to the same straight
line unless ν = 0.

The curve a as a whole in figure 1 provides an accurate approximation to the first two branches
of the exact dispersion relation, except beyond Ω = 1 on the first branch and except at very high
frequencies on the second branch. It is accurate where bending stiffness is negligible, i.e. where
membrane theory applies. On the part of curve a with slope close to 1, the displacement is axial,
and on the part with nearly vertical slope near the frequency axis, the displacement is radial.
The equation a0 = 0 gives a second-branch cut-on frequency Ω0 = (1− ν2)−1/2, which is a first
approximation to the ring frequency when ε 6= 0, but is exact when ε= 0. Nearby, the series
expansion of curve a, obtainable from (3.19) or (4.1), is

Ω2 =
1

1− ν2
+

ν2

1− ν2

{
K2 + (1− ν2)K4 +O(K6)

}
. (4.3)

The smallness of the coefficient ν2/(1− ν2) explains the flatness of the dispersion curve near cut-
on; for Poisson’s ratio ν = 0.3, the value of this coefficient is 0.09890, and in the corresponding
expansion of Ω rather than Ω2, the coefficient of K2 is 0.04717. These formulae are of course
approximations to the exact values, though very good ones, because they are based solely on a0.

(b) Higher order terms
In (3.18), let us now keep the three terms displayed, except that in a4 we retain only the highest
powers of Ω and K as defined by the coefficients (3.23)–(3.24). The reason for omitting the lower
powers is that the term a4ε

4 is significant only at very high frequencies and wavenumbers, and
then the lower powers of Ω and K in a4 may be ignored. In effect, this gives a matching rule to
high frequencies and wavenumbers. The result is the high-order approximation

a0 + a2ε
2 + ã4ε

4 = 0, (4.4)

with a0 and a2 given by (3.19)–(3.22), and ã4 as defined just before (3.23).
Numerical evaluation shows that approximation (4.4) is spectacularly accurate. In figure 1, for

ν = 0.3, ε= 0.25, it gives branches b which are almost indistinguishable from the exact branches
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up to Ω = 9 and K = 10. Even for ε as large as 0.5, corresponding to a tube with outer radius
three times the inner radius, the curves are indistinguishable up to Ω = 4 and K = 6. Thus the
approximation applies even for a thick-walled tube up to high frequencies and wavenumbers.

(c) Dispersion relation near the ring frequency
Near the ring frequency, the approximation (4.3) may be extended to include as many terms
b2n,2mε

2nK2m as desired, where the coefficients b2n,2m may be calculated exactly from (3.18)
as rational expressions in α and β, or equivalently in ν from (2.2). The displayed terms in (4.3)
correspond to

b00 =
1

1− ν2
, b02 =

ν2

1− ν2
, b04 = ν2, (4.5)

and beyond this the simplest coefficients are

b20 =
β(α− β)(5α− 8β)

3α2
=

1 + 3ν

12(1− ν2)(1− ν)
=

1

12
+
ν

3
+

5ν2

12
+

2ν3

3
+ · · · (4.6)

and

b22 =−
2β(α3 − 2α2β + 2αβ2 − 2β3)

3α3
=− 1− 4ν2(1− ν)

12(1− ν2)(1− ν)2
=− 1

12
− ν

6
− ν3

6
− ν4

12
+ · · · .

(4.7)
Here the series form of b22 has no term in ν2.

Instead of using exact expressions for b2n,2m, an alternative is to use the coupling theory
developed in §5, with Poisson’s ratio regarded as a small parameter at the outset. Full details
are given in §6.

(d) Intermediate approximations
We saw that on the first branch of the dispersion relation, the approximation a0 = 0 is valid up
to near Ω = 1. To go beyond this in the simplest way, i.e. using as few terms as possible from the
approximation (4.4), we use the method of dominant balances, in which scalings of Ω and K in
powers of ε are identified for which a number of terms balance at leading order, the remaining
terms all being smaller as measured by the power of ε they contain.

The first such balance isΩ = 1 +O(ε2/3),K =O(ε−1/3), which brings in the term of orderK6

from a2, to be added to the terms in a0. The result is the approximation

α

4β(α− β)Ω
4 − (1 +K2)Ω2 +K2 + ε2

β(α− β)
3α

K6 = 0, (4.8)

plotted as curve c in figure 1 for ν = 0.3, ε= 0.25. This approximation corrects the asymptote in a0,
and is accurate up to about K = 3 on the first branch, and K = 4 on the second branch. Equation
(4.8) is practical, as it captures in the simplest way the transition which occurs as Ω increases
through 1.

