Validity Testing of the Conspiratorial Thinking and Anti-Expert Sentiment Scales during the COVID-19 Pandemic Across 24 Languages from a Large-Scale Global Dataset

Hyemin Han^{1*†} Angélique M. Blackburn^{2†} Alma Jeftić ³ Thao Phuong Tran⁴

Sabrina Stöckli⁵ Jason Reifler⁶ Sara Vestergren⁷

^{1*}Educational Psychology Program, University of Alabama, Tuscaloosa, AL, USA.

²Department of Psychology and Communication, Texas A&M International University, Laredo, TX, USA.

³Peace Research Institute, International Christian University, Tokyo, Japan.

⁴Department of Psychology, Colorado State University, CO, USA.

⁵Department of Consumer Behavior, University of Bern, Switzerland.

⁶Department of Politics, University of Exeter, United Kingdom.

⁷School of Psychology, Keele University, United Kingdom.

Author Note

Hyemin Han
https://orcid.org/0000-0001-7181-2565

Angélique M. Blackburn D https://orcid.org/0000-0001-5378-3932

Alma Jeftić
https://orcid.org/0000-0002-9285-2061

Thao Phuong Tran [©] <u>https://orcid.org/0000-0002-4038-8471</u>

Sabrina Stöckli D https://orcid.org/0000-0002-8322-2906

Jason Reifler D https://orcid.org/0000-0002-1116-7346

Sara Vestergren D https://orcid.org/0000-0003-0514-6749

Corresponding concerning this manuscript should be addressed to Hyemin Han, University of Alabama, Box 870213, Tuscaloosa, AL 35487, USA. Email: <u>hyemin.han@ua.edu</u> †Authors equally contributed to this work.

Acknowledgements

We appreciate the COVIDiSTRESSII Global Survey Consortium members for their contribution to the scale design and data collection.

Word Count (main text): 4,204 words

1

Abstract

2 In this study, we tested the validity across two scales addressing conspiratorial thinking 3 that may influence behaviors related to public health and the COVID-19 pandemic. Using the COVIDiSTRESSII Global Survey data from 12,261 participants, we validated the 4-item 4 5 Conspiratorial Thinking Scale and 3-item Anti-Expert Sentiment Scale across 24 languages and 6 dialects that were used by at least 100 participants per language. We employed confirmatory 7 factor analysis, measurement invariance test, and measurement alignment for internal 8 consistency testing. To test convergent validity of the two scales, we assessed correlations with 9 trust in seven agents related to government, science, and public health. Although scalar 10 invariance was not achieved when measurement invariance test was conducted initially, we 11 found that both scales can be employed in further international studies with measurement alignment. Moreover, both conspiratorial thinking and anti-expert sentiments were significantly 12 and negatively correlated with trust in all agents. Findings from this study provide supporting 13 14 evidence for the validity of both scales across 24 languages for future large-scale international 15 research.

Keywords: Conspiratorial Thinking; Anti-expert Sentiments; Validation; International Survey;
COVID-19

18

Introduction

Before and throughout the COVID-19 pandemic, beliefs in conspiratorial theories and negative attitudes about experts have been on the rise. Conceptually, conspiratorial thinking is an increased likelihood to view the world in conspiratorial terms and attribute the causes of events to groups acting in secret for personal benefit against the common good [1,2]. Anti-expert sentiments, a phenomenon often studied alongside conspiratorial thinking, is a form of anti-elitist

24	and anti-intellectualism, which is marked by distrust of individuals who claim to be experts or
25	have credentials about a topic [2,3]. The rise in conspiratorial thinking and anti-expert sentiments
26	in recent times may occur in part due to increases in use of conspiracy theories for political gain
27	[3–5], the rise in confirmation bias in social media circles [6], inconsistencies in public health
28	information [7], or the fact that conspiracy theories proliferate during societal crises and times of
29	uncertainty [8]. Given the potential harm by conspiratorial thinking and anti-expert sentiments, it
30	is critical to have a rapid and effective global tool to assess both types of thinking in order to
31	implement mitigation plans to improve science-driven public health and policy decisions.
32	Need for Cross-language Scale Validity for Rapid Data Collection During a Global Health
33	Crisis
34	Conspiracy theories can influence social and political behaviours [1,3,9,10] and result in
35	undesirable and even catastrophic social outcomes [3,7,11]. Of particular interest for an
36	international health crisis such as the COVID-19 pandemic is that believing conspiracy theories
37	was linked to vaccine hesitancy [6], reduced compliance with containment measures [7,12,13],
38	and reduced behaviors linked to civic and social responsibility [14]. Specifically, doubters and
39	deniers of COVID-19 risk tended to believe conspiracy theories related to the pandemic,
40	expressed anti-elitist sentiments, and reported low compliance with measures to reduce the
41	spread of the virus [12]. Low trust in institutions, including the scientific community, is also
42	linked to vaccine hesitancy as well as compliance with preventive measures in general [15–17].
43	Finally, conspiracy theories and negative attitudes towards experts have other detrimental effects
44	such as increasing uncertainty and discrimination against marginalized groups [9].
45	Overall, both conspiracy theories and negativity towards experts can have lasting impacts
46	on the trajectory of a global (health) crisis. Therefore, a consistent method of measuring

47 conspiratorial thinking and anti-expert sentiments across languages is needed, especially when
48 considering political and public health events on a global scale. Reliable means to rapidly assess
49 these beliefs across countries are necessary to implement mitigation strategies [3]. This is
50 particularly critical, as interventions to reduce these beliefs with accompanying behaviors may
51 be fairly straightforward and rapidly implemented [16].

52 There are an endless number of conspiracy theories that attract individuals across 53 different demographics [e.g., 12,18], so a singular scale which measures specific conspiracy theory beliefs is difficult to generalize. Uscinski et al. [1] developed the Conspiratorial Thinking 54 Scale (CTS) assessing individuals' general disposition towards believing conspiracy theories. 55 Previous work showed that individuals with conspiratorial thinking are also more likely to report 56 57 anti-expert beliefs, and vice versa [14,19]. As such, the COVIDiSTRESSII Consortium 58 developed an Anti-Expert Sentiment Scale (AESS) [20] to gauge individuals' levels of distrust in 59 expert consensus.

However, these scales have yet to be validated across different languages. This is critical
because a general conspiratorial thinking scale in different languages provides a way to compare
conspiracy theorizing across political contexts in a way that studying specific conspiracy theories
could not. Likewise, the AESS was designed to be generalizable across countries and contexts.
The CTS and AESS are the shortest of the available scales and, once validated across languages,
provide scholars with a cost-effective and efficient way of measuring conspiratorial thinking and
anti-expert sentiment in multi-country studies.

