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Abstract
The paper deals with elastic wave propagating in a layer on a half-space induced by a vertical force. The focus is on the
effect of a sliding contact along the interface and its comparative study with a perfect one. The effective boundary condi-
tions substituting the presence of the layer are derived. The leading order term in these conditions corresponds to verti-
cal inertia of the layer, whereas next order correction involves the effect of plate waves in the coating. Analysis of the
associated dispersion relation confirms the existence of a Rayleigh-type wave, along with extensional and shear plate
waves. An asymptotic hyperbolic-elliptic formulation for surface wave field is also presented. This includes a hyperbolic
equation singularly perturbed by a pseudo-differential operator playing a role of a boundary condition for the elliptic
equation governing decay over the interior. The sign of the coefficient at the pseudo-differential operator is demon-
strated to be always negative, corresponding to a local maximum of the phase speed at zero wave number, and conse-
quently to a distinct receding type of the Rayleigh-type wave quasi-front induced by an impulse load.
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1. Introduction

Coated structures have various important applications in modern engineering [1–3] to name a few. In
spite of numerous publications on the subject, dynamic analysis of such structures is still of substantial
interest. Among the robust approximate methods in this area the approach based on derivation of the
so-called ‘‘effective boundary conditions’’ along the interface, replacing the effect of a thin coating layer,
plays a key role, e.g., see the influential paper by Tiersten [4] and more recent contributions [5,6], and
also [7], and references therein. Nowadays, the development of effective boundary conditions usually
starts from implementation of the properly adapted asymptotic approach, initially established for thin
elastic plates and shells [8–10].

The vast majority of mathematical models for coated structures assume a perfect contact between the
coating and the substrate in various scenarios, e.g. see [11–14]. At the same time, only a few papers ana-
lyse a sliding contact. For the latter, the full dispersion relation for elastic waves in a layer resting on a
half-space was first studied in Achenbach and Keshava [15]. In addition to the dynamic phenomena
characteristic of a perfect contact, the presence of an extra longitudinal mode propagating along the
coating has been observed. We also mention [16], deriving the effective boundary conditions for a slid-
ing contact by expanding the tractions inside the coating as Taylor series.

The main focus of the publications concerned with elastic linear wave propagation on a coated half-
space is usually on Rayleigh-type waves [5,6,17]. In particular, an asymptotic formulation for a long
Rayleigh-type wave on a coated half-space for a perfect contact was established in Dai et al. [5]. This
paper extends the concept of explicit hyperbolic-elliptic models for surface waves, see the literature [18]
and references therein. More recent developments take into account anisotropy and pre-stress [19–21],
higher order effects [22], Dirichlet boundary conditions along the surface of a coated half-space [23], the
effects of surface oscillators [24, 25], and also include composite plate models [26].

In this paper, we extend the asymptotic methodology in Dai et al. [5] to the case of a sliding contact.
Two milestones are crucial for the consideration below. First, we derive effective boundary conditions
taking into account a weak coupling between the plane-stress motion of coating with the substrate.
These conditions are employed in qualitative dispersion analysis of the problem. We concentrate on the
long-wave behaviour of the Rayleigh-type wave, and extra extensional and shear plate waves propagat-
ing in the layer. Second, we adapt the derived conditions for formulating an asymptotic model for the
surface wave, resulting in a singularly perturbed hyperbolic equation on the interface, as in Dai et al.
[5]. Peculiarities of wave phenomena governed by this equation are also addressed.

The paper is organised as follows. As a preliminary, we present an illustative numerical example of a
single layer subject to a prescribed transient load at its upper face, and either fixed lower face or the lat-
ter under a sliding contact with a rigid base. Comparison of mid-plane displacements performed using
finite element software shows that for a sliding contact the tangential displacement significantly domi-
nates over the vertical one, whereas for a fixed lower face both displacements seem to be of the same
order. This is in line with initial physical insight, as well as observations of an extra longitudinal mode
in Achenbach and Keshava [15], and also more recent findings reported for an elastic contact in Erbasx
et al. [27,28].

Then, we derive the effective boundary conditions at the coating/substrate interface using a traditional
asymptotic procedure. At leading order, these conditions can be interpreted as the effect of distributed
surface vertical inertia. At next order, in contrast to a perfect contact, they support plate wave motion in
the coating governed by plane-stress theory.