The next balance is Ω =O(1), K =O(ε−1/2), but with Ω not too close to 1 (in which case the
previous balance would apply). The leading terms, of order ε−1, give a subset of the terms in
(4.8), and so do not give a new result. Inclusion of the next highest terms, of order 1, gives the
approximation

a0 + â2ε
2 + â4ε

4 = 0, (4.9)

where

â2 =
β(α− β)K6 + {(β − 2α)Ω2 + α}K4

3α
, â4 =

2β(α− β)K8

45α
. (4.10)

Curve d in figure 1 shows that on the upper branch this is accurate up to about Ω = 4, K = 8 for
ν = 0.3, ε= 0.25, extending the range of (4.8). Our starting point for this balance, K =O(ε−1/2),
is targeting the upper branch fairly high up, and so high accuracy of (4.9) is not to be expected
on the lower branch. Nevertheless, the figure shows that accuracy is maintained up to about
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K = 2, and the approximation is at least qualitatively correct on the lower branch up to aboutK =

4. Similar remarks apply, but with less force, to the previous approximation for K =O(ε−1/3),
because ε−1/3� ε−1/2 when ε� 1, so that the target area is then lower; and indeed, curve c is
more accurate than curve d on the lower branch, but less accurate on the upper branch.

Other approximations, based on subsets of the terms in (4.4), are possible. These involve a
trade-off between accuracy in different regions. We have presented only approximations with no
spurious branches, but in fact there are outstanding approximations whose only flaw is a spurious
branch. The most notable of these is the approximation a0 + a2ε

2 = 0, keeping the terms up to
order ε2, but no others. This is nearly as accurate as (4.4), but has a spurious branch to the left
of the third branch in figure 1, and of a similar shape. The absence of spurious branches is an
advantage in practice, and we have found that matching to high frequencies, by the inclusion of
selected higher terms, such as ã4ε4, eliminates them. We regard high-frequency matching, based
on rational scaling arguments of the type presented here, to be an invaluable part of the theory.

5. Factorisation and coupling theory
When Poisson’s ratio is zero, the dispersion relation (3.1) contains a factor Ω2 −K2. This
is an exact result for any thickness of the tube wall, not dependent on series expansions
in ε. Geometrically, it means that the straight line pair Ω2 =K2 crosses other branches of
the dispersion curve. Dynamically, the explanation is that, for zero Poisson’s ratio, an axially
propagating compression wave (a ‘bar wave’) is decoupled from any other type of wave motion
in the tube, because it produces no lateral displacement. Since the dispersion relation of this wave
is Ω2 −K2 = 0, the factorisation property follows at once.

Henceforth, Poisson’s ratio ν is taken to be a small parameter. In view of the identities

ν =
α− 2β

2(α− β) , 1− ν2 = α

4β(α− β) , (5.1)

it follows that equivalent criteria to ν = 0 for factorisation, i.e. for decoupling, are α= 2β or
4β(α− β)/α= 1.

The factorisation might be thought to be too special to be of interest, as it occurs for only one
value of ν. But numerical results show that, for any value of ν in the allowed range−16 ν 6 1

2 , the
first two branches of the dispersion relation are merely perturbed versions of the factorised form
for ν = 0. For example, in figure 1, for Poisson’s ratio 0.3, the narrow waist near (Ω,K) = (1, 1) is
an avoided crossing (‘veering’) [13] between a curve close to the straight line Ω =K and another
curve proceeding upwards and then to the right. That is, the waist is recognisably a perturbation
of a crossing. This suggests that a perturbation analysis for small ν, i.e. weak coupling, will give
accurate results in a wide range about zero, i.e. for Poisson’s ratios which are not in fact small and
the coupling is quite strong. In this second half of the paper, we provide such an analysis, and
demonstrate numerically the high accuracy of the resulting perturbation series.

