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A mathematical analysis of wave propagation along
an elastic cylindrical tube is presented, with the aim
of determining the range of Poisson’s ratio for which
backward wave propagation (i.e. at negative group
velocity) can occur near the ring frequency. This
range includes zero Poisson’s ratio and a surrounding
interval of positive and negative values, whose width
depends on the thickness of the tube. The whole
range of Poisson’s ratio is considered, so that the
work applies to modern materials, e.g. composites.
All results are presented in simple analytic form by
means of a dominant balance in parameter space. The
identification of this balance, which is unique, is a
main new result in the paper, which makes possible
a new type of shell theory based on ‘Poisson scaling’.
The mathematical approach is deductive from the
equations of motion, rather than being based on
kinematic hypotheses. A key finding, accessible via
the Poisson scaling, is that the regime of negative
group velocities extends to high wavenumbers, while
being confined to a narrow band of frequencies.
Thus responses localised in space are possible for
near-monochromatic forcing, an important fact for
nonlinear theories of tube dynamics near the ring
frequency.

1. Introduction
The starting point of this paper is a mathematical method
developed in [1] for analysing the dispersion relation
for elastic waves propagating along a tube. The idea
of the method is that by exploiting a set of recurrence
relations among the higher Wronskians of the underlying
differential equations, and expanding in powers of the
dimensionless thickness of the tube, a compact set of
polynomial equations is obtained, from which many
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analytic deductions about the nature of the wave propagation along the tube are possible.
In particular, it was shown that near the ring frequency for axisymmetric waves there is a

regime of negative group velocity, i.e. backward wave propagation, and results were presented for
the limiting cases of very small wavenumber or Poisson’s ratio. However, backward propagation
is not restricted to these limits, and given the importance of the neighbourhood of the ring
frequency [2], it seems worthwhile to give a full account of the dispersion curve nearby, over
the maximum parameter range permitted by the theory. Such an account is presented here. We
provide analytical results in the two-dimensional parameter space (ν, ε), where ν is Poisson’s
ratio of the elastic material forming the tube wall, and ε is its dimensionless thickness. The results
include a precise analytical description of the arc of negative group velocity in the (frequency,
wavenumber) plane, including the position of its endpoints and an accurate calculation of a
quantity we call the frequency overhang. This is the length of the projection onto the frequency
axis of the arc of the dispersion curve on which the group velocity is negative. A glance at figure 2
will reveal why this terminology is appropriate. Our formulae are simpler than those currently
available for related examples of backward propagation [3–5].

In the course of the work, we performed numerical experiments to determine the range of
accuracy of the mathematical technique of dominant balance [6–8] which we have used. Here,
the technique requires us to determine the exponent α which maximises the number of terms in
balance when ν ∼ εα. The answer unambiguously is that α= 1, which means that results may be
expressed in terms of a scaled Poisson’s ratio of order ν/ε. Approximations based on this ‘Poisson
scaling’ are found to be accurate over a wide range of ν and ε covering all values likely to arise in
practice, including large values. Accordingly, we give the scaling some prominence.

The Poisson scaling approach is new in the theory of elastic waves, and we believe it
offers scope for new forms of shell theory in which it is adopted at the outset in the energy
functional chosen, thus extending to thicker shells the theory in such classical works as [9].
Although we concentrate on the frequencies and wavenumbers for which backward propagation
occurs, the method of Poisson scaling is in fact general; it may be used at any frequency and
wavenumber, and also in nonlinear elastic problems [10,11]. Potential applications of the work
are to modern materials such as homogenised media and composites with tunable parameters,
including nanotubes [12,13] and metamaterials [14–16]. One recent application is to the design of
a pressure pulsation dampener made of a material with zero or negative Poisson’s ratio [17].

The paper is arranged as follows. Section 2 gives the dispersion relation forming the
foundation of the work and obtains from it a double series ansatz in Poisson’s ratio and the
dimensionless thickness. This gives the dominant balance and scaled Poisson’s ratio ν̃. Section 3
determines the arc of negative group velocity, especially its uppermost point in the (frequency,
wavenumber) plane, referred to as the critical point. In §4 the range of Poisson’s ratio for which
backward propagation can occur is determined explicitly, and in §5 the frequency overhang is
defined and plotted. Section 6 gives the coordinates of various extrema of wavenumber and
frequency which are evident in plots. Conclusions are presented in §7, including some promising
directions for further research.