3

Relationship between Conspiratorial Thinking and Anti-Expert Beliefs, and Trust as a Mean to Validate Scales

69 Robust associations have been reported between general conspiratorial thinking and trust 70 in government, science, and public health institutions [2,13]. Moreover, trust in an institution, 71 whether political or scientific, was tightly coupled with conspiratorial thinking specifically 72 related to that institution [2,21,22]. For instance, a strong correlation has been observed between 73 belief in conspiracy theories related to vaccines and reduced trust in science and institutions [6]. 74 Likewise, trust in government mediated the inverse relationship between conspiratorial thinking 75 and compliance with social distancing behaviors to reduce the spread of disease [13]. The 76 relationship between trust and conspiratorial thinking is so robust that mere exposure to a 77 conspiracy claim has been shown to negatively affect trust in government institutions, even of 78 institutions that were not connected to the conspiracy theory [23].

79 The likelihood of believing a particular conspiracy theory appears to be driven to some 80 degree by exposure to information related to the conspiracy (e.g., within one's social network), 81 while also heavily driven by a combination of general conspiratorial thinking and trust [1], which 82 in turn can affect how one perceives the information they are exposed to. Also, studies that 83 included diverse psychological constructs and demographics documented denialism of expert information as the strongest predictor of believing in COVID-19 conspiracy theories as measured 84 by the CTS and partisan and ideological motivations [14]. Partisanship appears to drive the 85 direction of conspiratorial thinking in such a way that members of one political party are more 86 87 inclined to believe conspiracy theories about another, and vice versa, even when the degree of 88 general conspiratorial thinking did not differ between political parties [1]. In other words, the 89 degree of trust in an institution is linked to conspiratorial thinking related to that institution, and

90 perhaps to other government institutions and services more broadly [23]. Hence, a negative

91 association of conspiratorial thinking and anti-expert beliefs with trust could be expected.

92 This study

93 In this paper, we tested the validity of scales capturing conspiratorial thinking and anti-94 expert sentiments that may influence behaviors related to public health during an epidemic or 95 pandemic. In particular, we used two scales: the 4-item Conspiratorial Thinking Scale (CTS) 96 adapted from Uscinski et al. [1] and a 3-item Anti-Expert Sentiment Scale (AESS) designed by 97 the COVIDiSTRESSII Consortium [20] and tested their cross-language validity. While a number 98 of conspiracy belief scales have been tested [24–27], we selected the CTS due to its face and 99 content validity. Given that the CTS has been used in various previous studies examining 100 conspiratorial thinking within the context of COVID-19 research, it is possible to assume that its 101 validity has been supported by findings from such studies. However, so far, the scale has been 102 primarily used within the US context, it might need to be tested in diverse settings. The 103 COVIDiSTRESSII Consortium opted to adapt a short new scale that fully captured the concept 104 of anti-expert sentiments using items created by a co-author, and which included three questions 105 about belief in expert knowledge compared to confidence in one's own knowledge. 106 Assuring the measurement validity of the two scales in different languages is the first step 107 to take before conducting international research on the topic. In addition, during the survey 108 process, participants were presented with survey forms in different languages depending on their 109 first language. Hence, we focused on the measurement validity across different languages in the 110 present study. We tested the measurement invariance and alignment of these scales across 24 111 languages and dialects using the COVIDiSTRESSII Global Survey dataset. In addition, we also

112 examined whether the measurement model can be applied to individual language groups. If the

5

113 measurement model is valid within each individual group, then researchers who intend to collect 114 data from a single language group but do not intend to conduct international comparison would 115 be able to use the measures written in their own language.

116 The measurement invariance test was conducted to examine whether the scales in 117 different languages were designed to measure the same construct in the same measurement 118 structure across different languages [28]. The presence of scalar invariance, which assumes the 119 same factor loadings and intercepts across groups, is essential to assure the quality of cross-120 national research using the scales [29]. Measurement alignment was performed to address the 121 potential issue of measurement non-invariance reported by the measurement invariance test as 122 done in prior COVID-19-related international survey studies if needed [15]. The measurement 123 alignment process was expected to address non-invariance so that researchers would be able to 124 conduct cross-national comparison. Whether the measures written in a single language can be 125 employed in studies focusing on one language group, not international comparison, was also 126 examined during the invariance test process.

127 We then assessed the convergent validity of each scale by testing the expected 128 correlations between both CTS and AESS scales and items measuring trust in institutions. We 129 predicted negative correlations between both scales and different trust items. In particular, 130 because trust in political entities is related to conspiratorial thinking [9], we predicted a negative 131 correlation between the CTS and trust in one's national parliament or government. We also predicted negative correlations between the AESS and trust in the scientific community and the 132 133 World Health Organization (WHO). Positive correlations between CTS and AESS and negative 134 correlations of each scale with trust, as demonstrated in previous literature, would indicate that 135 the scales are measuring the intended constructs.

6

136	Methods
137	Dataset
138	The COVIDiSTRESSII Global Survey is a pre-registered, large-scale international survey
139	dataset collected online by a consortium of over 150 international researchers who used local
140	recruitment methods and snowball sampling to recruit anonymous volunteers from 137 countries
141	across the globe [20]. This survey was administered online from May 28th through August 29th
142	of 2021. The data collection process was initially reviewed and approved by the Research,
143	Enterprise and Engagement Ethical Approval Panel at the University of Salford (IRB number:
144	1632). The cleaned dataset included responses from 15,740 participants from 137 countries (see
145	Blackburn et al. (2022) [20] for further details about the data collection and cleaning processes).
146 147	Because measurement invariance test and measurement alignment involve confirmatory
148	factor analysis (CFA), following statistical guidelines, we analyzed responses in language groups
149	where $n \ge 100$ [30,31]. After excluding language groups with $n < 100$, we retained 12,261
150	responses in 24 language groups for further analysis. Demographics of the participants are
151	presented in Table S1.
152	Materials
153	All items were first prepared in English. Then, the English version was translated and
154	back translated into various languages by researchers with native language skills.
155	Conspiratorial Thinking Scale
156	At the beginning of the survey section addressing conspiratorial thinking and anti-expert
157	sentiments, participants were presented with the following statement: "We will now present a
158	few statements about the COVID-19 virus and about you. Please read the statements and indicate

159	to what extent you agree with them." Then, conspiracy thinking was measured with four items.
160	These four items were slightly modified from Uscinski et al. [1]. The four items were: "much of
161	our lives are being controlled by plots hatched in secret places," "even though we live in a
162	democracy, a few people will always run things anyway," "the people who really 'run' the
163	country are not known to the voter," "big events like wars, recessions, and the outcomes of
164	elections are controlled by small groups of people who are working in secret against the rest of
165	us." Responses were anchored to a 7-point Likert scale, "1: Strongly disagree-7: Strongly agree."
166	Anti-Expert Sentiment Scale
167	Based on findings relating conspiratorial thinking and anti-expert sentiments [1,14], the
168	items for the AESS were formulated by experts in the COVIDiSTRESSII Consortium based on
169	previous research, e.g., [1–3]. The items consist of: "I am more confident in my opinion than
170	other people's facts," "most of the time I know just as much as experts," "experts really don't
171	know that much." Answers were anchored to a 7-point Likert scale, "1: Strongly disagree-7:
172	Strongly agree."
173	Trust
174	To test convergent validity of the two scales, we also collected data about trust in agents
175	that are addressing the COVID-19 pandemic. Following methods from Lieberoth et al. [32],
176	seven items were used to survey trust in these seven agents: parliament/government; police; civil
177	service; health system; the WHO; government's effort to handle Coronavirus; scientific research
178	community. Responses were anchored to an 11-point scale, "No trust-10%90%-complete
179	trust."