(a) A coupling ansatz
To obtain an ansatz representing the type and strength of coupling, it is simplest to start by
expanding the coefficients a0, a2, a4 . . . in (3.18) in powers of ν, using the definitions α= (c1/c0)

2

and β = (c2/c0)
2. This gives

a0 = (Ω2 −K2)(Ω2 − 1)− ν2Ω4, (5.2)

a2 = (Ω2 −K2)(p20 + νp21)− ν2(q20 + νq21 + ν2q22 + · · · ), (5.3)

a4 = (Ω2 −K2)(p40 + νp41)− ν2(q40 + νq41 + ν2q42 + · · · ), (5.4)

and so on, where the quantities pmn and qmn are polynomials inΩ2 andK2. The key feature here,
which is not obvious in advance, is that every term of order ν0 and ν1 is divisible by Ω2 −K2.
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Hence re-arrangement of the terms in (3.18) gives

(Ω2 −K2)
{
Ω2 − 1 + ε2(p20 + νp21) + ε4(p40 + νp41) + · · ·

}
= ν2

{
Ω4 +

∞∑
n=0

νn(ε2q2,n + ε4q4,n + · · · )
}
, (5.5)

which we shall call the coupling ansatz form of the dispersion relation. The right-hand side gives
an exact measure of the coupling which occurs when ν is perturbed from the special value ν = 0

at which coupling is absent. In this latter case, the dispersion relation separates into Ω2 =K2 and

Ω2 − 1 + ε2p20 + ε4p40 + · · ·= 0. (5.6)

Thus when ν = 0, crossings occur when (5.6) and the equationΩ2 =K2 hold simultaneously. The
crossing-points may be written (Ω,K) = (Ωc(ε),Kc(ε)), and in §8 we give an expression for the
first crossing-point, which is close to (Ω,K) = (1, 1). Another special value is ε= 0, for which (5.5)
reduces to a0 = 0. By (5.2), this is a quadratic equation in Ω2, with roots

Ω2 =
1 +K2 ±

{
(1−K2)2 + 4ν2K2}1/2
2(1− ν2)

. (5.7)

When K = 0, this gives Ω2 = 0 and Ω2 = 1/(1− ν2), the latter giving an exact expression for the
ring frequency when ε= 0, consistent with §4a and the value of b00 given in (4.5).

The coefficients in (5.5) are found by expanding the formulae in §3c in powers of ν. The first
few are

p20 =
1

12

{
6− (Ω2 + 4K2)− (2Ω2 −K2)(3Ω2 −K2)

}
, p21 =−

1

6
Ω2(2Ω2 −K2), (5.8)

q20 =
1

12

{
Ω2(Ω2 − 4K2)− (10Ω6 − 6Ω4K2 − 2Ω2K4 +K6)

}
. (5.9)

(b) A hierarchy of approximations
To construct approximations which are accurate over a wide range, we again use the method of
dominant balances, in which as many terms as possible in an equation are balanced at leading
order [10,11,15]. Numerically, it is found that the resulting approximations are accurate over a
wider range than is implied by the assumptions. In (5.5), a dominant balance is achieved by taking
Ω and K to be of order 1, and ε and ν to be small quantities of the same order of magnitude.

In this way, we obtain a hierarchy of approximationsD0, D2, . . . to the dispersion relation (5.5).
The first approximation D0 contains only the leading-order terms, and is the factorised form

(Ω2 −K2)(Ω2 − 1) = 0. (5.10)

The next approximation D2 includes also the terms in ε2 and ν2, and so is

(Ω2 −K2)(Ω2 − 1 + ε2p20) = ν2Ω4. (5.11)

To construct D4, we could include the terms in νε2, ε4 and ν2ε2. (There are no terms of order νn

for n> 2 in truncations of (5.5), because the exact expression (5.2) for a0 terminates at order ν2.)
However, as in §4b, it is sufficient to retain in p40 and q20 only the highest powers of Ω and K,
since this suffices to give excellent matching when Ω and K approach values of order ε−1. These
powers are the terms of degree 6 in p40 and q20, which we denote p406 and q206. Therefore we
take approximation D4 to be

(Ω2 −K2)
{
Ω2 − 1 + ε2(p20 + νp21) + ε4p406

}
= ν2(Ω4 + ε2q206). (5.12)

The Novozhilov-Goldenvizer and Donnell-Mushtari approximation in shell theory [2,16] is

(Ω2 −K2)
(
Ω2 − 1− 1

12
ε2K4)= ν2

{
Ω4 − ε2K6

12(1− ν2)

}
. (5.13)
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Figure 2. Factorised-form approximations to the dispersion relation for Poisson’s ratio ν = 0.3 and thickness ε= 0.25.

