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Abstract 30 

When compared to their temperate coastal counterparts, sediments deposited and preserved along arid 31 

aeolian to shallow-marine margins remain relatively poorly understood, particularly at the scale of 32 

lithofacies units and architectural elements. These systems often record evidence for relative sea-level 33 

change within sedimentary basins. This work focusses on the Entrada-Curtis-Summerville formations that 34 

crop out in central eastern Utah, USA, and provides a detailed analysis of the aeolian Moab Member of 35 

the Curtis Formation (informally  known as the Moab Tongue) that was impacted by cycles of marine 36 

transgressions and regression in the late Jurassic. This study utilises photogrammetry, sedimentary 37 

logging, and sequence-stratigraphical analysis techniques. Results indicate that four short-lived 38 

transgressive-regressive cycles are preserved within the Moab Member, followed by a broad regressive 39 

event recorded at the transition between the Curtis and Summerville formations. These cycles relate to 40 

changes in the relative sea level of the Sundance Sea and the deflation and expansion of the neighbouring 41 

aeolian dune field. During periods of normal regression, marine sediments displayed evidence of tidal and 42 

wave action, whereas the continental domain was characterised by the growth of the aeolian system. 43 

However, when regression occurred within optimal physiographic conditions such as a restricted, semi-44 

enclosed basin, and at sufficient magnitude to outpace erg expansion, this acted to shut-down bedform 45 

development and preservation. A rapid restriction of aeolian sediment availability and the inability of the 46 

dune field to recover resulted in the formation of  deflationary sandsheets, arid coastal plain strata, and 47 

contemporaneous shallow-marine deposits that are starved of wind-sourced sediments. This study 48 

highlights how a rapidly-developing high-magnitude regression can lead to the overall retraction of the 49 

erg. Deciphering the evolution and sequence stratigraphical relationships of arid aeolian to shallow 50 

marine margins is important in both understanding environmental interactions and improving the 51 

characterisation of reservoir rocks deposited in these settings. 52 
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1         Introduction 54 

Many aeolian successions comprise vast and apparently homogeneous deposits, documenting millions 55 

of years of geological time, which is recorded within both the preserved successions and by the 56 

unconformities that separate them. Aeolian systems are subject to both allogenic and autogenic forcing, 57 

when these systems interact with neighbouring fluvial, lacustrine and marine margins complex 58 

interbedded successions of aeolian, alluvial, lacustrine, coastal and shallow-marine deposits are 59 

produced (Langford 1989, Mountney & Jagger, 2004; Rodriguez-Lopez, 2008; Al-Masrahy & Mountney, 60 

2015, Kemp et al., 2017, Zuchuat et al., 2019ab; Priddy & Clarke, 2020, 2021; Pettigrew et al., 2020, 61 

2021). 62 

Continental erg systems have been studied extensively (Bagnold, 1941; Wilson, 1972; Hunter, 1977; 63 

Porter, 1986; Peterson, 1988; Clemmensen & Blakey, 1989; Kocurek, 1991; Crabaugh & Kocurek, 1993; 64 

Carr-Crabaugh & Kocurek 1998; Jerram et al., 2000; Mountney & Thompson, 2002; Mountney, 2012; Kok 65 

et al., 2012; Rodríguez-López et al., 2014; Mesquita et al., 2021; Yu et al., 2021) and are known to deposit 66 

and preserve clastic sandstones, many of which possess favourable reservoir qualities. When identified 67 

within the subsurface these can be indicative of hydrocarbon and sedimentary geothermal reservoirs and 68 

can provide opportunities for the development of carbon capture, utilisation and storage (Taggart et al., 69 

2010; Sass & Götz 2012; Yu et al., 2018; Scorgie et al., 2021; Chedburn et al., 2022). However, there are 70 

comparatively fewer studies focussing on the relationships between erg systems and surrounding coeval 71 

marginal environments (Rodriguez-Lopez et al., 2013, 2014). Early work focussed on the sedimentary 72 

facies observed within the contemporaneous aeolian-marine environments, along with their spatial 73 

relationships (Loope, 1981; Chan, 1989) and sedimentary architecture (Fryberger &, 1984; Huntoon & 74 



Chan, 1987). Later work considered autocyclic controls within aeolian-marine margins, such as the 75 

influence of a fluctuating water table on accumulation and architecture of coastal aeolian systems 76 

(Crabaugh & Kocurek, 1993; Kocurek et al.,  2001), whereas, more recent studies have interpretated the 77 

aeolian-marine deposits in a sequence stratigraphic context and focussed on the complex influence of 78 

allocyclic controls, such as climate and sea-level change on the deposits (Rankey, 1997; Jordan & 79 

Mountney, 2010, 2012; Wakefield & Mountney, 2013; Campos-Soto et al., 2022). Therefore, a detailed 80 

study on the interactions between marine margin and continental depositional processes has the 81 

potential to improve predictive sedimentary models. This is especially important in the context of 82 

reservoir modelling as the spatial distribution of freshwater and basin geometries is controlled by a 83 

combination of the sedimentological complexity of arid coastal margins and associated highly variable 84 

topography (Kocurek et al., 2001; Rodríguez-López et al., 2020) created by the influence of mudstones 85 

and other tidally-influenced or marginal fine-grained facies that often act as baffles and/or barriers to flow 86 

(Chandler, 1987, 1989; Svendsen et al., 2007; Henares et al., 2014). 87 

The Entrada-Curtis-Summerville succession exposed in south-eastern Utah documents the evolution of an 88 

arid coastal erg system that interacts with a neighbouring shallow sea. The Curtis and Summerville 89 

formations were respectively deposited within, and next to, a narrow seaway that extended from the 90 

Sundance Sea during the Oxfordian Age (Kreisa & Moila, 1986; Caputo & Pryor, 1991; Wilcox & Currie, 91 

2008; Zuchuat et al., 2018 and references therein), in which tidal resonance (Collins et al., 2018) 92 

temporarily developed during periods of optimal physiographical conditions (Zuchuat et al., 2022). During 93 

phases of amplified tidal forces, autogenic processes have the potential to overprint the stratigraphical 94 

signature of autocyclic processes (Zuchuat et al., 2019a). The sedimentary deposits of the Moab Member 95 

of the Curtis Formation represent clear examples of such complex palaeoenvironmental settings, and 96 

illustrate the potential implications associated with correlating tide-dominated shallow-marine and dry 97 

aeolian successions. Therefore, to investigate the complexities within such environments, this study will: 98 



(i) characterise and further understand the interactions of depositional processes at both local and 99 

regional scales; (ii) redefine the understanding of facies interactions upon aeolian to shallow-marine 100 

margins; (iii) decipher sea-level fluctuations across an aeolian to shallow-marine margin at the local and 101 

regional scales, and; (iv) compile the results into a sequence stratigraphical framework for aeolian-marine 102 

margins. 103 

2         Geological Setting 104 

This study details the sediments of Upper Jurassic Curtis and Summerville formations (sensu Gilluly & 105 

Reeside, 1928) of the San Rafael Group in southern Utah, USA (Figure 1B,D; Doelling, 2001; Doelling et al., 106 