180 Analysis plan

181 Measurement invariance test

To examine whether the two scales were valid across different languages, we performed a measurement invariance test with *lavaan* [33]. Before examining the cross-language validity of the scales, their internal consistency was tested in terms of Cronbach's α . Following the internal consistency testing the theoretical measurement model of each scale was tested with CFA while setting the language as a group. Because responses to the items were anchored to a 6-point Likert scale, we employed the diagonally weighted least squares estimator as suggested by DiStefano and Morgan (2009) [34].

189 Measurement invariance was examined in terms of whether model fit indicators, i.e., 190 RMSEA, SRMR, CFI, changed significantly when different levels of model constraints were 191 applied [31]. We tested four different levels of measurement invariance, configural, metric, 192 scalar, and residual invariance [29]. First, the most lenient invariance, configural invariance only 193 assumes the equal measurement structure across different groups. Presence of configural 194 invariance suggests that the examined factor structure can be validly applied across different 195 groups [37, 38]. Thus, if configural invariance is achieved, the examined scale can be used 196 within one specific group with the tested measurement model provided cross-group comparison 197 is not conducted. Second, metric invariance additionally assumes equal loadings. Third, 198 achievement of scalar invariance requires equal intercepts. Fourth, the strictest invariance, 199 residual invariance, assumes the presence of equal residuals. In general, scalar invariance is a 200 minimum requirement for between-group comparison. In the case of metric invariance, we 201 required $\Delta RMSEA < +.015$, $\Delta SRMR < +.030$, and $\Delta CFI > -.01$. For the other invariance levels, 202 we examined whether $\Delta RMSEA < +.015$, $\Delta SRMR < +.015$, and $\Delta CFI > -.01$ [28].

203 Measurement alignment

204	If at the least scalar invariance was not achieved, we performed measurement alignment
205	to address the existing measurement non-invariance between different languages. Measurement
206	alignment was performed with the sirt package [35]. It addresses non-invariance by adjusting
207	factor loadings, intercepts, and group means across different groups [29].

208 After conducting measurement alignment, we examined whether the alignment process was successful with two R^2 indicators, $R^2_{loadings}$ and $R^2_{intercepts}$. Those R^2 values indicate the extent 209 of non-invariance in factor loadings and intercepts, respectively [36]. $R^2 = 1.00$ indicates that 210 100% of non-invariance was successfully absorbed through alignment while $R^2 = .00$ means that 211 212 none of non-invariance was resolved. In general, whether less than 25% of non-invariance 213 remains after alignment is regarded as a criterion to determine the success of alignment [36]. 214 Thus, we examined whether both R^2 values were 75% higher in the present study. If both values 215 exceeded the cut-off, we assumed that non-invariance was successfully addressed, and thus, 216 scalar invariance was achieved through alignment.

217 In addition, we also examined whether there were any significant unique item parameters 218 in both the factor loadings and intercepts across language groups, which were deemed to 219 demonstrate significantly deviated loadings or intercepts relative to other groups. This process 220 was conducted by performing invariance alignment constraint implemented in sirt. The 221 function was developed to adjust factor loadings and intercepts across groups so that the aligned 222 model can absorb non-invariances through measurement alignment. Once more than 25% of item 223 parameters reported significant unique parameters, we deemed that there was significant 224 measurement non-invariance either in loadings or intercepts. The 25% cut-off value was 225 employed from Asparouhov and Muthén (2014) [36].

226 Once measurement alignment was completed, we calculated factor scores with adjusted 227 factor loadings and intercepts for each language group. We used the factor scores for further 228 analyses. Furthermore, we tested whether measurement alignment was capable of producing 229 consistent outcomes. For repetitive cross-validation, we employed a simulation test, which was 230 originally implemented in the format of Monte Carlo simulation for cross-validation of 231 measurement alignment [39]. We generated a simulation dataset with N = 100, 200, and 500 per232 group. Then, we performed measurement alignment with the generated dataset and examined 233 whether it produced outcomes consistent with CFA. The consistency was quantified in terms of 234 Spearman correlation coefficient between factor mean scores estimated by alignment and CFA 235 (see supplementary materials in Lieberoth et al. (2021) for methodological further details [32]). 236 The same simulation process was performed 500 times with multiprocessing for cross-validation with improved computational power [40]. Following Muthén and Asparouhov (2018), which 237 238 employed the same procedure, we assumed that a mean correlation value $\geq .95$ means good 239 consistency and reliability of alignment [39]. For additional information, correlation between 240 factor variances estimated by measurement alignment and CFA was also examined.

241 *Correlation analysis*

We examined the correlation between conspiratorial thinking and anti-expert sentiments, and seven trust items to test the convergent validity of the two scales. In the case when measurement alignment was conducted, we employed factor scores that were calculated with adjusted factor loadings and intercepts for the correlation analysis to address the issue of measurement non-alignment [17]. For additional information, we also examined the correlation between factor scores estimated without alignment and trust variables as well.

248

249	Results
250	Measurement invariance test
251	When the internal consistency of each scale was examined in terms of Cronbach's α , both
252	the CTS (α = .85) and AESS (α = .74) reported at least acceptable consistency. Findings from the
253	measurement invariance test are presented in Table 1.
254	Table 1
255	Results from the measurement invariance test

	RMSEA	SRMR	CFI	ΔRMSEA	∆SRMR	ΔCFI
Conspiratorial Thinking						
Configural invariance	.072	.037	.993			
Metric invariance	.083	.021	.976	.011	015	016
Scalar invariance	.155	.118	.868	.072	.060	108
Anti-expert Sentiment						
Configural invariance	.000	.000	1.000			
Metric invariance	.064	.040	.978	.064	.040	022
Scalar invariance	.157	.101	.735	.093	.061	243

256

As shown, although configural invariance, which supports the equal measurement structure across languages, was achieved in both scales, metric invariance as well as scalar invariance were not achieved due to changes in RMSEA, SRMR, and CFI exceeding the cut-off values. Although the raw values of RMSEA (~ .08), SRMR (< .08), and CFI (\geq .90) per se were seemingly acceptable, the changes exceeded the set thresholds (i.e., Δ RMSEA < +.015, Δ SRMR 262 < +.030, $\Delta CFI > -.01$). Hence, we conducted measurement alignment to address the

- 263 measurement non-invariance issue.
- 264 Measurement alignment

We performed measurement alignment for the two scales to address non-invariance to enable future cross-national investigations using the scales. First, when measurement alignment was performed for the CTS, the resultant $R^2_{loadings} = .97$ and $R^2_{intercepts} = .99$. Second, in the case of the AESS, $R^2_{loadings} = .85$ and $R^2_{intercepts} = .99$.