The approximations and their equation numbers are (a) (red, dash-dotted): (5.11); (b) (red, dashed): (5.12); (c) (blue,

dotted): (5.13). Exact dispersion curves from (3.1) are (black, solid). As in figure 1, the placings of the letters indicate the

range of validity of the approximations. Curve (c) is also shown as curve (e) in figure 1.

This is similar in form to (5.12) with suitable coefficients, especially p21 and p406 taken to be zero,
except that q206 now depends also on ν.

ApproximationsD2 andD4 are shown as curves a and b in figure 2 for (ν, ε) = (0.3, 0.25). Their
wide range of accuracy is evident, and D4 in particular extends the frequency and wavenumber
range of the shell theory approximation (5.13), marked as curve c. See also figure 1, which includes
(5.13) as curve e. A comparison of figures 1 and 2 shows that, numerically, nothing is lost by
using low-order series in Poisson’s ratio, as opposed to the corresponding exact expressions.
Functionally, much is gained, because of the clarity of (5.10)–(5.12).

6. The ring frequency and negative group velocity
We now determine the shape of the dispersion curve at frequencies near the ring frequency,
i.e. near the cut-on frequency of the second branch. Our method is to obtain a series expansion
for Ω2 as a function of K2 in a wide range of K at frequencies near cut-on, using the coupling
theory just developed. This approach is simpler than using the exact formulae of §4, and gives
approximations which numerically are almost indistinguishable from exact results. The main
result is that for a range of values of Poisson’s ratio, the width of which depends on the thickness
of the tube wall, there is a region of negative group velocity, i.e. an arc of the dispersion curve
which slopes backwards at frequencies just below the ring frequency. Although such arcs are
known to occur in related problems, e.g. for symmetric waves in a plane layer [17,18] and non-
axisymmetric waves in a fluid-loaded tube [19], this is a new result for axisymmetric waves or
an unloaded tube. We verify it below, both from the exact dispersion relation (3.1) and from a
coupling expansion, which describes it in fine detail.

(a) Ansatz for the cut-on region
A suitable ansatz for the dispersion curve near the cut-on region is

Ω2 = 1 +A02ν
2 +A04ν

4 + · · · +
∞∑
n=0

νn(ε2A2,n + ε4A4,n + · · · ), (6.1)
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where the coefficientsAmn are functions ofK2. Here only even powers of ν occur in the ε0 terms,
but both odd and even powers of ν multiply the powers ε2, ε4, . . .. Substitution of (6.1) into the
dispersion relation (3.18) gives

A02 =
1

1−K2
, A04 =

1− 2K2

(1−K2)3
, A20 =

1

12
{1−K2(1−K2)}, A21 =

1

3

(
1− 1

2
K2),

(6.2)
and further terms are readily obtained. Asymmetry in Poisson’s ratio first occurs in terms of order
νε2, via A21, and next in terms of order ν3ε2 and νε4.

A check of the ε0 terms in (6.1) is that they agree with the Taylor series expansion in ν of the
exact result (5.7), with the positive sign before the square root. The coefficients (6.2) are exact, i.e.
they are not simply leading-order approximations to more accurate expressions. They show that
the square of the ring frequency, obtained from (6.1) evaluated at K = 0, is

Ω2 =
1

1− ν2
+ ε2

( 1

12
+
ν

3
+

5ν2

12
+

2ν3

3
+ · · ·

)
− ε4

( 1

48
− 11ν

180
+ · · ·

)
+O(ν4ε2, ν2ε4, ε6).

(6.3)
Here the terms multiplying ε2 agree with (4.6), i.e. the exact expression in α and β for b20.
The terms multiplying ε4 would be obtainable from a lengthy expression for b40 if the coupling
approach were not used.

For non-zero K, we again adopt a dominant balance approach by selecting the leading terms
when ε and ν are assumed to be small but of the same order. This gives

Ω2 = 1 +
ν2

1−K2
+
ε2

12
{1−K2(1−K2)}+ νε2

3

(
1− 1

2
K2
)
+O(ν4, ν2ε2, ε4), (6.4)

in which the functions of K are exact. However, we have the option of expanding these functions
in powers of K, if K2 < 1. This gives, to third order,

Ω2 = 1 + ν2 +
ε2

12
+
νε2

3
+
(
ν2 − ε2

12
− νε2

6

)
K2 +

(
ν2 +

ε2

12

)
K4 +O(ν4, ν2ε2, ε4, ν2K6).