2. The dispersion relation
Here we give the definitions in [1] required for the dispersion relation. The elastic displacement
satisfies Navier’s equation with wave speeds

c1 =

{
1− ν

(1 + ν)(1− 2ν)

}1/2

c0, c2 =
c0

{2(1 + ν)}1/2
, (2.1)

in which ν is Poisson’s ratio and c0 = (E/ρ)1/2, where E is Young’s modulus and ρ is the density.
The mean radius of the wall is a and its thickness is h, so that the inner radius is ai = a− h/2
and the exterior radius is ae = a+ h/2. Much of what follows is a parameter study in ν and
the dimensionless thickness ε= h/a, taken to lie in the ranges −1< ν < 1/2 and 0< ε< 2. In



3

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..................................................................

0 1 2 3
0

1

2

3

K

Figure 1. Dispersion relation near the ring frequency for Poisson’s ratio ν = 0.1 and dimensionless wall thickness ε=

0.25. The near-vertical line extends upwards from the ring frequency to the avoided crossing.

many formulae, the limit ν→ 1/2 represents an incompressible medium. Other quantities are the
wave frequency ω, with dimensionless form Ω = ωa/c0; displacement u= (u, v, w) in cylindrical
coordinates (r, θ, z); and time t. The tube wall occupies ai < r < ae, and the axis of the tube is the
z-axis. We consider axisymmetric waves with no circumferential displacement, i.e. v= 0, and take
traction-free boundaries at r= ai and r= ae. The wave displacements are assumed proportional
to e−iωt+ikz , and this factor is omitted throughout.

The dispersion relation is expressible in terms of Bessel functions J0 and Y0 evaluated at
Ω̃1 = Ω̃1(r) = {(ωr/c1)2 − (kr)2}1/2 and Ω̃2 = Ω̃2(r) = {(ωr/c2)2 − (kr)2}1/2. We shall use a
subscript 1 or 2 to indicate whether Ω̃1 or Ω̃2 is required, so that J0,2 = J0(Ω̃2), for example.
Either branch of the square roots is permissible, because the dispersion relation has no branch
points (i.e. the square roots occur in pairs). The values of r occurring in the boundary conditions
are ai and ae. Four functions which emerge are

dJ(Ω̃,K) = 1
2 (Ω̃

2
2 −K2)J0(Ω̃) + Ω̃J ′0(Ω̃), (2.2)

eJ(Ω̃,K) = Ω̃{Ω̃J0(Ω̃) + J ′0(Ω̃)}, (2.3)

fJ(Ω̃,K) =−K2Ω̃J ′0(Ω̃), (2.4)

gJ(Ω̃,K) = 1
2 (Ω̃

2 −K2)Ω̃J ′0(Ω̃), (2.5)

and similarly (dY, eY, fY, gY). These are evaluated at the dimensionless frequencies

Ω̃1i = Ω̃1(ai), Ω̃1e = Ω̃1(ae), Ω̃2i = Ω̃2(ai), Ω̃2e = Ω̃2(ae) (2.6)

and wavenumbers (Ki,Ke) = (kai, kae) as indicated by subscripts; for example,

dJ1i = dJ(Ω̃1i,Ki), gY2e = gY(Ω̃2e,Ke). (2.7)

In the definition (2.2), the quantity Ω̃2
2 is not an argument of the function dJ (nor of dY); it is

evaluated at Ω̃2i or Ω̃2e, always with a subscript 2.
The result of applying the boundary conditions, and requiring a non-trivial solution, is the

determinant equation ∣∣∣∣∣∣∣∣∣∣∣

dJ1i dY1i eJ2i eY2i

dJ1e dY1e eJ2e eY2e

fJ1i fY1i gJ2i gY2i

fJ1e fY1e gJ2e gY2e

∣∣∣∣∣∣∣∣∣∣∣
= 0. (2.8)

Regarded as a function of ω and k, this is the dispersion relation for the problem we are
considering. Details of the steps omitted here may be found in [1].
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Figure 2. Dispersion curves showing the overhang region between the critical point (×) and ring frequency point (·) for

ε= 0.25 (top row) and ε= 0.5 (bottom row). The difference between the frequencies at these two points is called ‘the

overhang’. In each row, ν increases from left to right, passing from negative to positive values. The exact dispersion

relation (2.8) is plotted as a solid black line, and the series form (2.14) as a red dash-dotted line. The cross marks the

critical point (Kc, Ωc), with Kc taken to order ε2 from (3.6), and Ωc to order ε4 from (3.8). Values of (ν, ε) are (a)

(−0.05, 0.25); (b) (0.001, 0.25); (c) (0.05, 0.25); (d) (−0.1, 0.5); (e) (0.001, 0.5); (f ) (0.1, 0.5). In (3.6) and (3.8),

the corresponding values of ν̃ have been used. See figure 3(c, f) for the locus of all possible positions of the critical point

when ν or ν̃ varies while ε is held constant.