2015). The sediments of these formations were deposited in a marginal marine setting, with a warm arid 107 

aeolian coastal system bordered by a shallow sea (Caputo & Pryor, 1991; Lucas et al., 1997; Lucas, 2014). 108 

The Moab Member of the Curtis Formation comprises deposits of a coastal erg which developed at the 109 

south-eastern edge of a NNE-SSW-oriented retro-arc foreland basin, known as the Utah-Idaho Trough 110 

(Bjerrum & Dorsey, 1995). During the Late Jurassic, the foreland basin was periodically flooded during the 111 

south-easterly expansion of the Sundance Sea (Imlay, 1952, 1980; Pipiringos & O'Sullivan, 1978; Kreisa & 112 

Moila, 1986; Caputo & Pryor, 1991; Anderson & Lucas, 1994; Brenner & Peterson, 1994; Wilcox & Curie, 113 

2008; Thorman, 2011; Zuchuat et al., 2018, 2019a, 2019b, 2022; Danise et al., 2017, 2018, 2020).  114 

Directly underlying the Entrada Formation, two shallow-marine lithostratigraphic rock units are 115 

recognised in the study area, the Carmel Formation and the Curtis Formation (Figure 1B). The older of 116 

these two units is the Middle Jurassic Carmel Formation (Gilluly & Reeside, 1928), which is predominantly 117 

composed of limestone and evaporites deposited as the Carmel Sea transgressed over the arid continental 118 

Temple Cap Formation during the Callovian Age (Doelling et al., 2013). The Dewey Bridge Member 119 

comprises well-stratified reddish to brownish aeolian and sabkha deposits equivalent to the marine 120 



Carmel Formation (Fossen, 2010). The stratigraphic relationships created by the marine Carmel Formation 121 

and the continental Temple Cap along a northern embayment of the Sundance Sea (Doelling et al., 2013) 122 

in the Middle Jurassic bears striking resemblance to the marine Curtis Formation and continental Moab 123 

Member/Summerville Formation that followed. 124 

The overlying continental Entrada Sandstone Formation (Figure 1B,D; Gilluly & Reeside, 1928) was 125 

deposited under arid conditions following the regression of Carmel Sea until the subsequent flooding of 126 

the area by the Curtis Sea (Crabaugh & Kocurek, 1993; Peterson, 1994; Carr-Crabaugh & Kocurek, 1998; 127 

Hintze & Kowallis, 2009). The Entrada Sandstone comprises two sub-units: the wet aeolian dune deposits 128 

of the Slick Rock Member, and the peri-dune-field mottled sandstone and mud flat deposits of the 129 

informally known “earthy facies” (Witkind,  1988;  Crabaugh  &  Kocurek,  1993;  Carr-Crabaugh  &  130 

Kocurek,  1998;  Mountney,  2012;  Doelling  et al.,  2015) across which occasional and local terminal fluvial 131 

splays developed (Jennings, 2014; Hicks, 2011; Valenza, 2016; Gross et al., 2022). The Entrada Sandstone 132 

is capped by a regional polygenetic and heterochronous transgressive surface termed the J-3 133 

‘Unconformity’ (Figure 1B; Pipiringos & O’Sullivan, 1978; for discussion see Zuchuat et al., 2019b), which 134 

defines the base of the Curtis Formation (Gilluly & Reeside, 1928).  135 

The Curtis Formation comprises predominantly siliciclastic shoreface and tidal sediments deposited during 136 

a marine transgression-regression cycle in the early Oxfordian Age (Wilcox & Curie, 2008; Zuchuat et al., 137 

2019a, 2019b) associated with the development of the Moab Member’s coastal erg. The Curtis Formation 138 

is divided into three informal units: the lower, middle and upper Curtis. Sediments of the lower Curtis are 139 

coeval with those of the uppermost part of the neighbouring Entrada Sandstone and comprise laterally 140 

restricted upper shoreface to beach deposits, which grade-laterally into thinly-bedded heterolithic 141 

subtidal deposits (Zuchuat et al., 2018). The base of the middle Curtis corresponds to the prominent 142 

‘Major Transgressive Surface (MTS)’ flooding surface, which can be traced from the north to the south of 143 



the San Rafael Swell, and east to the Utah-Colorado border where it merges with the J-3 ‘Unconformity’ 144 

(Zuchuat et al., 2018). The middle Curtis consists of amalgamated subtidal channel sediments, sediments 145 

deposited by subtidal to intertidal dunes, and tidal flat deposits. These deposits are comparatively better 146 

sorted than the underlying lower Curtis (Zuchuat et al., 2018). The upper Curtis documents the return of 147 

heterolithic, thinly-bedded intertidal to supratidal deposits.  148 

The aeolian deposits of the Moab Member have been interpreted previously as forming the uppermost 149 

member of the Entrada Sandstone (i.e., Gilluly & Reeside 1928; Wright et al., 1962; Thompson & Stokes, 150 

1970). However, the coastal dune deposits of the Moab Member have since been correlated to the 151 

shallow-marine middle and upper Curtis Formation (Figure 1B; Peterson, 1988; Caputo & Pryor, 1991; 152 

Doelling, 2002, 2013, 2015; Zuchuat et al., 2018, 2019a, 2019b; Lockley 2021a, 2021b). Both the shallow-153 

marine and continental parts of the Curtis Formation display regionally-extensive stratigraphic surfaces, 154 

dividing intervals consistent with 100 kyr and/or 405 kyr cycles of orbital forcing (Zuchuat et al., 2019a). 155 

The shallow-marine deposits of the Curtis Formation and the aeolian dunes of the Moab Member are 156 

overlain by the arid coastal plain deposits of the Summerville Formation (Gilluly & Reeside, 1928; Wright 157 

et al., 1962; Caputo & Pryor, 1991; Peterson, 1994; Doelling, 2001; Lucas, 2014).  158 

3         Methodology 159 

Five detailed sedimentary logs were collected between the town of Moab and the eastern limb of the San 160 

Rafael Swell monocline (Figures 1A,C and 2), forming a roughly 60 km long west-to-east transect, with a 161 

cumulative stratigraphic thickness of ca 108 m. Logs were correlated using the combined J-3 162 

unconformity-MTS surface, which is marked by an erosive contact separating a thin purple palaeosol 163 

horizon of the topmost Entrada earthy facies from the overlying Moab Member aeolian dunes (Peterson 164 

& Pipiringos, 1979; Lucas & Anderson, 1998; Wilcox & Currie, 2008; Anderson, 2015; Maidment & 165 



Muxworthy, 2019). Correlation of other key surfaces such as bounding surfaces and potential 166 

supersurfaces (sensu Kocurek, 1988) following the unconformity facilitated the identification of major 167 

high-resolution sequence stratigraphic bounding surfaces, constraining the Moab Member and Curtis 168 

Formation successions within a sequence stratigraphic framework. 169 

Sedimentary logs were combined with high-resolution unmanned aerial vehicle (UAV) photogrammetry 170 

to provide a 3D visualisation of the preserved aeolian successions. Aerial photographs were collected 171 

using a ‘DJI Phantom 4 Pro’ drone, which was flown along a horizontal axis, whilst allowing for 80% overlap 172 

between images at a near-parallel viewing angle (Bemis et al., 2014; Priddy et al., 2019; Howell et al., 173 