(6.5)
When K = 0, this agrees with (6.3) to the order stated. The coefficient of K4 in (6.5) has no term
of order νε2 because the exact expression for A21 in (6.2) is quadratic in K; it also has no terms
of order νn for n> 2, a consequence of the exact expression for b04 in (4.5). A short calculation
shows that the fourth order terms in the coefficient of K2 are ν4 − ε4/60, but there is no term in
ν2ε2. It is not easy to see in advance which terms will be absent.

(b) Region of negative group velocity near the ring frequency
A striking feature of (6.5) is that the coefficient of K2 is negative when ν2/(1 + 2ν)< ε2/12. This
condition is equivalent to ν−(ε)< ν < ν+(ε) where

ν±(ε) =±
ε√
12

+
ε2

12
+O(ε3). (6.6)

Thus for Poisson’s ratios which are not too large in modulus, the dispersion curve slopes
backwards near the ring frequency, corresponding to negative group velocity. This is the new
result referred to earlier. In particular, the slope is always backwards when Poisson’s ratio is zero.
We have seen in figures 1,2 that approximations based on series in ε2 are accurate when ε is as
large as 0.25, and further numerical calculations have confirmed their accuracy up to ε somewhat
beyond 0.4. Thus a region of negative group velocity near cut-on is confirmed to exist in a large
region of (ε, ν) parameter space. Only for extremely thin-walled tubes, i.e. very small ε, is the
existence of the region restricted to a narrow range of Poisson’s ratio. From (6.6), the asymmetry
of the region is evident: it extends slightly further to positive ν than to negative ν.
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Figure 3. Region of negative group velocity (backward slope) for (ε, ν) = (0.25, 0.01). The solid curves are parts of the

first and second branches of the exact dispersion relation (3.1), and the red dashed curve is approximation (6.5). The dot

is at the ring frequency, where K = 0, and the cross is at the critical point, where (Ω,K) = (Ωm,Km); these lie on the

dashed curve. Note the elongated frequency scale: the arc of negative group velocity would be indistinguishable from a

vertical straight line if drawn on the scale of figures 1 or 2, and the two branches would appear to join up and cross.

Differentiation of (6.5) shows that dΩ/dK = 0 at the critical wavenumberK =Km =Km(ε, ν),
where

K2
m '

1

2

(
1 + 2ν − 12ν2/ε2

1 + 12ν2/ε2

)
. (6.7)

The frequency has a local minimum Ω =Ωm at this wavenumber. A check of the neglected terms
in (6.5), notably the termO(ν2K6), shows that approximation (6.7) is valid when eitherKm� 1 or
|ν| � ε. The former case arises for ν ' ν±(ε), and the latter for Km ' 1/

√
2. The range of negative

group velocity is 0<K <Km. Since Km is of order one except when ν is very close to ν±(ε), it
follows that this wavenumber range is broad in general.

Formulae (6.1)–(6.7) simplify when Poisson’s ratio is zero, because so many of the terms then
vanish. A full parameter study in the (ε, ν) plane requires the exact expressions (6.2), rather than
the series approximation in K used in (6.5), and will be reported elsewhere. Figure 3 shows the
region of negative group velocity in the (Ω,K) plane for (ε, ν) = (0.25, 0.01). The solid curves are
exact, as calculated from (3.1), and the dashed curve is approximation (6.5). It can be seen that
the agreement is excellent. The arc of negative group velocity extends from the ring frequency,
marked with a dot, to the critical point, marked with a cross. These points are obtained from (6.5)
evaluated at K = 0 for the ring frequency, and at (Ω,K) = (Ωm,Km) for the critical point.

The horizontal scale of the figure shows that the frequency is almost constant over a wide
range of wavenumbers. Physically, this means that, near the ring frequency, a wide range of axial
wavenumbers can be excited simultaneously, making possible a localised field which may need a
nonlinear correction in order to be represented accurately [20,21]. This is even more pronounced
when ν = ν±(ε), because the coefficient of K2 in (6.5) is then zero, and the dispersion curve
becomes even flatter near the ring frequency, having a quartic form in K rather than its usual
parabolic form. The extra flatness for ν = ν±(ε) is yet further enhanced by the smallness of the
coefficient of K4, which is then only ε2/6 +O(ε4), with the result that Ω2 differs from a constant
by only ε2K4/6, to leading order.