(a) Numerical plots of the dispersion relation
Our concern in this paper is the form of the dispersion relation near the first cut-on frequency,
known as the ring frequency. Figure 1 shows the dispersion curve for real (Ω,K) for ν = 0.1, ε=
0.25, computed numerically from (2.8) to machine precision. In dimensionless variables, the ring
frequency is close to Ω = 1. The straightness and near-vertical slope of the dispersion curve are
evident—greater than can be accounted for by the usual square-root dependence with an order-
one coefficient. Such a region in the dispersion diagram, where a broad range of wavenumbers
occurs in a narrow range of frequencies, produces a resonant response in which the amplitude
depends strongly on the narrowness of the frequency range.

Figure 2 presents a blow-up of the dispersion curves for ν = (−0.05, 0.001, 0.05) when ε=

0.25, and for ν = (−0.1, 0.001, 0.1) when ε= 0.5, all computed to machine precision. These and
similar plots which cover the whole (ν, ε) parameter space demonstrate numerically that for all
ε there is an interval of values of ν for which the dispersion curve slopes backwards from the
ring-frequency point (Ω,K) = (Ω0, 0). This interval contains ν = 0, and its width increases with
ε. The interval always contains both positive and negative ν. Given these numerical results, the
task of this paper is to explain them analytically, with an emphasis on finding scaling laws in
ν and ε which describe all aspects of the backward-sloping region to high accuracy using only
simple formulae.
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(b) Analytic structure and the ring series
At first sight, the determinant (2.8) is of forbidding analytic complexity, because of the large
number of logarithmic terms arising from the Bessel functions Y0 and Y ′0 . Nevertheless, the
Wronskian analysis in [1] shows that its series expansion in ε has a simple form in which no
Bessel functions or logarithms appear. This form is

a0 + a2ε
2 + a4ε

4 + · · ·= 0, (2.9)

where the coefficients a0, a2, . . . are polynomials in the dimensionless frequency Ω = ωa/c0 and
dimensionless wavenumberK = ka. These polynomials are exact; that is, they are not truncations
of infinite series, and they may rapidly be determined from (2.8). This is the original contribution
of [1]. The coefficients of the polynomials contain ν as a parameter, but in a simple way: each
coefficient is either an integer or a ratio of polynomials in ν with integer coefficients.

For our purposes, a two-stage transformation of (2.9) is convenient. First, we use the exact
factorisation when ν = 0 to obtain the equivalent form

(Ω2 −K2)
{
Ω2 − 1 + ε2(p20 + νp21) + ε4(p40 + νp41) + · · ·

}
= ν2

{
Ω4 +

∞∑
n=0

νn(ε2q2,n + ε4q4,n + · · · )
}
, (2.10)

in which the factor Ω2 −K2 is explicit, and a double series form in ν and ε is adopted (we omit
commas between subscripts when this is clear). The quantities pmn and qmn are polynomials in
Ω2 and K2 with rational coefficients. For example, p21 =−Ω2(2Ω2 −K2)/6. Second, we invert
(2.10) analytically about the point Ω = 1 to obtain the ring series

Ω2 = 1 +A02ν
2 +A04ν

4 + · · · +
∞∑
n=0

νn(ε2A2,n + ε4A4,n + · · · ), (2.11)

where the coefficients Amn are functions of K2. Only even powers of ν occur in the ε0 terms. A
short Mathematica code gives

A02 =
1

1−K2
, A04 =

1− 2K2

(1−K2)3
, A20 =

1

12
{1−K2(1−K2)}, A21 =

1

3

(
1− 1

2
K2), (2.12)

A22 =
5− 10K2 + 8K4 − 5K6 +K8

12(1−K2)2
, A40 =−

1

720
(15 + 12K2 − 24K4 + 17K6), (2.13)

and so on [1]. These coefficients are exact. The Amn are rational functions of K2 in which the
degree of the numerator increases steadily with m and n, and the denominator is a power of
1−K2. The coefficients for n= 0 or 1 (and no others) are polynomials inK2. An alternative form
of the ring series is the square root of (2.11), which is

Ω = 1 +
1

2

(
A20ε

2 +A02ν
2)+ 1

2
A21ε

2ν

+
1

2

{(
A40 −

1

4
A2
20

)
ε4 +

(
A22 −

1

2
A20A02

)
ε2ν2 +

(
A04 −

1

4
A2
02

)
ν4
}
+ · · · .

(2.14)

The displayed terms are plotted as the red dash-dotted curves in figure 2 for a range of values of
(ν, ε). It can be seen that the accuracy is excellent, even for ε= 0.5.