Next, the associated leading order dispersion relation is analysed within both plane-strain and anti-
plane setups. In plane-strain case, a Rayleigh-type wave and an additional extensional ‘‘plate’’ wave are
observed, with the phase speed achieving its maximum value equal to the classical Rayleigh wave speed
at zero wave number. As might be expected, the anti-plane setup supports only a non-dispersive shear
wave on the coating.

Finally, a 3D hyperbolic-elliptic formulation for the Rayleigh-type wave field induced by an arbitrary
vertical load is obtained. It is comprised of an elliptic equation for the longitudinal wave potential over
the interior of the substrate, and a hyperbolic equation singularly perturbed by a pseudo-differential
operator, serving as a boundary condition for the elliptic equation. The presented results are formally
similar to those earlier reported in Dai et al. [5] for a perfect contact. However, the coefficient at the
pseudo-differential term now takes a simpler form than that in Dai et al. [5] and is shown to be always
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negative, whereas the analogous coefficient in Dai et al. [5] changes its sign depending on problem
parameters.

2. Statement of the problem

Consider a linearly isotropic, elastic half-space, coated with a thin layer of thickness h, subject to a pre-
scribed vertical force P (Figure 1).

The equations of motion are written conventionally as (see [29]):

divs = rq

∂2u

∂t2
, ð1Þ

where s is the stress tensor, u= (u1, u2, u3) is the displacement vector, rq is the volume mass density, and

index q takes the values q = c and q = s, associated with coating and substrate, respectively. The bound-
ary conditions at the surface x3 = � h are taken in the form:

s3i = 0, s33 = � P, ð2Þ

where i = 1, 2, and P = P(x1, x2, t) is a prescribed load. On the interface x3 = 0, we assume continuity of
vertical displacements and normal tractions, as well as zero tangential stresses, i.e.

s3i = s33½ �= u3½ �= 0, ð3Þ

with ½f �= lim
x3!+ 0

f � lim
x3!�0

f . Here, and further, we mean by the sliding contact a setup in which the tan-

gential stresses along both sides of the interface are equal to zero, see equation (3).
Hooke’s law is now adopted in the form convenient for the asymptotic procedure of the next section

[8,9]:

sij =
Eq

2 1 + nq

� � ∂ui

∂xj

+
∂uj

∂xi

� �

s3i =
Eq

2 1 + nq

� � ∂ui

∂x3

+
∂u3

∂xi

� �

sii =
Eq

1 + nq

2 1� k2
q

� � ∂ui

∂xi

+ 1� 2k2
q

� � ∂uj

∂xj

� �
+ 1� 2k2

q

� �
s33

∂u3

∂x3

=
1 + nq

Eq

2 1� k2
q

� �
3� 4k2

q

s33 �
1� 2k2

q

3� 4k2
q

s11 + s22ð Þ

0
@

1
A,

ð4Þ

where i 6¼ j = 1, 2, Eq, and nq are Young’s moduli and Poisson’s ratios, and, as above, q = c, s correspond
to either coating or substrate, with,

Figure 1. Coated half-space with sliding contact.
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kq =
c2q

c1q

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2nq

2� 2nq

s
, c1q =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eqnq

r 1 + nq

� �
1� 2 � nuq

� �
s

, c2q =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eq

2r 1 + nq

� �
s

, ð5Þ

where c1q and c2q denote the longitudinal and shear wave speeds, respectively.

3. Preliminary numerical insight

Let us present a numerical example stimulating further consideration. For simplicity, we adopt a plane-
strain assumption.

Consider an infinite, isotropic, elastic layer �‘\x1\‘, �h ł x3 ł h, under action of a transient verti-
cal load P = P(x1, t) of the form:

P = P0 H x1 � lð Þ � H x1 + lð Þð Þ 1� j t

t0
� 1j

� �
, ð6Þ

applied over a region � l ł x1 ł l at the upper face x3 = � h, see Figure 2, showing both the spatial and
temporal variation of the load. Here, P0 is the maximal amplitude of the load, and 2t0 is the duration of
loading.

In the computations below, the lengths are h = 0:125m, l = 10h, ensuring the length scale of the load
is much greater than the thickness. We also take t0 = 0:04 s and P0 = 8 kN=m. The material properties
are chosen as follows: Young’s modulus E = 15 MPa, Poisson’s ratio n = 0:3, and volume mass density
r = 1600 kg=m3.