2021). The UAV-based photogrammetry was completed at four separate localities (Figure 1A), and 174 

ground-based photogrammetry was used at Bartlett Wash due to proximity to Moab Airport and 175 

aerospace restrictions, with care taken to reduce inaccuracies in scaling and parallax error. The models 176 

were processed using ‘Agisoft Metashape™’ and interpreted using ‘Virtual Reality Geological Studio’ 177 

(VRGS) 2020 version 2.52.1 (Hodgetts et al., 2007). Bounding surfaces were traced and set and foreset 178 

thicknesses were measured within the aeolian successions using VRGS. 179 

4         Sedimentology 180 

From the five sedimentary logs (Figure 2), fifteen facies were identified (Table 1), which relate to both 181 

subaerial and subaqueous processes. The facies have been grouped into six facies associations; sinuous-182 

crested aeolian dune association, straight-crested aeolian dune association, aeolian sand sheet 183 

association, supratidal flat association, intertidal flat association, and subtidal to intertidal flat association 184 

(Table 2). A combination of the six facies associations describe sediments in three depositional facies belts, 185 

including a coastal aeolian dune field, a coastal plain, and a tide-dominated shallow marine margin. 186 

4.1        Facies Associations 187 



4.1.1        FA1 Sinuous Crested Dunes Facies Association 188 

This Facies Association comprises tabular bodies with laterally extensive planar basal and upper bounding 189 

surfaces. Trough cross-bedded sandstones (Stx), arranged into 1-5 m thick sets with convex-up set 190 

bounding surfaces, comprises 95% of the association. Sweeping, asymptotic foresets comprise couplets 191 

of 3-10 cm thick, reverse-graded, fine to medium-grained sandstone with millimetre-scale very-fine 192 

grained laminae, with a dominant transport direction towards the east. Toesets comprise pinstripe-193 

laminated sandstones (Spsl) with the tops of the foresets truncated by the set bounding surfaces. The sets 194 

are arranged into 5-8 m thick cosets depicting similar transport directions and style of climb. 195 

Sets of Stx with couplets of fine to medium-grained inverse graded sandstone and very fine-grained 196 

laminae represent the deposits of sinuous-crested wind-blown bedforms migrating by the processes of 197 

grainflow and grainfall (Crabaugh & Kocurek, 1993; Mountney, 2012; Banham et al., 2018). The presence 198 

of pinstripe-laminated sandstones along the dune toesets suggests strong winds, or at the very least winds 199 

with sufficient energy for traction to dominate in the lee of dune bedforms (Kocurek, 1991).  200 

4.1.2        FA2 Straight Crested Dunes Facies Association 201 

This Facies Association is characterised by tabular bodies up to 5 m thick, with laterally extensive planar 202 

basal and upper bounding surfaces. The majority of the association comprises planar cross-bedded 203 

sandstones (Spx) arranged into 0.5-1 m thick sets with low-angle planar set bounding surfaces. Sweeping, 204 

asymptotic foresets comprise couplets of inversely graded medium-grained sandstone with millimetre-205 

scale very-fine-grained laminae, interbedded with finer-grained pinstripe laminated sandstones (Spsl). 206 

Spsl is also observed climbing up the toesets with the tops of the foresets truncated by the set bounding 207 

surfaces. Rhizoliths are sporadically preserved along the foresets, which when present are typically 208 



located towards the top of planar cross-bedded sets. The sets are arranged into 3-5 m thick cosets 209 

depicting a similar easterly transport direction and style of climb. 210 

This association, comprising stacked planar cross-bedded sandstones (Spx) with low-angle planar laterally 211 

extensive bounding surfaces, is interpreted to be the deposits of straight crested aeolian dunes, which 212 

migrated by the combined processes of grainfall and grainflow (Trewin, 1993; Ewing & Kocurek, 2010; 213 

Collinson & Mountney, 2019). Pinstripe laminae along dune toesets suggests the winds had sufficient 214 

energy for traction to dominate in the lee of dune bedforms (Kocurek, 1991), and rhizolith development 215 

on foresets and towards set tops indicates primitive vegetation on the dune lee slope and dune crest.  216 

4.1.3        FA3 Sand Sheet Facies Association 217 

This Facies Association is characterised by laterally extensive sheet-like bodies with planar upper and 218 

lower bounding surfaces and a dominance of undulose bedded to structureless sandstones (Su & Ss) with 219 

extensive mottling and fluid escape structures. Trough cross-bedded sandstones (Stx) and pinstripe 220 

laminated sandstones (Spsl) are intermittently interbedded throughout the association with a typically 221 

mottled, poorly consolidated sandstone (Pfg) present at the top of the succession. 222 

This association is interpreted as the deposits of a sand sheet formed by a lack of sediment availability, 223 

inhibiting bedform development. This is probably the result of fluctuations in the water table from being 224 

below to above the sediment surface, reducing the local availability of sediment being transported 225 

(Kocurek & Havholm, 1993; Kocurek & Lancaster, 1999; Mountney & Jagger, 2004). Undulose bedded 226 

sandstones with extensive fluid escape structures are interpreted as reflecting periods of high water table 227 

conditions that led to the illuviation and formation of a ferric gleysol (Pfg). The presence of trough cross-228 

bedded sandstones indicate some localised sediment availability to develop singular aeolian bedforms at 229 

the sediment surface. However, the lack of bedform trains suggest an overall sediment starved regime. 230 



4.1.3        FA4 Supratidal Flat Facies Association 231 

This Facies Association comprises tabular bodies with planar bounding surfaces containing centimetre to 232 

decimetre-thick interbedded, parallel-laminated mudstones, siltstones, and sandstones (Sltpl & Spl) with 233 

sporadic mottling, poorly preserved burrows and cross-cutting gypsum veins, which accounts for 80-90% 234 

of the association. Lenticular beds of structureless sandstones with concave-up, often erosive basal 235 

surfaces (Ss), load casts and very sporadic rip-up clasts also present, along with isolated occurrences of 236 

decimetre to metre-scale trough cross-bedded sandstones (Stx) and a single occurrence of a red-brown 237 

planar-laminated gypsisol (Pgpl) at the top of the association, containing laminated, nodular and satin 238 

spar gypsum. 239 

This association is interpreted to be the deposits of an arid supra-tidal flat. A fluctuating water table is 240 

further evidenced by red-brown siltstones in which gypsum precipitated, and a gypsisol developed, that 241 

are particularly prevalent in the upper most units of the association. Parallel-laminated siltstones and 242 

sandstones represent suspension settling of wind-blown particles, with the decimetre to metre-scale 243 

trough cross-stratified sandstones interpreted as the migration of isolated, sinuous-crested dune forms 244 

over this area of suspension settlement. Occasional structureless sandstones with an erosive base 245 

represent channelised flash deposition of high sediment loads (c.f. Zuchuat et al., 2019), which have, in 246 

some places, been turbulent enough to rip-up deposits of parallel-laminated siltstone. 247 