(c) Poisson scaling
Our aim is to describe analytically how the dispersion curve varies with ν at fixed ε. To this
end, we adopt the method of dominant balances [6–8] in which a scaling is chosen to maximise
the number of terms in balance at leading order. Here, this occurs if we take Ω and K to be of
order one, and ν to be formally of the same order as ε. Thus we define a scaled Poisson’s ratio
ν̃ =
√
12ν/ε, in which the factor

√
12 is for numerical convenience. Our procedure is to write
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formulae in terms of (ν̃, ε), rather than (ν, ε), and in series expansions regard ν̃ as being formally
of order one. We call this approach Poisson scaling, since it depends on the dominant balance
ν ∼ ε. Thus on substituting ν = ν̃ε/

√
12 into (2.11), and re-ordering, we obtain

Ω2 = 1 +
ε2

12

{
1−K2(1−K2) +

ν̃2

1−K2

}
+

ν̃ε3

3
√
12

(
1− 1

2
K2)

+ ε4
{
A40(K

2) +
ν̃2

12
A22(K

2) +
ν̃4

144
A04(K

2)
}
+ . . . ,

(2.15)

withA40,A22, andA04 defined as in (2.12)–(2.13). The series (2.14) is already written with Poisson
scaling in mind. For example, its last terms combine to into

ε4

2

{(
A40 −

1

4
A2
20

)
+
ν̃2

12

(
A22 −

1

2
A20A02

)
+

ν̃4

144

(
A04 −

1

4
A2
02

)}
, (2.16)

and putting K = 0 in the whole series gives the ring frequency Ω0 in the form

Ω0 =Ω0(ν̃, ε) = 1 +
ε2

24
(1 + ν̃2) +

ν̃ε3

6
√
12

+
ε4

1152
(−13 + 18ν̃2 + 3ν̃4) + . . . . (2.17)

3. The critical point
Figure 2 shows that depending on (ν, ε), or equivalently (ν̃, ε), the branch of the dispersion curve
extending upwards from (Ω0, 0) may tilt backwards up to a critical point marked with a cross,
where dΩ/dK = 0, beyond which it slopes forward. This point will be denoted (Ωc,Kc), where
Ωc is the critical frequency and Kc is the critical wavenumber. To determine their values, we use
the fact that K2

c is a root of d(Ω2)/d(K2) = 0, regarded as an equation in K2, and from (2.15) we
have

d(Ω2)

d(K2)
=
ε2

12

{
− 1 + 2K2 +

ν̃2

(1−K2)2

}
− ν̃ε3

6
√
12

+ ε4
{
A′40(K

2) +
ν̃2

12
A′22(K

2) +
ν̃4

144
A′04(K

2)
}
+ . . . .

(3.1)

Here primes denote derivatives with respect to K2. This gives an expansion in powers of ε of the
form

K2
c =K2

c (ν̃, ε) =K2
c0(ν̃) + ε(K2

c )1(ν̃) + ε2(K2
c )2(ν̃) + . . . , (3.2)

where K2
c0 and (K2

c )2 are even functions of ν̃, and (K2
c )1 is odd. A feature of (3.2) (and most

series we use) is that it contains odd as well as even powers of ε; this is a consequence of Poisson
scaling, in which ν̃ instead of ν is used as a parameter, and terms are ordered with ν̃ regarded as
order one.

(a) Calculation of the critical wavenumber
On substituting the series form of K2

c into (3.1), and equating coefficients of successive powers of
ε to zero, we obtain

(1−K2
c0)

2 (1− 2K2
c0) = ν̃2, (3.3)

(K2
c )1 =

ν̃√
12

(
1−K2

c0

2− 3K2
c0

)
, (3.4)

and a somewhat longer expression for (K2
c )2. The form of (3.4) makes explicit that (K2

c )1 is odd
in ν̃. Since (3.3) is a cubic equation in K2

c0, it may be solved explicitly. The relevant root is K2
c0 =
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Figure 3. Dependence of critical wavenumber Kc, critical frequency Ωc, and critical point (Ωc,Kc) on scaled Poisson’s

ratio ν̃ for ε= 0.25 (top row) and ε= 0.5 (bottom row); the plots show how the coordinates of the crosses in figure 2

vary along a row. The range of ν̃ on each curve is that for which an overhang exists. Codes for first, second, and third

truncations are (blue, dotted), (red, dash-dotted), and (black, solid). (a), (d) Critical wavenumber Kc(ν̃, ε) from (3.6).

The series to order ε2 (solid curve) are indistinguishable from those to order ε, and so hide the dash-dotted curves.