269 Furthermore, our inspection of item parameters also showed that no more than 25% of 270 item parameters reported unique parameters. In the case of the CTS, 6.2% of factor loadings and 271 19.8% of intercepts reported significant unique item parameters (see Tables S2 and S3 for the 272 groups reported significant item parameters in CTS factor loadings and intercepts, respectively). When the AESS was examined, 6.9% of factor loadings and 19.4% of intercepts demonstrated 273 274 significant unique item parameters (see Tables S4 and S5 for the groups reported significant item 275 parameters in AESS factor loadings and intercepts, respectively). In all cases, the proportions 276 were below the cut-off value, 25%. These findings support the point that measurement non-277 invariance in both factor loadings and intercepts were successfully addressed.

The simulation test for consistency check reported that measurement alignment was capable of producing consistent and reliable outcomes across repetitions. In all cases, N = 100, 200, and 500, the mean correlation between the factor mean scores estimated by alignment and original CFA exceeded .95 (see Cor (mean) in Table 2). As proposed by Muthén and Asparouhov (2018), the good correlation coefficient resulting from the simulation test suggests that measurement alignment was able to produce consistent outcomes, in terms of factor loadings and intercepts, across trials.

285 Table 2

286 *Repetitive simulation test results*

	N =	100	N =	200	N = 500		
	М	SD	M	SD	М	SD	
CTS							
Cor (mean)	.96	.02	.97	.01	.97	.01	
Cor (var)	.85	.05	.85	.04	.85	.03	
AESS							
Cor (mean)	.95	.01	.96	.01	.96	.01	
Cor (var)	.62	.15	.69	.12	.71	.11	

287 *Note.* Cor (mean): correlation between factor mean scores estimated by measurement alignment and
 288 CFA across repetitions. Cor (var): correlation between factor variances estimated by measurement
 289 alignment and CFA across repetitions.

For additional information, factor loadings and intercepts per group before and after measurement alignment are reported in the supplementary materials. Factor loadings and

intercepts in each group estimated by multigroup CFA are reported in Tables S6 and S7,

293 respectively. Those resulting from measurement alignments are demonstrated in Tables S8 and

294 S9, respectively.

295 Correlation analysis

The result of the correlation analysis is presented in Table 3. In Table 3, CTS and AESS factor scores were estimated with factor loadings and intercepts adjusted through measurement alignment. The same correlation pattern between variables was also found when factor scores estimated without alignment were examined (see Table S10).

Table 3

	1	2	3	4	5	6	7	8
1. Conspiratorial Thinking								
2. Anti-expert Sentiment	.45							
3. Trust in parliament/government	44	17						
4. Trust in police	40	18	.70					
5. Trust in civil service	42	20	.74	.76				
6. Trust in health system	39	26	.57	.66	.69			
7. Trust in the WHO	37	31	.43	.38	.48	.50		
8. Trust in governmental effort	40	17	.79	.61	.67	.57	.46	
9. Trust in scientific research community	40	41	.39	.39	.47	.55	.61	.46
Note. Conspiratorial thinking and anti-e	expert s	entimen	nt score	s were	calculat	ed base	d on res	sults
measurement alignment. In all cases, p	< .001 a	ifter app	olying f	alse dis	covery	rate con	rection	
	D	iscussi	on					
When measurement invariance	e was te	ested, a	lthougl	n both s	scales a	chieved	l config	gural
invariance, they were not able to demo	onstrate	e metric	e invari	iance. (Given s	calar in	varianc	e is
required for multigroup comparison, t	he two	scales	might	not be ı	used for	r such c	ompari	son
without additional processing. The res	sults of	measu	rement	alignm	nent sug	ggest th	at the p	roces
was able to handle the measurement n	ion-inv	ariance	issue i	n a sati	sfactor	y mann	er for b	oth t

Correlation between conspiratorial thinking and anti-expert sentiment with trust

311 (\geq 99%) across different languages was absorbed by adjusting loadings and intercepts. Also, in 312 all cases, less than 25% of item parameters demonstrated significant unique parameters. Hence, 313 although scalar invariance was not achieved when measurement invariance test was conducted 314 initially, we found that both scales can be employed in further international studies with 315 measurement alignment. Furthermore, the repetitive simulation results suggest that measurement 316 alignment was capable of producing consistent outcomes across trials in the present study. 317 One point to note is that configural invariance was achieved in both scales, so researchers

who intend to collect data from one language group can use the scales if they do not compare scores across different language groups. Given presence of configural invariance means that the same factor structure is valid across different groups [37, 38], using the scales for further analyses within one group can be justifiable even without alignment. However, given scalar invariance was not achieved, if international comparison involving multiple languages becomes a goal, then measurement alignment may be required.

324 The result of the correlation analysis also provides additional evidence supporting the 325 validity of the two scales. Both conspiratorial thinking and anti-expert sentiments were 326 significantly and negatively associated with trust in all agents. The finding was consistent with 327 prior research regarding how conspiratorial thinking and objective vaccine knowledge within the 328 context of COVID-19 (e.g., "the government is trying to cover up the link between vaccines and 329 autism.") were associated with trust in science and institutions [6]. The pattern of effects was 330 also consistent with previous literature, with the strongest correlations within institutions and 331 significant correlations across all trust agents [23]. That is, the negative correlation between the 332 CTS and trust in one's national parliament or government is consistent with previous literature 333 indicating that trust in political entities is related to conspiratorial thinking [21]. Likewise,

negative correlations between the AESS and trust in experts—the scientific community and the
WHO—is consistent with previous literature [19]. The similar correlation pattern was found
when correlation analysis was performed with factor scored without alignment. This may
provide additional evidence supporting that the two scales can be used within one language
group even without conducting measurement alignment when international comparison is not
performed.

- 340
- 341

Conclusions

342 To summarize, we validated the 4-item CTS and 3-item AESS across 24 languages and 343 dialects using the COVIDiSTRESSII Global Survey dataset (N = 12,261). Although scalar 344 invariance was not achieved when the measurement invariance test was conducted initially, we 345 found that both scales can be employed in further international studies with measurement 346 alignment. For future studies focusing on only one language group, not international comparison, 347 researchers may use the two scales composed in one language for their analyses since configural 348 invariance was achieved and the measurement model was validated across groups. Moreover, 349 both conspiratorial thinking and anti-expert sentiments were significantly correlated with each 350 other and negatively correlated with trust in all agents. As both conspiratorial thinking and anti-351 expert sentiments have negative implications for political events and public health and safety, 352 having a consistent measure across languages is critical for rapid data collection in the face of an 353 international disaster or public health crisis. The findings from this study provide evidence 354 supporting the validity of both scales across 24 languages for future large-scale international 355 research, and can thus be used to measure these factors during a global health crisis such as the 356 COVID-19 pandemic.