4.1.4        FA5 Intertidal Flat facies association 248 

This Facies Association is composed of planar-laminated siltstones (Sltpl) interbedded with undulous 249 

sandstones with ripple laminations and sporadic mud-draping (Surl), often overlain by well consolidated 250 

wavy-bedded sandstones with sporadic siltstone laminations (Swb), interbedded with 20-50 cm thick 251 

discontinuous rippled siltstone (Srpl) facies. Towards the top of the facies association parallel-laminated 252 



siltstones (Slti) inversely grade into very fine grained sandstones, interbedded with planar-laminated 253 

sandstones (Spl).  254 

This association is interpreted as the product of intertidal flat sedimentation produced by tidal 255 

fluctuations in water level (Kvale, 2012). The relatively sandstone-rich nature of the intertidal flat may be 256 

attributed to the sediment being derived from the dune field. Initial undulose sandstones represent wind-257 

blown strata onto a rising water table forming wave-ripple bedforms that are sinuous and out-of-phase. 258 

As the tide continues to rise, inversely-graded siltstones (Slti) (with regards to laminae thickness) mark 259 

rising water levels whereby suspension is the dominant means of deposition (Zuchuat et al., 2018). 260 

Towards the top of the succession sandstone-prone facies dominate, leading to the development of 261 

sandstone intertidal flat type facies whereby planar-laminated sandstones are deposited under upper 262 

flow regime conditions.  263 

4.1.5        FA6 Subtidal to Intertidal Flat facies association 264 

This Facies Association is sandstone-dominated, and consists of tabular bodies of unidirectional ripple to 265 

herringbone cross-stratified sandstones (Shcs), often overlain by parallel-laminated, inversely-graded 266 

siltstones (Slti), grading into centimetre to decimetre-thick parallel-laminated sandstones (Spl). Towards 267 

the top of the association, alternating intervals of wavy-bedded (Swb) and flaser-bedded (Sfb) sandstones 268 

with single and double mud draping on ripple forms, and centimetre to decimetre-thick symmetrical 269 

ripple-cross-laminated sandstones (Srpl) are abundant.  270 

The occurrence of ripples and parallel-stratification testify to an environment oscillating between lower 271 

and upper flow regimes, while the tabular nature of the strata indicates that the processes are 272 

homogeneous and active over a large area. The double and single mud drapes on the foresets of the wavy 273 

and flaser-bedded ripples and dunes of this facies association develop during periodic, short-lasting 274 



periods of low flow velocity (Reineck & Wunderlich, 1968; Sato et al., 2011; Baas et al., 2016), which, 275 

coupled with the bidirectionality of the herringbone cross-stratified sandstone reflecting regular current 276 

reversals, suggest deposition in a subtidal to intertidal environment (Zuchuat et al., 2018; Philips et al., 277 

2020), in which oscillatory currents occurred as a secondary process. The regular alternation of flaser and 278 

wavy beds is interpreted as the reflection of neap and spring tide-like cycles (Allen, 1984; Tessier, 2022). 279 

The resulting heterolithic wavy strata deposited during lower energy neap tide periods (as compared to 280 

higher energy flaser-bedding deposited during spring tides) is often more argillaceous and contains 281 

smaller bedforms.  282 

4.2        Facies Belts 283 

4.2.1        Coastal Aeolian Dune Field (CADF) 284 

This facies belt comprises sinuous-crested aeolian dunes, straight-crested aeolian dunes and sandsheet 285 

associations. Three types of aeolian dune cosets have been identified: low-angle climbing straight-crested 286 

dune cosets, small low-angle climbing sinuous-crested dune cosets, and large low to moderate-angle 287 

climbing sinuous-crested dune cosets, which decrease in size and sinuosity towards the aeolian-marine 288 

margin. All of these cosets have large-scale flat to extremely low angle coset bounding surfaces that are 289 

discordant with underlying set, and foreset bounding surfaces and are typically lined with rootlets that 290 

penetrate up to 20 cm in a sub-parallel manner. In all coset types, the toesets of the dunes overlying the 291 

set-bounding surfaces show an abrupt contact and, in most cases, do not preserve the antecedent 292 

topography of the underlying dune sets. 293 

The small low-angle climbing sinuous-crested dune cosets typically occur near the base of the facies belt, 294 

and contain dune sets that are ca 0.1-1 m thick, progressively increasing in thickness upwards, with set 295 

bounding surfaces often displaying changes in the angle of climb (Figure 3). The larger, low to moderate-296 



angle climbing, sinuous-crested dune cosets occur in the middle to upper portion of the coastal aeolian 297 

dune facies belt, and contain dune sets that are ca 0.5-3 m thick, again displaying a progressive increase 298 

in thickness upwards, with undulatory set-bounding surfaces (Figure 3). Finally, the low-angle climbing 299 

straight-crested dune cosets occur in two places within the facies belt: at the very base of the facies belt 300 

underneath the small sinuous-crested dunes, and towards the top of the facies belt, above the larger 301 

sinuous-crested dunes (Figure 3). They contain dune sets that are ca 1-2 m thick and have set-bounding 302 

surfaces that are planar to very low angle. The uppermost association within the facies belt comprises 303 

predominantly sandsheet associations with minor sinuous-crested aeolian dune associations. Blue-grey 304 

isolated gleysol facies, often with yellow staining permeating into the underlying units, are observed 305 

sporadically towards the top of the facies belt. 306 

Interpretation 307 

This facies belt is characterised as a coastal aeolian system, due to its spatial stratigraphic position 308 

(Peterson, 1988; Caputo & Pryor, 1991; Doelling, 2002, 2013, 2015; Lockley 2021a, 2021b) and proximity 309 

to coeval coastal plain and shallow marine environments. Sedimentological evidence supporting this 310 

interpretation is indicated by the presence of extensive aeolian dune development and the lack of 311 

preserved interdunal facies relative to the presence of substantial rooted and palaeosol horizons 312 

(Mountney, 2012). The abrupt contact between overlying dune toesets and underlying dune deposits 313 

indicates a lack of reworking at the sediment surface, and could be attributed to dry dune migration and 314 

climb. However, due to the described palaeosols and rooting this is more likely to be indicative of a damp 315 

substrate (Mountney & Thompson, 2002; Mesquita et al., 2021). Rhizolith development on coset-316 

bounding surfaces suggests sub-aerial exposure for an amount of time sufficient for the development of 317 

vegetation and stabilisation of the dune field (Loope, 1988; Bullard, 1997).  318 