(b), (e) Critical frequency Ωc(ν̃, ε) from (3.8). The end-points (ν̃±, Ωc±) from (4.3) and (4.5) are marked with dots.

(c), (f) Locus of critical points (Kc(ν̃, ε), Ωc(ν̃, ε)) as ν̃ varies at fixed ε, using the curves in the previous two columns.

The lettering in (c, f) corresponds to that in (a, d) and (b, e).

(5− γ1/3 − γ−1/3)/6, where

γ = γ(ν̃) = 1 + 54ν̃2 + 3
√
12 (ν̃2 + 27ν̃4)1/2. (3.5)

The quantities (K2
c )1, (K2

c )2, . . . may now be found as expressions in ν̃, using (3.4) and its
successor equations. These present no difficulty to Mathematica, and are the basic ingredients
for the further series expansions developed in the rest of the paper.

In (3.3), if Kc0 increases from 0 to 1/
√
2, the corresponding value of ν̃2 decreases from 1 to 0.

Hence in the range −1≤ ν̃ ≤ 1, equation (3.3) defines a symmetric non-negative function Kc0(ν̃)

which has a maximum value Kc0 = 1/
√
2 at ν̃ = 0, and descends to Kc0 = 0 at ν̃ =±1. These

values agree with Kc0 as determined by (3.5). In the original variables (ν, ε), the function Kc0(ν̃)

becomes Kc0(
√
12ν/ε), which is self-similar, so that the series (3.2) has the property of leading-

order self-similarity. Thus one advantage of the variable ν̃ now becomes apparent: it is the self-
similarity parameter in situations where the leading-order approximation is good enough. If Kc0

is regarded as a function of ν rather than ν̃, the maximum is still 1/
√
2, but the relevant range

becomes |ν| ≤ ε/
√
12. The fact thatK′c0 = 0 at ν̃ = 0, or equivalently at ν = 0, is used in later series

expansions.
For plotting, we use instead of (3.2) the alternative form

Kc =Kc(ν̃, ε) =Kc0(ν̃) + εKc1(ν̃) + ε2Kc2(ν̃) + . . . , (3.6)

where

Kc1 =
(K2

c )1
2Kc0

, Kc2 =
(K2

c )2
2Kc0

− {(K
2
c )1}2

8K3
c0

, . . . . (3.7)
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Figure 4. Series expansion (4.4) of the curves ν = ν±(ε) to orders ε (blue dotted), ε2 (red dash-dotted), and ε3 (black

solid). An overhang in the dispersion relation exists when (ν, ε) lies between these two curves; then backward propagation

takes place for (Ω,K) on the arc of the dispersion curve between the critical point (Ωc,Kc) and the ring-frequency point

(Ω0, 0), indicated by the symbols × and · in figure 2.

Here Kc0 and Kc2 are even, and Kc1 is odd. Note that (K2
c )1 6=K2

c1 and (K2
c )2 6=K2

c2.
Figure 3(a, d) shows successive truncations of (3.6) to order 1, ε, and ε2 for ε= 0.25 (top row)
and ε= 0.5 (bottom row). Convergence is rapid: the series up to orders ε and ε2 are almost
indistinguishable on the scale of the plots. The symmetry of the first approximation Kc0(ν̃) (blue
dotted curve) is evident, as is the deviation from symmetry in the next two approximations.

(b) The critical frequency
The critical frequency Ωc is obtained from (2.14), rewritten with ν = ν̃ε/

√
12 as in (2.15)–(2.16),

and evaluated at K =Kc(ν̃, ε). Its series form is

Ωc =Ωc(ν̃, ε) = 1 + ε2Ωc2(ν̃) + ε3Ωc3(ν̃) + ε4Ωc4(ν̃) + . . . , (3.8)

in which Ωc2(ν̃), Ωc3(ν̃), . . . are determined by Kc0(ν̃), Kc1(ν̃), . . . on the right-hand side of (3.6),
which are themselves determined by (3.3)–(3.4) and (K2

c )2. The function Ωc0(ν̃) is symmetric in
ν̃, as it depends only on Kc0(ν̃). Successive truncations of (3.8) are plotted in figure 3(b, e) for ε=
0.25 and ε= 0.5. Convergence for ε= 0.25 is rapid, and only slightly less so for ε= 0.5. In the latter
case, the exterior radius of the cylinder is three times the inner radius; so the accuracy displayed
in the lower row of plots is remarkable for an approximation based on the assumption ε� 1. This
degree of accuracy confirms the power of the dominant balance approach, as implemented here
via Poisson scaling.