357		Data Availability Statement
358		All data files and analysis scripts for this study can be found under this link:
359	<u>htt</u>	ps://github.com/hyemin-han/COVIDiSTRESS2_belief_scales.
360		Financial support
361		This research received no specific grant from any funding agency, commercial or not-for-
362	pro	fit sectors.
363		Conflicts of Interest
364		Conflicts of Interest: None.
365		References
366 367 368	1.	Uscinski JE, Klofstad C, Atkinson MD . What Drives Conspiratorial Beliefs? The Role of Informational Cues and Predispositions. <i>Political Research Quarterly</i> 2016; 69 : 57–71.
369 370 371	2.	Lewandowsky S, Gignac GE, Oberauer K . The Role of Conspiracist Ideation and Worldviews in Predicting Rejection of Science. Denson T, ed. <i>PLoS ONE</i> 2013; 8: e75637.
372 373	3.	Motta M . The Dynamics and Political Implications of Anti-Intellectualism in the United States. <i>American Politics Research</i> 2018; 46 : 465–498.
374 375 376	4.	Duplaga M . The Determinants of Conspiracy Beliefs Related to the COVID-19 Pandemic in a Nationally Representative Sample of Internet Users. <i>International Journal</i> <i>of Environmental Research and Public Health</i> 2020; 17 : 7818.
377 378	5.	Gauchat G . Politicization of Science in the Public Sphere: A Study of Public Trust in the United States, 1974 to 2010. <i>American Sociological Review</i> 2012; 77 : 167–187.
379 380 381	6.	Milošević Đorđević J, et al. Links between conspiracy beliefs, vaccine knowledge, and trust: Anti-vaccine behavior of Serbian adults. <i>Social Science & Medicine</i> 2021; 277 Published online: May 2021.doi:10.1016/j.socscimed.2021.113930.
382 383	7.	Romer D, Jamieson KH . Conspiracy theories as barriers to controlling the spread of COVID-19 in the U.S. <i>Social Science & Medicine</i> 2020; 263 : 113356.
384 385	8.	van Prooijen J-W . An Existential Threat Model of Conspiracy Theories. <i>European Psychologist</i> 2020; 25 : 16–25.

- Jolley D, Mari S, Douglas KM. Consequences of Conspiracy Theories. In: Butter M, Knight P, eds. Routledge Handbook of Conspiracy Theories. 1st ed. Abingdon, Oxon; New York, NY: Routledge, 2020.: Routledge, 2020, p. 231–241.
- Jolley D, Douglas KM. The social consequences of conspiracism: Exposure to
 conspiracy theories decreases intentions to engage in politics and to reduce one's
 carbon footprint. *British Journal of Psychology* 2014; 105: 35–56.
- 392 11. Moore A. Conspiracies, Conspiracy Theories and Democracy. *Political Studies Review* 393 2018; 16: 2–12.
- Rothmund T, et al. Scientific Trust, Risk Assessment, and Conspiracy Beliefs about
 COVID-19 Four Patterns of Consensus and Disagreement between Scientific Experts
 and the German Public. 2020.
- 397 13. Bruder M, Kunert L. The conspiracy hoax? Testing key hypotheses about the
 398 correlates of generic beliefs in conspiracy theories during the COVID -19 pandemic.
 399 International Journal of Psychology 2022; 57: 43–48.
- 400 14. Uscinski JE, et al. Why do people believe COVID-19 conspiracy theories? Harvard
 401 Kennedy School Misinformation Review 2020; Published online: 28 April
 402 2020.doi:10.37016/mr-2020-015.
- 403 15. Han H. Trust in the scientific research community predicts intent to comply with COVID404 19 prevention measures: An analysis of a large-scale international survey dataset.
 405 *Epidemiology and Infection* 2022; **150**: e36.
- 406 16. Yaqub O, et al. Attitudes to vaccination: A critical review. Social Science & Medicine
 407 2014; 112: 1–11.
- 408 17. Han H. Testing the validity of the modified vaccine attitude question battery across 22
 409 languages with a large-scale international survey dataset: within the context of COVID 410 19 vaccination. Human Vaccines & Immunotherapeutics 2022; 18: 2024066.
- 411 18. Shahsavari S, *et al.* Conspiracy in the time of corona: automatic detection of emerging
 412 COVID-19 conspiracy theories in social media and the news. *Journal of Computational*413 Social Science 2020; 3: 279–317.
- 414 19. Merkley E. Anti-Intellectualism, Populism, and Motivated Resistance to Expert
 415 Consensus. *Public Opinion Quarterly* 2020; 84: 24–48.
- 416 20. Blackburn AM, Vestergren S, COVIDiSTRESS II Consortium. COVIDiSTRESS
 417 diverse dataset on psychological and behavioural outcomes one year into the COVID418 19 pandemic. 2021; Published online: 2021.doi:https://doi.org/10.31219/osf.io/428pz.

```
    419 21. Miller JM, Saunders KL, Farhart CE. Conspiracy Endorsement as Motivated
    420 Reasoning: The Moderating Roles of Political Knowledge and Trust: CONSPIRACY
```