The small sinuous-crested dunes, aggrading at a low angle of climb, are interpreted as immature dune 319 

development and the initiation of bedform trains (Mountney, 2006a, 2012). The gradually increasing angle 320 

of climb to the small sinuous-crested dunes, together with increasing set thickness up succession, 321 

indicates the increasing maturity of the dune train development. The presence of larger sinuous-crested 322 

dunes suggests more sediment was available to promote the development of greater aggradational angles 323 

and set thickness preservation (cf. Mountney, 2006a, 2006b, 2012; Cosgrove et al., 2022). The spatially 324 

discordant nature of the set surfaces indicates the joining, and cannibalisation of juxtaposing sinuous-325 

crested dune forms, suggesting the potential development of compound dune morphologies. The 326 

development of straight-crested dunes indicates a lower sediment availability than that of the sinuous-327 

crested dunes. However, with dune sizes and angles of climb being sufficient to preserve climbing metre-328 

scale sets, dune train maturity must be inferred as a key process in their formation, in addition to relatively 329 

low sediment availability conditions (Kocurek & Havholm, 1993; Mountney, 2006a, 2006b, 2012). The 330 

sandsheet associations present at the top of the facies belt indicate a reduction in sediment availability 331 

for bedform development and deflation of aeolian dunes (Kocurek & Lancaster, 1999). The basal bounding 332 

surface of the sandsheet association potentially marks a deflationary surface due to the presence of 333 

rooting and some isolated palaeosols. The gleysols at the top of the sandsheet association may indicate a 334 

high water table for a sustained period of time allowing interstitial waters to illuviate the host sediment, 335 

producing a palaeosol (Lizzoli et al., 2021). 336 

4.2.3        Coastal Plain (COPL) 337 

This facies belt is dominantly composed of the supratidal flat association, with subordinate interbeds of 338 

intertidal flat and sandsheet associations, uniformly alternating between each with a relatively consistent 339 

thickness. The facies belt comprises poorly-consolidated but laterally extensive, parallel-laminated 340 

mudstones and siltstones. Rare, isolated dunes and thick lenses of structureless sandstones, characterised 341 



by a concave upward erosive base often with load casts and a sharp flat top surface are also present. 342 

Gypsisol is common at the top of the facies belt, with frequent laminae, nodules, and veins of gypsum 343 

present in the west of the study area.  344 

Interpretation 345 

The facies belt is characterised as an arid coastal plain assemblage that reflects a transition away from an 346 

intertidal flat into a supratidal flat, with a decrease of tidal energy in a landward direction. This facies belt 347 

shows a widespread flat area, dominated by wind-blown sediments that lack bedform development. Thick 348 

deposits of erosive and structureless sandstones show evidence of storm event type influxes of sediment 349 

alternating with the thin laminated siltstones deposited as suspension settlement during periods of 350 

quiescence. Within this environment, deposits influenced by tidal forces occur sporadically, and represent 351 

only significant events that cause local sea-level to expand far enough inland, typically during extreme 352 

storm events (Kumar & Sanders, 1976; Storms, 2003). The gypsisols present near the top of the facies belt 353 

indicate a degree of water table draw-down via evapotranspiration within an arid saline environment 354 

(Jordán et al., 2004; Andeskie et al., 2018; Pettigrew et al., 2021). 355 

4.2.5        Tide-Dominated Shallow-Marine Margin (TDMM) 356 

The facies belt comprises the supratidal flat, intertidal flat and subtidal to intertidal flat associations, with 357 

the intertidal to supratidal flat associations commonly forming the top of the facies belt, conformably 358 

overlying the subtidal to intertidal association. The base of the facies belt comprises wave-ripple laminae, 359 

double and single mud drapes on ripple sets, and herringbone cross-stratification of the subtidal to 360 

intertidal flat zone (Figure 4). The overlying intertidal to supratidal zone depicts the dominance of typical 361 

tidal facies such as wavy and bi-directional flaser bedding (Figure 4), along with a dominance of single mud 362 

drapes. Bioturbation is commonly observed, predominantly in the form of vertical burrows, which are 363 



absent in the other facies belts. The bedload sediments of this facies belt have a relatively uniform 364 

grainsize and are of a similar calibre to the sediments of the coastal dune field facies belt. 365 

Interpretation  366 

This facies belt is interpreted as a tide-dominated shallow-marine margin (TDMM) and is gradually and 367 

conformably overlain by the intertidal and supratidal deposits of the coastal plain facies belt. The 368 

generation of herringbone-cross stratification, single and double mud drapes, bi-directional flaser 369 

bedding, and wavy bedding indicates a flow regime of alternating energy (Rahman et al., 2009; McCrory 370 

& Walker, 1986; Bradley et al., 2018).  Additionally, wave indicators preserved in the system suggest an 371 

efficient and consistent tidal reworking of such deposits (Olivero et al., 2008). The presence of flaser and 372 

wavy bedding occurs in relatively uniform grain sizes, indicating that the sediment source is relatively 373 

unimodal and well-sorted. This, coupled with the similarity between bedload dominated facies grain-size 374 

and the dry aeolian system, makes it a probable source of sedimentation. Burrowing trace fossils within 375 

this facies belt suggests a relatively calm environment with limited wave action (Yang et al., 2005). This is 376 

also indicated by the limited amount of scour observed within the facies belt, indicating a somewhat 377 

sheltered tide-dominated marine margin. It is possible that perennial fluvial system discharge variability 378 

in fully fluvial or estuarine settings could produce cyclical bedforms and sedimentary structures, not unlike 379 

the ones observed in this facies belt (Martinius & Gowland, 2011; Reesink & Bridge, 2011). However, the 380 

lack of such perennial fluvial systems preserved in the rock record, coupled with the abundance of tidal 381 

indicators such as bidirectional current ripples, double and single mud drapes, and tidal bundles (Kreisa & 382 

Moila, 1986), along with a physiography that can generate very amplified tidal currents (Zuchuat et al., 383 

2022), indicates that tidal processes played an important role in the deposition of this facies belt. 384 

5         Depositional model of the Curtis-Summerville aeolian-marine margin 385 



5.1        Spatial interaction of the Curtis aeolian-marine margin 386 

The Moab Member of the Curtis Formation is interpreted to be deposited within a dry-damp aeolian 387 

environment, which interacted with a tide-dominated shallow-marine margin setting (Figure 5A; 388 

Peterson, 1988; Caputo & Pryor, 1991; Doelling, 2002, 2015; Zuchuat et al., 2018, 2019a, 2019b). The 389 

coastal aeolian dune field comprising dunes and sand sheets is best-observed in the Bartlett Wash outcrop 390 

to the east of the study area (Figure 6), where the thickest measured section is also observed (Figure 2).  391 

The percentage of aeolian deposits gradually decreases towards the west, eventually becoming 392 

completely absent west of Duma Point, where the aeolian deposits are replaced with shallow-marine 393 

deposits (Figure 5B). It is also evident that the aeolian system becomes generally wetter, moving from the 394 

eastern Bartlett Wash towards the west of the study area to the western Duma Point localities, where the 395 

dune field deposits pinch out and only sandsheet deposits are observed (Figure 5A). 396 