Figure 3(c, f) combines the plots in the previous two columns to give the curve
(Kc(ν̃, ε), Ωc(ν̃, ε)) at fixed ε, in which ν̃ is now a parameter, and so is not visible. As ν̃

increases, the curve is traversed clockwise (except that, by symmetry in ν̃, the first approximation
(Kc0(ν̃), Ωc0(ν̃)) collapses to a line traversed up and down). The interpretation of this curve is
that it gives the locus of the points in figure 2 marked with a red cross, i.e. the critical points, when
ν̃ varies at fixed ε. It gives all such points.

4. The range of Poisson’s ratio for a critical frequency
Figure 3(a, d) indicates that Kc approaches zero as ν̃ moves away from zero in either direction,
so that Kc = 0 when ν̃ takes either of two values which we may denote ν̃±(ε). Thus we have the
defining relation

Kc(ε, ν̃−(ε)) =Kc(ε, ν̃+(ε)) = 0, (4.1)

and a critical point (Ωc,Kc) exists when ν̃ lies in the range ν̃−(ε)≤ ν̃ ≤ ν̃+(ε). Since the ring
frequency Ω0 also corresponds to zero wavenumber, it follows that we have the identity Ωc =

Ω0 when ν̃ = ν̃±(ε); this is a useful check of formulae. When ν̃ lies outside the range ν̃−(ε) to
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ν̃+(ε), there is no critical point, because the branch of the dispersion curve emerging from the
ring frequency ascends to the right everywhere.

To determine ν̃±(ε), we equate the right-hand side of (3.1) to zero at K = 0. This gives

ν̃2± − 1 − ν̃± ε√
3

+ ε2
(
ν4±
12
− 1

5

)
+ O(ε3) = 0, (4.2)

in which there is no term in ε2ν̃2± because A′22(0) = 0. Hence

ν̃± = ν̃±(ε) =±1 +
ε√
12
± ε2

10
+O(ε3), (4.3)

or equivalently

ν± = ν±(ε) =±
ε√
12

+
ε2

12
± ε3

10
√
12

+O(ε4). (4.4)

The curves ν = ν±(ε) are plotted in figure 4. They mark out a wedge-shaped region in the (ν, ε)

plane for which backward propagation near the ring frequency occurs. Successive truncations of
(4.4) can be seen to converge rapidly.

The frequencies corresponding to ν̃± may be denotedΩc±. Since they equal the ring frequency
evaluated at ν̃±, they may be calculated by substituting (4.3) into either (2.17) or (3.8). The result
by either method is

Ωc± =Ωc±(ε) = 1 +
ε2

12
± ε3

4
√
12

+
47ε4

1440
+O(ε5). (4.5)

These frequencies are marked as dots at the ends of the solid black Ωc curves in figure 3(b, e) and
the (Ωc,Kc) curves in figure 3(c, f). They differ by an amount Ωc+ −Ωc− = ε3/(2

√
12) +O(ε5),

which is a measure of the asymmetry of the Ωc curves and the distance apart of the ends of the
(Ωc,Kc) curves.

5. The frequency overhang
The difference between Ω0 and the critical frequency Ωc is a measure of the flatness of the
dispersion curve in the frequency range (Ωc, Ω0), and so is an important factor in the resonant
response in this range. We shall use the term frequency overhang for the positive quantity
Ω0 −Ωc, but in plots display its negative Ωdc =Ωc −Ω0 =Ωc(ν̃, ε)−Ω0(ν̃, ε).

Figure 5(a, c) shows Ωdc as function of ν̃ for ε= 0.25 and ε= 0.5. Here a check is the
exact value Ωdc = 0 when ν̃ = ν̃±(ε), because then Ωc =Ω0, noted in §4. Similarly, the curves
(Ωdc(ν̃),Kdc(ν̃)) shown in (b, d) must begin and end at (0, 0), where ν̃ = ν̃±(ε), so that the curves
are loops. In the plots, the smallness of the Ωdc scale, in contrast to the order-one Kc scale, is
a measure of the flatness of the dispersion curve, as shown in figure 1 with which we started.
The ascending and descending parts of a loop would collapse onto a single line if Ωdc(ν̃) and
Kdc(ν̃)) were symmetric in ν̃. Thus the narrowness of the loops shows that the asymmetry is
small. Analytically, Ωdc is the difference between series (2.17) and (3.8). Hence explicit formulae
are available, if required, starting with the basic relations (3.3)–(3.5).

6. Extrema on critical curves
Figures 3 and 5 indicate various maxima and minima with the letters M, m, and n. We now
determine their coordinates.