Thus, the boundary conditions on the upper face x3 = � h are given by:

s31 = 0, s33 = � P, ð7Þ

On the lower face x = h, two following scenarios will be compared: either having this face fixed:

u1 = u3 = 0, ð8Þ

or imposing mixed boundary conditions (modelling a sliding contact):

u3 = s31 = 0, ð9Þ

The horizontal and vertical mid-plane displacements (at x3 = 0) taken at the time instant t = 0:2 s are
presented for a fixed face (Figure 3) and for a sliding contact (Figure 4).

For fixed lower face (8), see Figure 3, both mid-plane displacements are roughly of the same order
;10�7. On the contrary, in Figure 4 corresponding to conditions of a sliding contact (9), the horizontal
displacement (which is ;10�4) clearly dominates over the vertical one (;10�6).

This simple numerical experiment, performed in LS-DYNA commercial FEM software, already pro-
vides a useful preliminary insight, suggesting existence of an extra longitudinal mode, with the domi-
nance of horizontal displacement, supported by mixed boundary conditions. This feature has been
recently noted in Erbasx et al. [27] for elastic contact.

Figure 2. A layer subject to transient load.
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4. Effective boundary conditions

Let us now derive the effective boundary conditions, modelling the effect of the coating, by means of a
long-wave asymptotic procedure [5]. Let us focus on the thin layer first. The equations of motion are
given by equation (1), with boundary conditions on the upper face x3 = � h specified as equation (2),
and conditions at the lower face x3 = 0 following from equation (3) as:

s13 = s23 = 0, si3 = 0, u3 = v3, ð10Þ

where v3 = v3(x1, x2, t) is the vertical displacement of the substrate at the interface x3 = 0.
Now, to establish an asymptotic procedure, a small parameter associated with the long-wave limit is

introduced:

e=
h

L
� 1, ð11Þ

Figure 3. Variations of (a) horizontal and (b) vertical mid-plane displacement along the longitudinal coordinate (fixed lower face
x3 = h).

Figure 4. Variations of (a) horizontal and (b) vertical mid-plane displacement along the longitudinal coordinate (sliding contact at
x3 = � h).
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where L is a typical wavelength. Also, the variables and quantities are scaled as:

ji =
xi

L
, h =

x3

h
, t =

c2ct

L

ui = hu�i , u3 = Lu�3, v3 = Lv�3,

sii =
Ec

2 1 + ncð Þ es
�
ii, s33 =

Ec

2 1 + ncð Þ es
�
33,

s3i =
Ec

2 1 + ncð Þ e
2s�3i, s12 =

Ec

2 1 + ncð Þ es
�
12, P =

Ec

2 1 + ncð Þ eP
�,

ð12Þ

where i = 1, 2, and quantities with the asterisk are assumed to be of the same asymptotic order.
The governing equations for the layer can now be summarised as:

∂s�ii
∂ji

+
∂s�ij
∂jj

+
∂s�3i

∂h
=

∂2u�i
∂t2

e2 ∂s�3i

∂ji

+
∂s�3j

∂jj

� �
+

∂s�33

∂h
=

∂2u�3
∂t2

,

ð13Þ

along with the constitutive relations:

s�ii = 4 1� k2
c

� � ∂u�i
∂ji

+ 2 1� 2k2
c

� � ∂u�j
∂jj

+ 1� 2k2
c

� �
s�33

∂u�3
∂h

= e2 1� k2
c

3� 4k2
c

s�33 �
1� 2k2

c

2 3� 4k2
c

� � (s�11 + s�22)

 !

e2s�3i =
∂u�3
∂ji

+
∂u�i
∂h

s�ij =
∂u�i
∂jj

+
∂u�j
∂ji

,

ð14Þ

subject to boundary conditions:

s�3i = 0, s�33 = � P�, at h = � 1

s�3i = 0, u�3 = v�3, at h = 0,
ð15Þ

where, as above, i 6¼ j = 1, 2. The displacements and stresses are now expanded as asymptotic series:

u�m
s�mn

0
@

1
A=

u(0)
m

s(0)
mn

0
@

1
A+ e2

u(1)
m

s(1)
mn

0
@

1
A+ . . . , m, n = 1, 2, 3 ð16Þ

The leading order problem is given by:

∂s(0)
ii

∂ji

+
∂s(0)

ij

∂jj

+
∂s(0)