The coastal plain facies belt corresponds to the Summerville Formation. To the east of Duma Point the 397 

coastal plain (COPL) sharply overlays the aeolian dunes (CADF), however, to the west of Duma Point the 398 

contact with the underlying tidal deposits (TDMM) west of Duma Point is conformable (Figure 1). The 399 

establishment of the coastal plain facies belt in the distal reaches of the continental system indicates a 400 

high water table and the deflation of the aeolian dune system. This may show that the coastal plain 401 

deposition is a result of the aeolian system directly interacting with the tide-dominated shallow-marine 402 

depositional facies belt. Evidence of the interaction between the aeolian system (both coastal plain and 403 

aeolian dune field facies belts) and the tide-dominated shallow-marine is best observed at the facies scale, 404 

with relatively constant and similar grain sizes observed in the deflated aeolian system, and the intertidal 405 

flat association. This suggests the reworking of aeolian material by tidal currents, creating a boundary that 406 

is difficult to distinguish between the two environments, further enhanced by the very low-gradient of 407 

the studied system (Wilcox & Currie, 2008; Zuchuat et al., 2019a). 408 



5.2        Temporal evolution of the Curtis-Summerville aeolian to shallow-marine margin 409 

5.2.1        Temporal evolution of terrestrial facies 410 

Four parasequences depicting the evolution of the terrestrial aeolian deposits have been identified, along 411 

with three types of aeolian dune cosets and a sandsheet association within the coastal aeolian dune field 412 

facies belt, indicating four distinct phases of dune field development and decline (Figure 7. The initial 413 

phase of dune field development (phase 1) is evidenced by isolated, small, low-angle climbing sinuous-414 

crested and rare straight-crested dune sets, representing the initial migration of small dunes and dune 415 

trains with low sediment availability. The second phase of dune field development (phase 2) is 416 

characterised by large, low to moderate-angle climbing sinuous-crested dune sets, representing the 417 

development of more mature and larger sinuous-crested dunes. The third phase of dune development 418 

(phase 3) is evidenced by low-angle climbing straight-crested dune sets, which often overlie the sinuous-419 

crested dunes. This represents the migration of straight-crested dunes and dune trains, where there has 420 

been a possible reduction in sediment availability, and the inability of the basal set surface to be scoured 421 

to form pits associated with sinuous-crested dune forms. These cosets of differing dune types are 422 

punctuated by large scale bounding surfaces (coset bounding surfaces) that are discordant with 423 

underlying set geometries, the succession of preserved dune associations are then overlain by sandsheet 424 

associations, indicating further reduction in sediment availability (phase 4; Figure 6). Each coset shows a 425 

typical sediment availability profile, which is evidenced by the upwards changes in the aeolian sediments 426 

of the Moab Member. This succession therefore indicates that in the purely aeolian portion of the studied 427 

deposits there are four relative water table rises that bound each phase, and which separate the 428 

assemblage into four intervals (Figure 6). 429 

The coset bounding surfaces occur over tens of kilometres and can be considered as flooding and deflation 430 

surfaces of limited spatial extent. These surfaces could represent supersurfaces (sensu Kocurek, 1988). 431 



However, to use such a definition in this study would require a wider regional scope, inclusive of Moab 432 

Member dune successions to the north and south of the study area. Supersurfaces can represent the 433 

shutdown of sediment availability and the deflation of underlying dunes as they become sediment starved 434 

(Kocurek, 1988; Kocurek & Havholm, 1993;  Mountney, 2006a). The relative sea-level indicators of these 435 

surfaces within the aeolian-shallow marine margin environment are largely defined by the presence of 436 

rhizoliths (indicating the presence of vegetation) and immature palaeosols. These coset bounding surfaces 437 

could therefore represent a more regional surface representing deflation induced by a water table rise. 438 

5.2.2        Temporal evolution of the shallow-marine margin 439 

There are two associations that comprise the shallow marine portion of the Curtis Formation, the more 440 

distal subtidal to intertidal flat overlain by the more proximal intertidal to supratidal flat, indicating a 441 

progradation associated with a shallowing-upward (Catuneanu, 2006). This progradational pattern occurs 442 

twice within the marine margin, and each progradational cycle is bound by a marine flooding surface that 443 

punctuates the marine margin succession. These sequences show characteristics of relative sea-level 444 

shallowing between each sequence within the tidally-dominated margin and therefore form a gross 445 

progradational geometry indicative of regression. 446 

As the system continued to regress, the shallow marine deposits transition to the overlying coastal plain 447 

assemblage of the Summerville Formation. It should be noted that the shallowing observed within the 448 

shallow marine sediments is much more gradual, with one environment grading into another, contrary to 449 

the sharp bounding surfaces and rapid regression seen within the preserved coastal aeolian succession. 450 

5.3        Transgression and regression in aeolian-marine transitional settings 451 

The Curtis-Summerville system can be subdivided into six spatially and temporally linked parasequences, 452 

divided by five time surfaces showing a complete transgressive-regressive cycle, from a maximum 453 



transgressive surface datum at the base of the middle Curtis Formation (Figure 6). The nature of 454 

transgressions and regressions in such margins is simply documented as the landward or basinward 455 

temporal dislocation of depositional environments. This study, however, shows how transgressions and 456 

regressions of relative sea-level affect the individual depositional environments and how 457 

contemporaneous marginal transitions are influenced by such controls (Figure 8). This section attempts 458 

to establish a high-resolution sequence stratigraphic framework for the succession based upon the 459 

sequence composition and sequence bounding time surfaces. 460 

Regressional parasequence sets in arid continental margin settings are typically dominated by aeolian 461 

dune field expansion. It is well documented that dune field expansion is related to increasing maturity and 462 

sediment availability (Mountney, 2006a, 2012). However, when minor transgressions occur, it is 463 

interpreted that concurrent water table rises transpire causing minor deflation and stabilisation of the 464 

dune field as the sediment transport availability diminishes (Kocurek & Havholm, 1993). This is observed 465 

in discordant contacts and vegetation of supersurfaces. The crucial factor in parasequences preserved 466 

within regressional aeolian environments is recovery. In the Moab Member, the phase of growth after the 467 

initial supersurface shows increased sediment availability, magnitude and building, forming a 468 

progradational parasequence set comprising two parasequences. The first parasequence, associated with 469 

the increased sediment availability and the autogenic building of an aeolian system, can be observed at 470 

Bartlett Wash and Lone Mesa and is bound by time surface one (T1), a flooding surface (Figure 9). The 471 

second parasequence again shows general progradational facies changes with the general expansion of 472 

the dune field, and again is bound by a flooding surface (T2) (Figure 8). The upper surface of both these 473 

phases is punctuated by rhizoliths and the abrupt nature of the stratal contacts observed at these surfaces 474 

indicate relatively high water table conditions. It is therefore likely that these are the result of the above 475 

described smaller scale transgressive events that deflate the developing dune field for a period of time. 476 



The T2 flooding surface represents a potentially larger scale surface hereafter referred to as the point of 477 

starvation (Figure 9) and marks the transition into the third parasequence which exhibits retrogradation 478 

where the back stepping of the aeolian dune field in the Duma Point region and the deposition of intertidal 479 

flats in the San Rafael locality is observed. The pattern of dune progression has now changed, such that 480 

the dunes decrease in size and complexity up succession, contrary to the underlying units. This suggests 481 

that it was a high magnitude regressive event that in fact outpaced sediment supply to the dune field 482 

causing the inability of the aeolian system to recover and the degradation of dune forms to a sand sheet. 483 