(a) The maximum critical wavenumber
A plot of Kc(ν̃, ε) as a function of ν̃ at fixed ε, as in figure 3(a, d), attains a maximum KcM at a
value ν̃ = ν̃M = ν̃M(ε). Thus KcM =KcM(ε) =maxν̃ Kc(ν̃, ε) =Kc(ν̃M(ε), ε), and ν̃M satisfies the
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Figure 5. Dependence of negative frequency overhang Ωdc =Ωd −Ω0 and the point (Ωdc,Kc) on scaled Poisson’s

ratio ν̃ for ε= 0.25 (top row) and ε= 0.5 (bottom row); the series used are (6.8), (2.17), and (3.6), and the codes

indicating the first, second, and third truncations are (blue, dotted), (red, dash-dotted), and (black, solid), as in figure 3.

The small inaccuracy at the lower right of (d), where the exact curve passes through the origin, is from neglected O(ε5)

terms. These start to become important for ε≥ 0.5.

equation
K′c0(ν̃M) + εK′c1(ν̃M) + ε2K′c2(ν̃M) + . . .= 0, (6.1)

from (3.6). On substituting ν̃M = ν̃M0 + εν̃M1 + ε2ν̃M2 + . . ., and equating the coefficients of
successive powers of ε to zero, we obtain

K′c0 = 0, K′′c0 ν̃M1 =−K′c1, K′′c0 ν̃M2 =−K′c2 −K′′c1ν̃2M1 −
1

2
K′′′c0 ν̃

2
M1, (6.2)

and so on, with derivatives evaluated at ν̃M0. From the parities of Kc0, Kc1, and Kc2 noted after
(3.7), it follows that ν̃M0 = 0 and ν̃M2 = 0. Then (3.3)–(3.4) give ν̃M1 = 1/(4

√
12), so that ν̃M =

ε/(4
√
12) +O(ε3), or equivalently νM = ε2/48 +O(ε4). Hence substituting ν̃M into series (3.6)

for Kc, and using ν̃M0 = 0, we obtain

KcM =Kc0(0) + ε2
{1
2
K′′c0(0) ν̃

2
M1 +K′c1(0) ν̃M1 +Kc2(0)

}
+O(ε4). (6.3)

The coefficients here may be read off from the Taylor expansions

Kc0(ν̃) =
1√
2
−
√
2 ν̃2 + 7

√
2 ν̃4 +O(ν̃6), (6.4)

Kc1(ν̃) =
ν̃

2
√
6
−
√
3√
2
ν̃3 +O(ν̃5), (6.5)

Kc2(ν̃) =
1

160
√
2
− 17

80
√
2
ν̃2 +O(ν̃4), (6.6)

obtainable from (3.7). These give Kc0(0) = 1/
√
2, K′′c0(0) =−2

√
2, K′c1(0) = 1/(2

√
6), and

Kc2(0) = 1/(160
√
2), from which

KcM =
1√
2
+

1

60
√
2
ε2 +O(ε4), ΩcM = 1 +

ε2

32
− 287

30720
ε4 +O(ε5). (6.7)
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(b) The minimum critical frequency
The critical frequencyΩc(ν̃, ε), regarded as a function of ν̃ at fixed ε, has a minimumΩcn =Ωcn(ε)

at ν̃ = ν̃n = ν̃n(ε). This occurs for |ν̃| � 1, so that (6.4)–(6.6) may be used at the outset in the
expansion (3.6) of Kc. Then (2.14), written with ν = ν̃ε/

√
12 and evaluated at K =Kc, becomes

Ωc(ν̃) = 1 + ε2
( 1

32
+
ν̃2

12
− ν̃4

6
+ · · ·

)
+ ε3

( ν̃

16
√
3
+

ν̃3

12
√
3
− 2ν̃5

3
√
3
+ · · ·

)
+O(ε4), (6.8)

from which

Ω′c(ν̃) = ε2
( ν̃
6
− 2ν̃3

3
+ · · ·

)
+ ε3

( 1

16
√
3
− ν̃2

4
√
3
+ · · ·

)
+O(ν̃ε4). (6.9)

Solving Ω′c(ν̃n) = 0 as a series in ε, we find ν̃n =−
√
3 ε/8 +O(ε3), or equivalently νn =−ε2/16 +

O(ε4). Then substituting into (6.8) including the O(ε4) term, and (3.6) we obtain

Ωcn = 1 +
ε2

32
− 1501

92160
ε4 + · · · , Kcn =

1√
2
− 3

20
√
2
ε2 +O(ε3). (6.10)

The points M and n are marked on the (Ωc,Kc) curve in figure 3(c, f). For small ε, the points are
hard to distinguish, because of the small radius of curvature near the top of the curve.