- 421 ENDORSEMENT AS MOTIVATED REASONING. *American Journal of Political Science* 422 2016; **60**: 824–844.
- 423 22. Mari S, et al. Conspiracy Theories and Institutional Trust: Examining the Role of
 424 Uncertainty Avoidance and Active Social Media Use. *Political Psychology* 2022; 43:
 425 277–296.
- 426 23. Einstein KL, Glick DM. Do I Think BLS Data are BS? The Consequences of
 427 Conspiracy Theories. *Political Behavior* 2015; 37: 679–701.
- 428 24. Brotherton R, French CC, Pickering AD. Measuring Belief in Conspiracy Theories:
 429 The Generic Conspiracist Beliefs Scale. *Frontiers in Psychology* 2013; 4Published
 430 online: 2013.doi:10.3389/fpsyg.2013.00279.
- 431 25. Lantian A, et al. Measuring Belief in Conspiracy Theories: Validation of a French and
 432 English Single-Item Scale. International Review of Social Psychology 2016; 29: 1.
- 433 26. Stojanov A, Halberstadt J. The Conspiracy Mentality Scale: Distinguishing Between
 434 Irrational and Rational Suspicion. *Social Psychology* 2019; 50: 215–232.
- 435 27. Swami V. Social Psychological Origins of Conspiracy Theories: The Case of the Jewish
 436 Conspiracy Theory in Malaysia. *Frontiers in Psychology* 2012; 3Published online:
 437 2012.doi:10.3389/fpsyg.2012.00280.
- 438 28. Putnick DL, Bornstein MH. Measurement invariance conventions and reporting: The
 439 state of the art and future directions for psychological research. *Developmental Review*440 2016; 41: 71–90.
- 441 29. Fischer R, Karl JA. A Primer to (Cross-Cultural) Multi-Group Invariance Testing
 442 Possibilities in R. *Frontiers in Psychology* 2019; **10**Published online: 18 July
 443 2019.doi:10.3389/fpsyg.2019.01507.
- 30. Han H. Exploring the association between compliance with measures to prevent the
 spread of COVID-19 and big five traits with Bayesian generalized linear model. *Personality and Individual Differences* 2021; **176**: 110787.
- 31. Rachev NR, et al. Replicating the Disease framing problem during the 2020 COVID-19
 pandemic: A study of stress, worry, trust, and choice under risk. *PLOS ONE* 2021;
 16Published online: 10 September 2021.doi:10.1371/journal.pone.0257151.
- 450 32. Lieberoth A, et al. Stress and worry in the 2020 coronavirus pandemic: Relationships
 451 to trust and compliance with preventive measures across 48 countries. *Royal Society*452 *Open Science* 2021; 8: 200589.
- 33. Rosseel Y. lavaan : An R Package for Structural Equation Modeling. *Journal of Statistical Software* 2012; **48**Published online: 2012.doi:10.18637/jss.v048.i02.

- 455 34. DiStefano C, Zhu M, Mîndrilă D. Understanding and Using Factor Scores:
 456 Considerations for the Applied Researcher. *Practical Assessment, Research, and*457 *Evaluation* 2009; 14: 20.
- 458 35. Robitzsh A. Package 'sirt'. 2021Accessed 27 September 2021.
- 459 36. Asparouhov T, Muthén B. Multiple-Group Factor Analysis Alignment. *Structural* 460 *Equation Modeling: A Multidisciplinary Journal* 2014; **21**: 495–508.
- 37. Vandenberg RJ, Lance CE. A Review and Synthesis of the Measurement Invariance
 Literature: Suggestions, Practices, and Recommendations for Organizational Research.
 Organizational Research Methods 2000; 3: 4-70.
- 38. Xu H, Tracey TJG. Use of Multi-Group Confirmatory Factor Analysis in Examining
 Measurement Invariance in Counseling Psychology Research. *The European Journal of Counselling Psychology* 2017; 6: 75-82.
- 39. Muthén B, Asparouhov T. Recent methods for the study of measurement invariance with
 many groups: Alignment and random effects. *Sociological Methods & Research* 2018; 47:
 637-664.
- 40. Han H, Dawson KJ, Walker DI, Nguyen N, Choi Y-J. Exploring the association between
 character strengths and moral functioning. *Ethics & Behavior* 2022.

Supplementary Materials

Supplementary Tables

Table S1

Demographics of participants from language groups where $n \ge 100$

			Gende	r	Age (y	years)			Educa	ation level			
				Other/Would					Some	≥12	≥ 9	≥ 6	
				rather not					university/	years of	years of	years of	
	Ν	Female	Male	say	Mean	SD	Doctorate	University	college	school	school	school	None
Total	12,261	67.03%	32.00%	0.97%	37.10	14.56	5.96%	48.53%	25.67%	16.51%	2.26%	0.43%	0.64%
Bulgarian	253	75.10%	24.51%	0.40%	40.80	16.38	5.56%	47.62%	34.13%	12.30%	0.00%	0.00%	0.40%
Czech	304	70.72%	27.63%	1.64%	33.52	11.32	4.93%	48.68%	30.92%	15.13%	0.00%	0.33%	0.00%
German	620	64.84%	34.68%	0.48%	44.29	18.53	6.94%	47.74%	18.06%	23.23%	3.39%	0.16%	0.48%
English	1,246	66.35%	32.45%	1.20%	30.88	11.49	10.03%	52.81%	34.11%	2.65%	0.40%	0.00%	0.00%
Spanish													
(Colombia)	470	66.60%	32.98%	0.43%	40.06	12.27	6.61%	76.33%	12.79%	2.99%	0.85%	0.21%	0.21%
Spanish													
(Costa Rica)	191	71.20%	27.23%	1.57%	36.54	10.91	1.05%	83.77%	10.99%	2.62%	1.05%	0.52%	0.00%

72.02%

411

(Brazil)

27.49%

0.49%

37.92 13.17

Spanish 218 66.97% 31.65% 19.27% 0.92% 1.38% 33.14 11.23 3.67% 72.94% 2.75% 0.00% 0.46% (Ecuador) Spanish 587 67.58% 31.91% 0.51% 40.63 13.54 17.72% 57.92% 21.12% 2.56% 0.68% 0.00% 0.00% (Spain) Spanish 15.47% 84.53% (Guatemala) 181 0.00% 36.67 14.89 3.31% 64.09% 29.28% 2.76% 0.00% 0.55% 0.00% Spanish 86.36% 13.64% 0.00% 42.65 13.00 6.82% 74.09% 11.36% 5.91% 1.36% 0.00% 0.45% (Uruguay) 220 Spanish 66.56% 64.01% 1.27% 25.31 8.24 18.47% 14.97% 0.64% 0.64% 0.64% (Honduras) 314 32.17% 0.64% 86.70% 13.30% 0.00% 39.32 10.50 22.02% 0.92% Estonian 219 1.38% 56.42% 19.27% 0.00% 0.00% Finnish 79.57% 19.13% 1.30% 46.32 54.92% 0.59% 847 14.38 4.15% 19.10% 16.96% 2.61% 1.66% Italian 26.62% 279 73.02% 0.36% 45.23 16.07 7.27% 47.64% 22.55% 20.36% 1.82% 0.36% 0.00% Japanese 2,017 41.35% 57.36% 1.29% 45.53 11.10 0.99% 32.24% 20.29% 36.71% 6.25% 0.84% 2.68% 0.30% 40.48 13.34 61.77% 10.09% 0.61% 0.92% Norwegian 328 82.93% 16.77% 7.65% 18.35% 0.61% Portuguese (Portugal) 71.83% 26.87% 1.29% 20.93% 11.37% 1.03% 0.00% 33.13 14.63 24.55% 42.12% 0.00% 387 Portuguese