Parasequence four continues this pattern of retrogradation, with the aeolian system retrograding back 484 

towards Bartlett Wash and being absent in the Duma Point location. The retrogradation seen between 485 

parasequence three and four also shows the emergence of subtidal to intertidal flat associations for the 486 

first time in the San Rafael locality. Parasequence five is the final retrogradational package that depicts 487 

much of the same backstepping of facies as the underlying two parasequences (Figure 6). Overlying the 488 

retrogradational parasequence set is a distinct facies dislocation that appears across each location and is 489 

therefore regionally significant. This is the surface that marks the Curtis-Summerville boundary and is 490 

overlain by the coastal plain package (parasequence 6, Figure 9), expanding both landward and seaward 491 

with the continued deflation of the dune field and regression of the Curtis Sea. 492 

Consequently, during high-magnitude regressional parasequences the interaction of aeolian systems with 493 

tidal margins becomes increasingly deflationary. During these larger scale regressions, sediment supply 494 

to the aeolian system becomes increasingly sparse and therefore leads to dune field contraction and 495 

deflation from dune field to sand flat. There may therefore be a link between sediment available for 496 

aeolian deposition (in this case demonstrated by dune field size) and the pace and scale of regression. In 497 

the coastal plain region of the marine margin, sediment availability may increase as the marine system 498 

transgresses over the dune field. This is shown in the relative uniformity of grain sizes associated with the 499 



sandsheet and supratidal flat sub-environments. This reworking of aeolian deposits lead to very poorly 500 

preserved tidal signatures, a pattern that continues into the subtidal zone. 501 

These interpretations allow for the construction of a high-resolution sequence stratigraphic framework 502 

for the Curtis-Summerville margin. Although a traditional sequence stratigraphic approach of genetic 503 

stratigraphy is not possible for the succession, given the limited temporal nature of the studied interval, 504 

a transgressive and regressive sequence framework provides a more feasible context. An initial 505 

progradational parasequence set represents the development of the Moab member dunes from the basal 506 

surface of the whole transgressive-regressive (T-R) sequence, the Maximum Transgressive Surface, 507 

equivalent to the J3 in the study area (Set 1, Figure 9; Zuchuat et al., 2019). The base of the 508 

retrogradational parasequence set (Set 2, Figure 9) is marked by a regional surface referred to as the point 509 

of starvation; the surface whereby regression reaches a certain magnitude so that sediment availability is 510 

critically limited, and the dune field begins to deflate. The retrogradational parasequence set, is in turn 511 

overlain by the strata of a juxtaposed coastal plain sub-environment recorded in the Summerville 512 

Formation, indicating a maximum regressive surface and the top surface of the T-R sequence  (Figures 7 513 

and  8). 514 

6         Discussion 515 

The aeolian to shallow-marine margin represents a somewhat sheltered environment with tidal currents 516 

dominating depositional processes in the shallow sea, efficiently reworking more sporadic bedforms that 517 

developed under occasional oscillatory current. Whilst a preserved transition of aeolian dunes into 518 

shallow marine deposits is rare (Ahmed Benan & Kocurek, 2000; Rodriguez-Lopez et al., 2012), the 519 

interaction between these deposits is obvious and shows a definitive aeolian-marine transition. The pinch 520 

out of the aeolian systems onto marginal marine systems has been previously studied, most notably by 521 



Rodriguez-Lopez et al. (2012) on the Iberian Desert System, where interaction of aeolian dune-marine 522 

deposits and the preservation of aeolian dunes interacting with marine facies at the dune toesets has 523 

been described. However, within the Moab-Curtis-Summerville succession no evidence of the interactions 524 

described by Rodriguez-Lopez et al. (2012) were found, instead a deflationary sandsheet and a relatively 525 

coarse intertidal zone is observed. This may be for several reasons. First, the presence of lagoonal 526 

environments, such as the ones observed in the Iberian Desert System and on the Qatar coastline between 527 

the main marine system and aeolian system in the zone of interaction, may help to temper the tidal 528 

influence of the marine margin impeding the complete deflation of an aeolian system. Moreover, the tidal 529 

range of these analogous systems also needs to be considered. The Persian Gulf is a microtidal seaway 530 

with a tidal range of ca 1-2 m (Lokier et al., 2015) and does not completely deflate the dune field prior to 531 

the interaction of the marine system to the subtidal zone. The Sundance Sea that deposited the Curtis 532 

Formation is a mesotidal environment with a tidal range of ca 2.6 m (see Zuchuat et al., 2022 and 533 

references therein), in addition to being in a state of tidal resonance, which could further enhance the 534 

efficiency of tidal current to rework aeolian sand. Further, this high aeolian sand-supply associated with a 535 

lack of consolidated mud tends to dissipate the tidal energy less than if consolidated mud occurs in the 536 

system, leading to overall stronger tidal currents (Gabioux et al., 2005). Note that the presence of fluid 537 

mud at the bottom of the sea would have the opposite effect, enhancing the tidal current even more by 538 

lowering the basal shear stress (Gabioux et al., 2005). The presence of an aeolian margin providing clean 539 

sand to a neighbouring a tide-dominated sea could therefore help reduce the dissipation of the tidal 540 

energy, while the overall physiography of the basin in question remains the primary parameter influencing 541 

the ability of tides to propagate in a basin (Collins et al., 2018, 2021; Dean et al., 2019; Zuchuat et al., 542 

2022). The scale of tidal influence can therefore be shown to be a critical factor in the preservation of 543 

deflationary aeolian sediments and the outpacing of sediment availability in response to marginal marine 544 



influence, and as a result can greatly affect predictions of subsurface architecture and ultimately reservoir 545 

characterisation.  546 

The sediment calibre in the tide-dominated shallow-marine sediments and the aeolian dune system are 547 

similar. This is due to the reworking of sediment during transgression. The reworking of aeolian deposits 548 

provides a relatively high sediment supply to the marine margin during transgression. This, in combination 549 

with the relative deflation of the aeolian dune field in the seaward direction, can make the identification 550 

of aeolian-marine stratigraphic surfaces somewhat indecipherable, especially if tidal currents are too low 551 

to generate new bedforms. Sediment supply to the aeolian system, created by the availability of mobile 552 

sediment and influenced by water table levels, can therefore be influenced, in turn, by the rate in which 553 

that water table changes. If the rate of water table rise (as affected by relative sea level) is of a large-554 

enough magnitude and sufficient rate, it may impede the recovery of an aeolian dune field during 555 

subsequent regression. The Moab Member-to-Summerville boundary exhibits a change from deflationary 556 

dune field to a widespread supratidal flat (Figure 9). The supratidal flat strata expands both seaward and 557 

landward to overlay a subtidal to intertidal flat association in the San Rafael Swell locality and are 558 

therefore considered to be the result of a widespread regression. This defined regressive depositional 559 

environment demonstrates the second critical factor in the characteristics of an aeolian marine margin. 560 