(c) The maximum overhang
Recall that Ωdc =Ωc −Ω0 is a negative quantity by definition. For fixed ε, the maximum
overhang corresponds to the minimum Ωdcm =Ωdcm(ε) of Ωdc, attained at a value ν̃ = ν̃m =

ν̃m(ε) of order O(ε). To determine ν̃m, we first subtract the series (2.17) for Ω0 from (6.8) for Ωc to
obtain

Ωdc(ν̃) = ε2
(
− 1

96
+
ν̃2

24
− ν̃4

6
+ · · ·

)
+ ε3

(
− ν̃

48
√
3
+

ν̃3

12
√
3
− 2ν̃5

3
√
3
+ · · ·

)
+O(ε4), (6.11)

whence

Ω′dc(ν̃) = ε2
( ν̃
12
− 2ν̃3

3
+ · · ·

)
+ ε3

(
− 1

48
√
3
+

ν̃2

4
√
3
+ · · ·

)
+O(ν̃ε4). (6.12)

The solution of Ω′dc(ν̃m) = 0 is ν̃m = ε/(4
√
3) +O(ε3), or equivalently νm = ε2/24 +O(ε4).

Substitution into (6.11) and (3.6) gives

Ωdcm =− ε
2

96
− 181

92160
ε4 + · · · , Kcm =

1√
2
+

ε2

160
√
2
+ · · · . (6.13)

The points M and m are marked on the the (Ωdc,Kdc) curve in figures 5(b, d), although they
are extremely close. The curve starts at (0, 0) for ν̃ = ν̃−, passes through (ΩdcM,KcM) and
(Ωdcm,Kcm) in that order, and returns to (0, 0) at ν̃ = ν̃+. The curve is traversed anti-clockwise
as ν̃ increases, in contrast to the (Ωc,Kc) curve in figure 3(c, f), which is traversed clockwise. As
pointed out in §5, the separation between the rising and falling parts of the curve is a measure
of asymmetry in Poisson’s ratio, here rather small. On the curve for ε= 0.5, a small inaccuracy is
visible near the origin, due to neglected O(ε5) terms; the exact curve joins up to form a loop.

7. Conclusion
This paper shows that the method of Wronskian identities developed in [1] is powerful enough
to describe backward wave propagation in practically unlimited analytical detail, without any
loss of mathematical rigour. The crucial point is that the series expansions we have presented,
including all displayed coefficients, are exact, in that they are consequences of the dispersion
relation (2.8), derived from the linear elastic equations without any kinematic assumptions about
the shape of the wave field. These series are new.
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Backward propagation near the ring frequency is not captured by traditional thin-shell
theories, for example the Novozhilov-Goldenvizer and Donnell-Mushtari approximation [9,19].
The question therefore arises of whether such propagation is captured by thick shell theories, and
if so, whether it is captured accurately. Such theories include the effect of transverse shear and
rotary inertia. This matter does not appear to have been investigated. We have simplified and
re-plotted the results given in a classical work in this area (Naghdi & Cooper [20]), and found
that they do indeed capture backward propagation, together with the merging and reconnection
of complex wavenumber branches at critical points. The details will be reported elsewhere.
Provisionally, we have found that the Naghdi–Cooper equations, with suitable modifications,
are more accurate and are valid to higher frequencies than might be supposed. We therefore see
a greater role emerging for these equations, and their variants, than hitherto. Moreover, we have
found that such equations have previously unidentified factorisation properties, which suggests
that the range may be extended still further by the use of finite-product approximations [2,21].
Thus there is currently a lot of life in this classical subject.

An important feature of our method is the explicit dependence on parameters which it yields
in all formulae. Thus it is potentially applicable to parametric studies of tunable metamaterials
and nanotubes, for example [12,13], and also to a possible type of pressure pulsation damper
which operates at vanishingly small or negative Poisson’s ratio [17]. Our results suggest that if a
driving frequency is increased through the critical frequency, the onset of wave propagation will
be rapid when Poisson’s ratio is small, and a wide range of wavenumbers will be excited almost
simultaneously; alternatively, under broadband forcing one may expect a sharper resonance than
normal near the critical frequency. The consequences of such operating characteristics are yet to
be determined.

Another current research area is the dynamics of soft elastic tubes as a key component of
the biomechanics of nerves and blood vessels [10,11], especially in the medical context. Perhaps
surprisingly in such a numerically oriented subject, an analytical solution of the incremental
boundary-value problem has been found which involves Bessel functions [11]. There is scope
here to extend our approach to include parametric dependence on pre-stress, which dramatically
affects the ring frequency. One matter for investigation here would be the range of pre-stress
for which a regime of negative group velocity still exists, and how this relates to the localised
bifurcation theory developed in [10].
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