66.42%

13.63%

16.06%

3.89%

0.00%

0.00%

0.00%

23

Russian	2,172 7	71.65%	27.34%	1.01%	27.42	11.57	1.34%	32.90%	41.38%	20.55%	3.23%	0.37%	0.23%
Slovak	272 8	88.97%	11.03%	0.00%	35.17	13.30	8.55%	51.30%	26.39%	12.27%	0.37%	0.37%	0.74%
Swedish	139 8	81.29%	15.11%	3.60%	42.12	14.88	8.70%	55.80%	23.19%	9.42%	2.90%	0.00%	0.00%
Turkish	146 6	58.49%	30.82%	0.68%	23.73	7.47	4.11%	38.36%	2.05%	55.48%	0.00%	0.00%	0.00%
Ukrainian	208 6	54.42%	35.10%	0.48%	32.38	10.31	12.02%	82.21%	1.44%	3.85%	0.00%	0.00%	0.48%
Chinese	232 6	54.22%	33.62%	2.16%	35.16	9.83	6.90%	87.93%	2.16%	3.02%	0.00%	0.00%	0.00%

Significant unique factor loading parameters reported in the Conspiratorial Thinking Scale

	CTS Item 1	CTS Item 2	CTS Item 3	CTS Item 4
Bulgarian			52	
Czech				
German				
English				
Spanish (Colombia)				
Spanish (Costa Rica)				
Spanish (Ecuador)				
Spanish (Spain)				
Spanish (Guatemala)				
Spanish (Uruguay)				
Spanish (Honduras)				
Estonian				
Finnish				
Italian				
Japanese				
Norwegian				
Portuguese (Portugal)				
Portuguese (Brazil)				.77
Russian				
Slovak	66			77
Swedish				
Turkish			67	
Ukrainian				

Chinese -.61

Note. Values demonstrate the difference between the overall factor loading and group-specific factor loading in each item. Only the values from groups/items reported significant unique parameters were included in the table.

	CTS Item 1	CTS Item 2	CTS Item 3	CTS Item 4
Bulgarian	.83	50		.67
Czech				
German			52	
English			61	
Spanish (Colombia)	59			
Spanish (Costa Rica)				
Spanish (Ecuador)				
Spanish (Spain)	59			
Spanish (Guatemala)				
Spanish (Uruguay)	.85			
Spanish (Honduras)				
Estonian	.59			
Finnish				.73
Italian				
Japanese	.68			
Norwegian		.67	75	
Portuguese (Portugal)				
Portuguese (Brazil)	89			
Russian	.83			
Slovak				
Swedish	82	.58		-1.47
Turkish				
Ukrainian	.87			
Chinese				

Significant unique intercept parameters reported in the Conspiratorial Thinking Scale

Note. Values demonstrate the difference between the overall intercept and group-specific intercept in each item. Only the values from groups/items reported significant unique parameters were included in the table.

Significant unique factor loading parameters reported in the Anti-Expert Sentiment Scale

	AESS Item 1	AESS Item 2	AESS Item 3
Bulgarian			
Czech			
German			
English			
Spanish (Colombia)			
Spanish (Costa Rica)	.77		
Spanish (Ecuador)			
Spanish (Spain)			
Spanish (Guatemala)			
Spanish (Uruguay)			
Spanish (Honduras)			
Estonian			
Finnish			
Italian			
Japanese			
Norwegian			
Portuguese (Portugal)		.60	
Portuguese (Brazil)			
Russian			
Slovak			
Swedish			
Turkish			
Ukrainian	79		76
Chinese		1.38	

Note. Values demonstrate the difference between the overall factor loading and group-specific factor loading in each item. Only the values from groups/items reported significant unique parameters were included in the table.

Significant unique intercept parameters reported in the Anti-Expert Sentiment Scale

	AESS Item 1	AESS Item 2	AESS Item 3
Bulgarian			
Czech			.54
German			
English			
Spanish (Colombia)			
Spanish (Costa Rica)		88	56
Spanish (Ecuador)			
Spanish (Spain)			
Spanish (Guatemala)		26	
Spanish (Uruguay)			
Spanish (Honduras)			
Estonian			56
Finnish		.56	
Italian			
Japanese			.72
Norwegian			
Portuguese (Portugal)	.54		
Portuguese (Brazil)			60
Russian			
Slovak			
Swedish			.90
Turkish	.57		76
Ukrainian	51	1.58	
Chinese			

Note. Values demonstrate the difference between the overall intercept and group-specific intercept in each item. Only the values from groups/items reported significant unique parameters were included in the table.

	CTS Item 1	CTS Item 2	CTS Item 3	CTS Item 4	AESS Item 1	AESS Item 2	AESS Item 3
Bulgarian	1.62	1.36	1.07	1.63	1.38	1.19	1.20
Czech	1.27	1.00	1.10	1.48	1.14	.85	.90
German	.90	.97	1.26	1.16	1.01	1.00	.83
English	1.39	.96	1.39	1.70	1.14	1.46	.81
Spanish (Colombia)	1.06	1.02	1.30	1.49	1.14	.72	.66
Spanish (Costa Rica)	1.18	1.07	1.27	1.59	1.31	.45	.63
Spanish (Ecuador)	1.15	1.21	1.33	1.34	.92	.82	.73
Spanish (Spain)	.93	1.09	1.46	1.27	1.14	.98	.69
Spanish (Guatemala)	1.17	.84	.86	1.49	.90	.42	.69
Spanish (Uruguay)	1.38	1.23	1.37	1.20	.62	.73	.70
Spanish (Honduras)	1.13	.97	.97	1.29	.66	1.26	.92
Estonian	1.06	1.37	1.33	1.05	1.10	.73	.52
Finnish	.93	1.51	1.54	1.38	1.11	.92	.77
Italian	1.06	1.25	1.58	1.47	.94	1.37	1.08
Japanese	1.14	1.25	1.22	1.21	.70	1.01	.69
Norwegian	1.04	1.16	1.24	1.11	.85	.91	.87
Portuguese (Portugal)	.85	1.07	1.26	1.18	.74	1.17	.63
Portuguese (Brazil)	.73	.69	.93	1.40	.90	.70	.62
Russian	1.27	1.21	1.31	1.32	.62	1.15	1.02
Slovak	1.30	1.24	1.41	1.33	.83	.85	.92
Swedish	.56	1.51	1.46	.55	.94	.86	.97
Turkish	1.42	1.17	.77	1.64	.91	1.21	.89
Ukrainian	1.27	1.38	1.44	1.34	.40	2.28	.18
Chinese	.64	1.42	1.54	1.34	.57	1.41	.50