The region of negative group velocity is not captured by thin shell approximations, for example
(5.13). The formulae above suggest that a suitable form of thick shell theory is required, designed
to be uniformly accurate in a whole neighbourhood of (ε, ν) = (0, 0) in parameter space, rather
than merely in the ‘outer limit’ ε→ 0 at fixed ν. Such a development could be useful in the theory
of metamaterials designed to have small or negative Poisson’s ratio, and also in the theory of
nanotubes [20,21]. A possible starting point would be to include transverse shear and rotational
inertia, as in [22], for example.
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7. The modified bar wave
We now determine how the bar wave dispersion relation Ω2 =K2 must be modified to take
account of non-zero Poisson’s ratio ν. Analysis of (5.5) reveals that a suitable ansatz is

Ω2 =K2 + ν2K4{B00 + ν2B02 + · · · +
∞∑
n=0

νn(ε2B2,n + ε4B4,n + · · · )
}
, (7.1)

where the coefficients Bmn are functions of K2. Only even powers of ν occur in the ε0 terms, and
positive powers of ε are multiplied by at least ν2. Substitution of (7.1) into (5.5) gives

B00 =
−1

1−K2
, B02 =

K2(2−K2)

(1−K2)3
, B20 =

−3 + 5K2 −K4

12(1−K2)2
, B21 =

K2(2−K2)

6(1−K2)2
, (7.2)

and so on. The terms of (7.1) up to fourth order in ε and ν are

Ω2 =K2 + ν2K4(B00 + ε2B20 + ν2B02) + O(ν2ε4, ν3ε2, ν6), (7.3)

and expansion of the exact coefficients (7.2) in powers of K for K2 < 1, followed by ordering in
powers of K, gives

Ω2 =K2 − ν2K4
(
1 +

1

4
ε2
)
− ν2K6

(
1− 2ν2 +

1

12
ε2 − 1

3
νε2 + · · ·

)
+ · · · . (7.4)

Here the coefficients of K2 and K4 are exact, and the omitted terms in the coefficient of K6 are
O(ν2ε4, ν4ε2, ν6). The coefficient of K8 is O(ν2).

The series (7.4) converges when K2 < 1, but increasingly slowly as the waist region near
(Ω,K) = (1, 1) is approached. This region admits a separate analysis, which we now provide.

8. The waist region

(a) Exact crossing
When ν = 0 the bar wave dispersion curve Ω2 =K2 crosses the branch (5.6) near the point
(Ω,K) = (1, 1). The coordinates (Ωc(ε),Kc(ε)) of this point may be found as a series in ε2 by
taking Ω =K in (5.6), which gives

Ω2
c (ε) =K2

c (ε) = 1 +
1

12
ε2 − 1

48
ε4 + · · · . (8.1)

A check here is that (8.1) is the same as expansion (6.3) for the ring frequency when ν = 0. Recall
the exact result, established in §3, that for a Poisson’s ratio of zero, the crossing frequency and the
ring frequency are the same, a consequence of the block structure of the exact determinant (3.1).

(b) Avoided crossing
To determine how the crossing is avoided when ν 6= 0, in accordance with veering theory [13], it
is simplest to define local variables (ξ, η) by

Ω2 =Ω2
c (ε) + ξ, K2 =K2

c (ε) + ξ + η, (8.2)

and substitute into (5.5). On retaining all terms up to O(ε2, ν2), while allowing ξ and η to be as
large as order one, we obtain

η
{
ξ − 1

12
ε2
[
9ξ + η + (ξ − η)(2ξ − η

]}
+ ν2(1 + ξ)2 = 0, (8.3)

with error of order O(ε2ν, ε4). There are no error terms here of order νn, for any n, because (8.3)
is exact when ε= 0; it is then the equation a0 = 0 expressed in different variables, where a0 first
appeared in (3.18) and has reappeared in different guises since then.
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Figure 4. Approximation based on local variables centred on (Ω,K) = (Ωc(ε),Kc(ε)), near (1, 1), for (ε, ν) =

(0.25, 0.3). The solid curves are from the exact dispersion relation (3.1), and the red dashed curves are approximation

(8.3).