3i

∂h
=

∂2u(0)
i

∂t2

∂s(0)
33

∂h
=

∂2u(0)
3

∂t2

s(0)
ii = 4 1� k2

c

� � ∂u(0)
i

∂ji

+ 2 1� 2k2
c

� � ∂u(0)
j

∂jj

+ 1� 2k2
c

� �
s(0)

33

ð17Þ
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∂u(0)
3

∂h
= 0

∂u(0)
3

∂ji

+
∂u(0)

i

∂h
= 0

s(0)
ij =

∂u(0)
i

∂jj

+
∂u(0)

j

∂ji

,

subject to:

s(0)
3i = 0, s(0)

33 = � P�, at h = � 1

s(0)
3i = 0, u(0)

3 = v�3, at h = 0,
ð18Þ

The leading order solutions may be found in the form:

u(0)
i = � h

∂v�3
∂ji

+ Wi

u(0)
3 = v�3

s(0)
ii = h 1� 2k2

c

� � ∂2v�3
∂t2
� 2

∂2v�3
∂j2

j

 !
� 4 1� k2

c

� � ∂2v�3
∂j2

i

 !

+ 1� 2k2
c

� � ∂2v�

∂t2
+ 2

∂Wj

∂jj

� P�
� �

+ 4 1� k2
c

� � ∂Wi

∂ji

s(0)
33 = h + 1ð Þ ∂

2v�3
∂t2
� P�

s(0)
ij = � 2h

∂2v�3
∂ji∂jj

+
∂Wi

∂jj

+
∂Wj

∂ji

s(0)
3i = h2 + h

� �
1� 2k2

c

� � ∂

∂ji

2Djv�3 �
∂2v�3
∂t2

� �
,

ð19Þ

where Dj = ∂2

∂j2
i

+ ∂2

∂j2
j

is the 2D Laplacian in j1 and j2, the indices i 6¼ j = 1, 2, and

W j1, j2, tð Þ= W1,W2ð Þ= u(0)
1 , u(0)

2

� �
jh = 0, ð20Þ

is a 2D vector of tangential displacements of the layer at the interface h = 0, satisfying the equation:

∂2W

∂t2
� DjW� 3� 4k2

c

� �
gradjdivjW

= gradj 2 1� k2
c

� �
Djv�3 �

∂2v�3
∂t2
� 1� 2k2

c

� �
P�

� �
,

ð21Þ

following from the sliding contact conditions at the interface h = 0. Here, gradj and divj are the gradient
and divergence differential operators in j1 and j2.

At next order, we focus our attention on the correction to the normal stress and a related correction
to vertical displacement. For these, we have:
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∂u(1)
3

∂h
=

1� k2
c

3� 4k2
c

s(0)
33 �

1� 2k2
c

2 3� 4k2
c

� � s(0)
11 + s(0)

22

� �
∂s(0)

3i

∂ji

+
∂s(0)

3j

∂jj

+
∂s(1)

33

∂h
=

∂2u(1)
3

∂t2
,

ð22Þ

subject to:

s(1)
33 = 0, at h = � 1

u(1)
3 = 0, at h = 0,

ð23Þ

The corrector for vertical displacement, satisfying (22, 23) may be written as:

u(1)
3 =

h2

2
+ h

� �
k2

c

∂2v�3
∂t2

+
h2

2
1� 2k2

c

� �
Djv�3 � h 1� 2k2

c

� �
divjW� k2

cP�, ð24Þ

implying the corrector for the normal stress in the form:

s(1)
33 =

h3 + 1

6
k2

c

∂4v�3
∂t4

+ 3� 4k2
c

� �
Dj

∂2v�3
∂t2
� 4 1� k2

c

� �
D2

jv�3

� �

+
h2 � 1

2
k2

c

∂4v�3
∂t4

+ (1� k2
c)Dj

∂2v�3
∂t2
� 2Djv�3

	 

� 1� 2k2

c

� �
divj

∂2W

∂t2
� k2

c

∂2P�

∂t2

� �
,

ð25Þ

Thus, the two-term normal stress on the interface h = 0 is:

s�33 =
∂2v�3
∂t2
� P�+ e2 1

3
1� k2

c

� �
D2

jv�3 �
1

6
k2

cDj

∂2v�3
∂t2
� 1

3
k2

c

∂4v�3
∂t4

�

+
1

2
1� 2k2

c

� �
divj

∂2W

∂t2
+

1

2
k2

c

∂2P�

∂t2

�
:

ð26Þ

Returning to the original variables, (26) becomes:

s33 = rch
∂2v3

∂t2
� P +

rch3

6
2c2

2c 1� k2
c

� �
D2v3 � k2

cD
∂2v3

∂t2
� 2c�2

1c

∂4v3

∂t4

� �

+
h2

2
1� 2k2

c

� �
rcdiv

∂2w

∂t2
+ c�2

1c

∂2P

∂t2

� �
,

ð27Þ

where D = ∂2

∂x2
1

+ ∂2

∂x2
2

is the 2D Laplacian in x1 and x2, and w is a 2D vector of dimensional tangential dis-

placements of the layer at the interface x3 = 0:

w= w1,w2ð Þ= lim
x3!0�

u1, u2ð Þ , ð28Þ

It is interesting to observe from (27) that at leading order the effective normal stress is basically com-
prised of the prescribed vertical force and the vertical inertia of the layer.

The condition (21) becomes:

c�2
2c

∂2w

∂t2
� Dw� 3� 4k2

� �
grad div w

= grad 2 1� k2
� �

hDv3 � hc�2
2c

∂2v3

∂t2
� 1� 2k2
� �

r�1c�2
2c P

� �
,

ð29Þ

where div and grad are the usual diffential operators in x1 and x2.
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Thus, it may be deduced that for the considered type of a sliding contact the derivation of effective
boundary conditions does not allow a straightforward reduction of problem to that for a half-space
compared with an ideal contact. The effective conditions on the interface x3 = 0 include the stresses:

s33 = rch
∂2u3

∂t2
� P +

rch3

6
2c2

2c 1� k2
c

� �
D2u3 � k2

cD
∂2u3

∂t2
� 2c�2

1c

∂4u3

∂t4

� �

+
h2

2
1� 2k2

c

� �
rc divx

∂2w

∂t2
+ c�2

1c

∂2P

∂t2

� �
s3i = 0,

along with the additional conditions (29), relating the interfacial tangential displacements of the layer w1

and w2 with the vertical displacement of the half-space u3 and the load P. In fact, these conditions govern
plate extension waves, allowed by the sliding contact in contrast to the perfect one.

At leading order, when the condition (30)1 at the interface x3 = 0 reduces to:

s33 = rch
∂2u3

∂t2
� P, ð31Þ

the problem may be first solved for the half-space and then relation (29) may be used to obtain the tan-
gential displacements of the layer at the interface. Note that the R.H.S of equation (31) corresponds to
vertical inertia, with rch effectively being a distributed mass, providing a justification of problems with
inertial terms in boundary conditions [30].

5. Dispersion relation

Now, once effective boundary conditions modelling the interaction with the thin layer have been derived,
we proceed with investigation of dispersion of elastic waves in the half-space. Let us first consider plane-
strain problem associated with (x1, x3) coordinate plane.

The conventional equations of motion are written in terms of the elastic Lamé potentials f and c as:

∂2f

∂x2
1

+
∂2f

∂x2
3

� c�2
1s

∂2f

∂t2
= 0,

∂2c

∂x2
1

+
∂2c

∂x2
3

� c�2
2s

∂2c

∂t2
= 0, ð32Þ

with the displacements expressed as:

u1 =
∂f

∂x1

� ∂c

∂x3

, u3 =
∂f

∂x3

+
∂c

∂x1

, ð33Þ

In absence of loading (P = 0), the leading order effective boundary conditions at x3 = 0 follow from
equations (30) and (29) as:

s33 = rsc
2
2s k�2

s � 2
� � ∂u1

∂x3

+ k�2
s

∂u3

∂x3

� �
= rch

∂2u3

∂t2

s31 = rsc
2
2s

∂u1

∂x3

+
∂u3

∂x1

� �
= 0,

ð34Þ

and

c�2
2c

∂2w1

∂t2
� 4 1� k2

c

� � ∂2w1

∂x2
1

= h 2 1� k2
c

� � ∂3u3

∂x3
1

� c�2
2c

∂3u3

∂x1∂t2

� �
, ð35Þ

The solutions for the potentials (satisfying the decay conditions at x3 ! ‘) of harmonic exponential
profile may be found from equation (32) as:
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f = Aeik(x1�ct)�kq1x3 , c = Beik(x1�ct)�kq2x3 , ð36Þ