Factor loadings estimated by multigroup CFA

Intercepts estimated by multigroup CFA

	CTS Item 1	CTS Item 2	CTS Item 3	CTS Item 4	AESS Item 1	AESS Item 2	AESS Item 3
Bulgarian	4.00	4.81	4.78	4.50	4.52	3.12	3.41
Czech	2.21	4.59	4.43	2.80	3.36	2.35	2.62
German	1.75	4.10	2.56	1.91	2.90	2.18	2.21
English	2.66	5.00	3.87	3.22	3.33	2.54	2.21
Spanish (Colombia)	2.31	5.15	4.71	3.43	3.04	2.01	1.77
Spanish (Costa Rica)	3.00	5.43	5.13	4.01	3.19	1.81	1.80
Spanish (Ecuador)	2.75	4.84	4.39	3.60	3.16	2.16	2.08
Spanish (Spain)	2.25	5.15	4.52	2.96	3.06	2.10	2.21
Spanish (Guatemala)	2.77	5.29	5.19	3.79	3.53	2.10	2.02
Spanish (Uruguay)	2.67	4.43	3.44	2.66	3.16	1.69	1.71
Spanish (Honduras)	3.64	5.39	5.12	4.59	4.01	2.64	2.56
Estonian	1.92	2.69	2.64	1.97	3.05	2.11	1.83
Finnish	1.62	3.08	2.70	2.24	2.46	2.32	1.73
Italian	1.95	4.53	3.96	2.83	3.87	2.36	2.48
Japanese	3.49	4.59	4.57	3.73	3.75	2.53	3.34
Norwegian	1.82	4.04	2.14	1.78	2.39	1.71	1.91
Portuguese (Portugal)	1.93	4.42	3.26	2.26	4.31	2.17	2.10
Portuguese (Brazil)	1.83	5.30	4.72	2.59	2.79	1.93	1.55
Russian	3.82	4.84	4.41	4.00	4.66	3.38	3.64
Slovak	2.29	4.38	4.02	2.85	3.16	2.15	2.10
Swedish	1.40	3.35	2.70	1.43	2.08	1.50	1.74
Turkish	3.41	5.29	5.10	4.07	4.67	2.95	2.07
Ukrainian	2.01	3.00	2.82	1.92	3.24	2.01	2.79
Chinese	2.17	4.04	3.84	3.13	4.28	3.34	3.11

	CTS Item 1	CTS Item 2	CTS Item 3	CTS Item 4	AESS Item 1	AESS Item 2	AESS Item 3
Bulgarian	1.26	1.06	.83	1.28	.96	.82	.83
Czech	1.27	.99	1.09	1.47	1.06	.79	.83
German	.97	1.05	1.36	1.26	1.01	.99	.83
English	1.35	.93	1.35	1.65	.95	1.21	.67
Spanish (Colombia)	1.11	1.06	1.35	1.56	1.43	.90	.83
Spanish (Costa Rica)	1.26	1.13	1.35	1.69	1.72	.59	.83
Spanish (Ecuador)	1.16	1.23	1.35	1.37	1.05	.93	.83
Spanish (Spain)	.87	1.01	1.36	1.17	1.08	.93	.65
Spanish (Guatemala)	1.27	.90	.93	1.61	1.08	.51	.83
Spanish (Uruguay)	1.36	1.22	1.35	1.19	.73	.86	.83
Spanish (Honduras)	1.26	1.08	1.08	1.44	.60	1.13	.83
Estonian	1.08	1.39	1.35	1.06	1.41	.93	.67
Finnish	.82	1.33	1.35	1.21	1.20	.99	.83
Italian	.91	1.07	1.36	1.26	.72	1.05	.83
Japanese	1.27	1.39	1.35	1.35	.84	1.21	.83
Norwegian	1.13	1.26	1.35	1.21	.81	.87	.83
Portuguese (Portugal)	.92	1.15	1.35	1.27	.97	1.53	.83
Portuguese (Brazil)	1.07	1.00	1.36	2.05	1.19	.93	.83
Russian	1.31	1.25	1.35	1.36	.50	.93	.83
Slovak	1.25	1.19	1.35	1.28	.76	.77	.83
Swedish	.52	1.40	1.35	.51	.81	.74	.83
Turkish	1.27	1.04	.69	1.46	.85	1.13	.83
Ukrainian	1.20	1.30	1.35	1.26	.16	.93	.07
Chinese	.57	1.25	1.36	1.18	.94	2.31	.83

Factor loadings after measurement alignment

Intercepts after measurement alignment

	CTS Item 1	CTS Item 2	CTS Item 3	CTS Item 4	AESS Item 1	AESS Item 2	AESS Item 3
Bulgarian	4.00	4.81	4.78	4.50	4.52	3.12	3.41
Czech	3.09	5.28	5.19	3.82	4.46	3.17	3.49
German	3.11	5.57	4.46	3.67	3.85	3.11	2.99
English	3.16	5.35	4.37	3.83	3.87	3.23	2.60
Spanish (Colombia)	2.57	5.40	5.03	3.79	4.44	2.89	2.58
Spanish (Costa Rica)	2.87	5.31	4.99	3.83	4.41	2.24	2.39
Spanish (Ecuador)	3.20	5.31	4.91	4.12	4.11	3.00	2.83
Spanish (Spain)	2.58	5.53	5.02	3.40	4.31	3.17	2.96
Spanish (Guatemala)	2.79	5.31	5.20	3.81	4.57	2.59	2.82
Spanish (Uruguay)	4.01	5.63	4.77	3.83	4.18	2.90	2.87
Spanish (Honduras)	3.27	5.08	4.81	4.18	4.29	3.17	2.94
Estonian	3.75	5.06	4.95	3.79	4.23	2.90	2.39
Finnish	3.20	5.62	5.30	4.56	4.11	3.68	2.87
Italian	2.77	5.50	5.18	3.97	4.55	3.34	3.26
Japanese	3.84	4.97	4.94	4.10	4.09	3.02	3.67
Norwegian	3.56	5.98	4.23	3.65	3.77	3.18	3.32
Portuguese (Portugal)	2.97	5.72	4.79	3.70	4.77	2.89	2.49
Portuguese (Brazil)	2.27	5.71	5.27	3.43	3.94	2.82	2.35
Russian	4.00	5.01	4.59	4.18	4.49	3.05	3.35
Slovak	3.27	5.31	5.08	3.85	4.20	3.21	3.24
Swedish	2.34	5.89	5.17	2.36	4.13	3.38	3.85
Turkish	3.16	5.08	4.97	3.78	4.80	3.12	2.19
Ukrainian	4.03	5.19	5.11	4.05	3.71	4.70	3.00
Chinese	2.71	5.23	5.14	4.26	4.23	3.20	3.06

Correlation between conspiratorial thinking and anti-expert sentiment with trust (before measurement

alignment)

	1	2	3	4	5	6	7	8
1. Conspiratorial Thinking								
2. Anti-expert Sentiment	.44							
3. Trust in parliament/government	42	17						
4. Trust in police	38	19	.70					
5. Trust in civil service	41	22	.74	.75				
6. Trust in health system	39	29	.56	.66	.69			
7. Trust in the WHO	39	34	.42	.37	.47	.49		
8. Trust in governmental effort	39	19	.79	.61	.68	.56	.46	
9. Trust in scientific research community	43	44	.39	.39	.46	.54	.62	.46