Approximation (8.3) is accurate over a wide range, as may be seen in figure 4, for (ε, ν) =

(0.25, 0.3). In constructing the figure, ξ and η are expressed in terms of (Ω2,K2, ε) using (8.2),
but with (8.1) truncated to 1 + ε2/12, because (8.3) is defined to exclude terms of order ε4. The
accuracy extends down to K = 0 as well as up to Ω ' 5 and K ' 5, even though both ν and ε

are far from small. The reasons for this wide range of applicability of (8.3) are twofold: (i) the
expansion is about the most degenerate point, namely (Ω,K) = (Ωc(ε),Kc(ε)), which acts as
an organising centre in the sense of bifurcation theory [23,24]; and (ii) the method of dominant
balances has been used in choosing the scalings to retain as many terms as possible at the same
order of magnitude, here ε∼ ν� 1 and ξ ∼ η∼O(1) in the terms after the leading approximation
ξη= 0.

9. Conclusions and further work
This paper has exploited a family of Wronskian identities to reduce a transcendental dispersion
relation to a series form in which the coefficients are low-order polynomials in the frequency
and wavenumber. By this means, a number of accurate approximations to the dispersion relation
have been derived, many of them tailored to particular regions of the (frequency, wavenumber)
plane and valid beyond the range of thin shell theories. Mathematically, the method of ‘higher
Wronskians’ and their properties offers scope for further use in mathematical science, because it
applies to linear boundary-value problems in general. Physically, as noted in §6, new extensions
of shell theory may be possible, for example by using the method of dominant balances in an
energy functional to determine a distinguished scaling in the shell thickness and Poisson’s ratio
simultaneously.

Promising applications are to metamaterials and nanotubes [20,21], including extensions
to account for transverse shear and rotational inertia [22], and nonlinearity. In particular, the
concluding section of [21] is explicit that current shell theory still has unresolved difficulties
near the ring frequency, because of the difficulty in framing suitable kinematic hypotheses to
account for the near-inextensibility of the mid-surface of the tube wall, and the parabolic form
of the even part of the circumferential stress. We see opportunities to combine our methods
with those of [20–22] to obtain new results, especially taking account of our comments in §6b
about the extreme flatness of the dispersion relation near the ring frequency, and the resulting
possibility of localised fields. An important feature of our results is that once the dispersion
relation is known to guaranteed accuracy, equations (2.14)–(2.15) then determine all stress, strain,
and displacement components explicitly. Hence series expansions of (2.14)–(2.15) in the transverse
coordinate determine unambiguously the dominant shape of cross-layer profiles—an important
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step in resolving doubts which might be felt about the kinematic hypotheses of shell theory near
the ring frequency.

Three new results in particular have emerged during our numerical experimentation with the
new formulae we have derived. The first is that for any thickness of the tube wall there exists a
range of Poisson’s ratio ν for which, near the ring frequency, the group velocity is negative. This
range always includes ν = 0, and increases in width as the tube wall becomes thicker. If the wall
is not too thick, the range is given by (6.6). It should be noted that a thin shell approach in which
Poisson’s ratio is held fixed, while the thickness of the tube wall is made arbitrarily small, may not
detect negative group velocities, which are not present for a thin enough shell at fixed non-zero
Poisson’s ratio.

The second new result is that perturbation analyses taking Poisson’s ratio to be a small
parameter are numerically accurate well beyond their initially assumed range, and extend at
least as far as ν =±0.3. This means that the factorisation and coupling theory developed from
§5 onwards, though superficially restricted in scope compared with the earlier approach, in fact
loses nothing—and has the advantage of capturing explicitly the negative group velocity.

The third new result is that simple approximations are accurate up to surprisingly high
frequencies and wavenumbers, illustrated for example by the dashed curves b in figure 1. The
key feature here is that the main small parameter of the theory is the dimensionless thickness
ε, and only later do we need to consider possible restrictions on frequency and wavenumber.
Numerically, ε need not be small. The graphs in the paper are for ε= 0.25, and we have found
that much of the accuracy is maintained when ε is as high as 0.4. Thus the formulae in the paper
are valid for a very wide range of thickness, Poisson’s ratio, frequency, and wavenumber.
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