where k is wave number, c is the sought for phase speed, and

qj =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

c2
js

s
, j = 1, 2, ð37Þ

implying a similar harmonic profile for the interfacial displacement of the layer:

w1 = Weik(x1�ct), ð38Þ

Using equation (33) and substituting the quantities (36) and (38) into the boundary conditions (34),
we arrive at a homogeneous algebraic system in A,B, and W . From solvability of the latter, the associ-
ated determinant must vanish, leading to the dispersion relation:

rsc
4
2s 4q1q2 � 1 + q2

2

� �2
� �

� khq1rcc4
h i

c2
3 � c2

� �
= 0, ð39Þ

where

c3 = 2c2c

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

c

q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ec

rc 1� n2
c

� �
s

, ð40Þ

is the so-called ‘‘plate’’ speed, associated with sliding of the layer. A similar observation was made ear-
lier by Achenbach and Keshava [15] when analysing full dispersion relation for the original problem for
a coated half-space (cf. equation (32) in the cited paper).

The first term in square brackets in (39) describes dispersion of the Rayleigh-type wave. On introdu-
cing the dimensionless wave number K and speed C:

K = kh, C =
c

c2s

, ð41Þ

this relation may be rewritten as:

(2� C2)2 � 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k2
s C2

q
+

rc

rs

K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

s C2

q
C4 = 0, ð42Þ

Clearly, the area of interest is in the long-wave vicinity as K ! 0. It is evident from equation (42) that
if K = 0, this equation coincides with the classical Rayleigh equation (same happens if the density of the
layer rc is set to zero):

(2� C2)2 � 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k2
s C2

q
= 0: ð43Þ

A typical dispersion diagram is shown Figure 5, illustrating dependence of the scaled phase speed C
on the scaled wave number K for Poisson’s ratio n = 1

4
when the densities of the layer and the substrate

coincide (rc = rs). It may be readily deduced from equation (42) that if rc 6¼ rs, the plot will be obtained
from Figure 5 by horizontal compression.

The phase speed C is observed to be a monotonously decaying function of the wave number K, having
a maximum at the Rayleigh wave speed C = CR, occurring at K = 0. Indeed, the derivative at the long-
wave limit K = 0,C = CR is negative:

dC

dK
jC = CR

= � rc

rs

q1R C5
R

4B
\0, ð44Þ
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where

q1R =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

s C2
R

q
, B =

q1R

q2R

1� q2
2R

� �
+

q2R

q1R

1� q2
1R

� �
� 1 + q4

2R, q2R =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2

R

q
, ð45Þ

with constant B, appearing also in the hyperbolic-elliptic model for the Rayleigh wave, see equation (93)
in Kaplunov and Prikazchikov [18], known to be positive. Curiously, this implies that for a sliding con-
tact only the scenario of a local maximum at Rayleigh wave speed could be realised, contrary to a perfect
contact considered in Dai et al. [5] allowing both local maximum and local minimum.

Now, let us discuss briefly the anti-plane setup, following equations (30) and (29). On assuming
w1 = u1 = u3 = 0 and w2 = w2(x1, t), u2 = u2(x1, x3, t), in absence of the load (P = 0) we have the classical
wave equation of motion for the substrate:

∂2u2

∂x2
1

+
∂2u2

∂x2
3

� c�2
2s

∂2u2

∂t2
= 0, ð46Þ

subject to conditions at the interface x3 = 0:

s32 = rsc
2
2s

∂u2

∂x3

= 0

c�2
2c

∂2w2

∂t2
� ∂2w2

∂x2
1

= 0,

ð47Þ

Thus, in anti-plane setup, the shear motions of the layer and substrate are separated completely. The
substrate does not support a localised wave, whereas a shear wave is still a feature of the coating.

6. Asymptotic formulation for the Rayleigh-type wave

Let us now present an explicit model for the Rayleigh-type wave induced by a prescribed arbitrary verti-
cal load P = P(x1, x2, t). The boundary conditions at the surface x3 = 0 are given by equation (31) and
homogeneous conditions on shear surface stresses in equation (30) corresponding to the considered slid-
ing contact:

s13 = s23 = 0, s33 = rch
∂2u3

∂t2
� P, ð48Þ

Figure 5. Dispersion curve and the associated long-wave limit C = CR for n = 1
4 and rs = rc.
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Then, using the same slow-time perturbation procedure as exposed in Dai et al. [5], see also literature
[18] and references therein for more details, we obtain an asymptotic formulation for the near-surface
zone. This includes an elliptic equation:

∂2f

∂x2
3

+ q2
1R Df = 0, ð49Þ

for the longitudinal wave potential f, governing the decay over the interior x3 . 0, and a hyperbolic
equation singularly perturbed by a pseudo-differential operator given by:

∂2f

∂x2
1

� 1

c2
R

∂2f

∂t2
+ A

ffiffiffiffiffiffiffi
�D
p

Df =
1 + q2

2R

2rsc
2
2sB

P, ð50Þ

along the surface x3 = 0. Here, q1R, q2R and B were defined in equation (45), cR = c2sCR is the dimensional
Rayleigh wave speed in the substrate, D is the 2D Laplace operator in x1 and x2, and the constant A is
expressed as:

A = � rc

rs

C4
R

2B
q1Rh, ð51Þ

In the last formula, it is important that A\0, since all the quantities in the RHS, including B, are pos-
itive. The remaining formulae for the vector shear potential and displacement components can be found
in Kaplunov and Prikazchikov [18] (see formulae (121) and (122)).

Note that within the plane-strain setup, say for (x1, x3) plane the pseudo-differential equation (50)
takes the form:

∂2f

∂x2
1

� 1

c2
R

∂2f

∂t2
+ A

ffiffiffiffiffiffiffiffiffiffiffi
� ∂2

∂x2
1

s
∂2f

∂x2
1

=
1 + q2

2R

2rsc
2
2sB

P, ð52Þ

Taking into account equation (51), the associated dispersion relation becomes:

rc

rs

C4
R

2B
q1RK � 1 +

C2

C2
R

= 0, ð53Þ

with the dimensionless wave number K and speed C defined in equation (41).
It can be easily verified that the equation (53) provides a long-wave approximation to the dispersion

relation (42) and the derivative dC
dK

calculated from (53) at the point K = 0,C = CR coincides with its coun-
terpart in equation (44).

In addition, the local maximum of the phase velocity at zero wave number, see Figure 5, which corre-
sponds to negative sign of coefficient A in pseudo-differential operator (52), determines the type of
quasi-front induced by a point impulse when P = P0d(x1)d(t). Due to similarity of a pseudo-differential
equation (52) with that studied in Dai et al. [5] (cf. equation (35) of the cited paper), the analysis of the
quasi-front for a sliding contact is virtually the same. However, since A\0 in equation (52), the latter
supports only a receding quasi-front, whereas for a perfect contact treated in Dai et al. [5] both receding
and advancing quasi-fronts are observed, see Figure 4 in Dai et al. [5].

7. Conclusion

3D dynamic problem in linear elasticity for a thin layer in sliding contact with a half-space subject to a
prescribed vertical force has been considered. The effective boundary conditions (29) and (30) account-
ing for the effect of the coating have been derived. At leading order, these contain only the terms corre-
sponding to the vertical inertia of the coating. At next order, they are also effected by plate waves in the
layer governed by 2D plane-stress theory. The observed feature seems to be specific for a sliding contact,

12 Mathematics and Mechanics of Solids 00(0)



in contrast to a perfect contact prohibiting natural vibrations of the coating. As a result, the associated
dispersion relation involves not only a Rayleigh-type but also extensional and shear plate waves.

In addition, an explicit hyperbolic-elliptic model for the Rayleigh-type wave is formulated, comple-
menting the previously known formulation for a perfect contact [5]. The presented model is comprised
of a hyperbolic equation singularly perturbed by a pseudo-differential operator, serving as a boundary
condition for an elliptic equation governing decay over the interior. The coefficient at the pseudo-
differential operator is shown to be always negative, corresponding to a local maximum of the phase
speed observed at zero wave number. For an impulse loading, this results in a receding quasi-front,
whereas a similar problem for a perfect contact [5] allows both positive and negative values of the afore-
mentioned coefficient. Consequently, both maximum/minimum of the phase speed and receding/advan-
cing quasi-fronts may arise at a perfect contact.

The obtained results may find various applications in theory and practice of elastic coatings. For
example, delamination and fracture of a perfect contact may be accompanied by excitation of exten-
sional and shear plate waves in the coating, and may possibly change the type of the Rayleigh wave
quasi-front. Further developments may also incorporate the effects of curvature, anisotropy, as well as
more sophisticated types of contact [31,32].
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