Where normal regression occurs the Moab Member dune field can recover from small-scale reductions in 561 

sediment availability, however, as discussed if the regression reaches sufficient magnitude and develops 562 

rapidly then the reduction in sediment availability outpaces erg expansion and therefore the environment 563 

transitions away from aeolian dune growth, into an extensive coastal plain.  564 

7         Conclusion 565 



This study has revealed there are two critical influences on sediment deposition and preservation upon 566 

an aeolian-marine margin. First, whether a system is transgressive or regressive, and second, the scale of 567 

tidal influence. In the case of the Jurassic Curtis-Summerville succession of central Utah, the dune field 568 

has been documented to respond to changes in relative sea level by expanding within regressional settings 569 

and deflating within transgressional ones. Whilst this relationship is intuitive, added complexities change 570 

the characteristics of this environment. These complexities were exacerbated by the direct contact 571 

between the dry aeolian dune field and the tide-dominated shallow-marine margin, in addition to the 572 

amplified tidal forces caused by tidal resonance within the Curtis Sea basin. When compared with 573 

analogues such as the Cretaceous Iberian Desert System and the modern-day Qatar coast, this raises 574 

important questions as to the tidal range necessary to completely deflate the dune-field, as seen here, or 575 

simply to affect dune morphologies, as seen in modern environments. 576 

These complexities make identifying sequence stratigraphical boundaries and correlating across the 577 

margin somewhat challenging. This has been overcome by attributing the deflationary surfaces, linked 578 

with changes in relative sea level, to sequence boundaries, and documenting the transition between 579 

depositional environments at a T-R sequence scale. 580 

Following the regional transgression recorded at base of the Moab Member and the middle Curtis 581 

Formation the dune field expanded preserving two cosets increasing in sinuosity and bedform size up 582 

succession. Following this, the system continued to regress, preserving three further dune cosets 583 

separated by bounding surfaces.  Each of these surfaces marks a period of small-scale transgression, 584 

shutting down sediment availability and causing deflation. After each of these surfaces the ability of the 585 

dune field to recover decreased, until eventually, the sediment starved coastal plain assemblage 586 

dominated. Despite this pattern of regression promoting dune growth, punctuated by deflation caused 587 

by local transgression, this study notes the point of starvation is the point at which regression outpaces 588 



sediment supply, starving the dune field and eventually promoting the takeover of coastal plain 589 

sediments. It is therefore suggested that whilst regression promotes dune growth in most circumstances, 590 

beyond a point of critical regression, sediment availability and consequently dune growth are hampered 591 

causing a shutdown of aeolian processes within this shallow marine margin environment. 592 

Using these sequences allows for the correlation of flooding events between tide-dominated shallow-593 

marine sediments and dry aeolian successions. This has wider consequences for placing these deposits 594 

within a global timescale and provides a hypothesis for allocyclic controls on the depositional environment 595 

driven by the well-documented climate changes throughout the Oxfordian. Whilst further work is required 596 

to secure an age constraint on these deposits, this study has been able to identify small-scale and large-597 

scale interactions upon an aeolian-marine margin, document changes in dune geometries with proximity 598 

to said margin and describe margin changes relative to the sequence stratigraphy of the basin. 599 
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Table Captions 619 

Table 1 – Facies descriptions and interpretations for the Curtis-Summerville successions exposed in the 620 

study area. 621 

Table 2 – Facies association descriptions and interpretations for the Curtis-Summerville successions 622 

exposed in the study area. 623 

Figure Captions 624 

Figure 1: (A) Map of the study area, documenting the localities taken across the study area. Locations 625 

where a drone survey was conducted is indicated with a drone symbol. Top right contains a map of the 626 

United States of America, the state of Utah and the study area highlighted within. (B) Schematic 627 

lithostratigraphic column showing correlation between late Triassic and Jurassic deposits between 628 

Central Utah and Northern New Mexico (after, Zuchuat et al., 2019). (C) Logs and locations taken across 629 

the study area. (D) Representative field photograph showing the relationship between formations 630 

analysed by this study. 631 

Figure 2: (A) Map of localities where sedimentary logging was conducted, transect line is marked. (B) 632 

Sedimentary logs at each locality, coloured by facies with the associations and assemblages represented 633 

down the left side of each log. Sedimentary structures of note are shown on the right-hand side. Where 634 

outcrops were inaccessible, the depth has been estimated and marked with a cross. 635 

Figure 3: (A) Aeolian dune succession at 2a: Lone Mesa showing a vertical proximal to distal aeolian 636 

trend from low-angle climbing straight-crested dune sets (a) to small low-angle climbing sinuous-crested 637 



dune sets (b). The top-most stratigraphic surface is irregular, showing palaeo-relief of preserved dune 638 

forms. (B) Small low-angle climbing sinuous-crested dune sets (b) with indications of rooting (c) at 1: 639 

Bartlett Wash. (C) Large low-moderate angle climbing sinuous crested dunes (d) overlain by smaller low-640 

angle climbing straight crested dunes (a) at 3: Duma Point Transition 3. (D) Low-angle straight-crested 641 

dunes (a) grading into structureless sand sheet facies (e) at 2a: Lone Mesa. 642 

Figure 4: (A) Wavy ripple laminated sandstones at 5: San Rafael Swell, note the round-crested ripples 643 

and internal lamination indicating relatively deep water with a high sediment load. (B) Flaser bedded 644 

sandstones at 5: San Rafael Swell, cavities in the ripple peaks are the result of erosion of finer-grained 645 

material, a clear indicator of a tidal environment. (C) Ferric gleysol preserved at 3: Duma Point Transition 646 

3, vertical burrows and evidence of rooting are visible. (D) Vein and laminar beds of gypsum within the 647 

parallel laminated gypsisol facies at 5: San Rafael Swell, note the vein gypsum bisects the bedded 648 

gypsum and is therefore likely to be a secondary feature. (E) Herringbone cross-stratified sandstone 649 

facies at 5: San Rafael Swell, the bidirectional preserved ripples are a clear indicator of a tidal 650 

environment. (F) Wavy bedded sandstone at 4: Duma Point Transition 3, round-crests and some 651 

immature ripple development indicates very shallow water with low sediment supply. 652 

Figure 5: (A) Schematic diagram showing the spatial transition between associations east to west across 653 

the study area. Sinuous crested dunes transition into smaller sinuous crested and straight crested dunes 654 

before deflating into a sandsheet. The supratidal flat expands both landward and seaward grading into 655 

an intertidal flat, and once the water depth becomes significant enough, a subtidal- intertidal flat. (B) 656 

Relative proportions of each association at each locality. 657 

Figure 6: W-E correlated panel from the tide-dominated shallow-marine margin at 5: San Rafael Swell to 658 

the aeolian dune successions at 1: Bartlett Wash. The logs have been coloured by facies; correlation has 659 

been made by association. Sedimentary structures of note are shown on the right-hand side of each log. 660 

Where outcrops were inaccessible, the depth has been estimated and marked with a cross. Note the log 661 

below the MTS has been greyed out, it is important to observe the underlying lower Curtis sediments, 662 

however, they are not the subject of this study and therefore have not been discussed. 663 

Figure 7: Phases of dune growth at each locality, Phase 1 is represented in blue, Phase 2 in green and 664 

Phase 3 in yellow. Underlying and overlying deposits of Entrada Formation and Coastal Plain assemblage 665 

are marked accordingly. (A) Three phases of dune growth at 1: Bartlett Wash. (B) Three phases of dune 666 

growth at 2b: Dubinky Well, note the relative thickness of phase 1 is decreased, however, the thickness 667 

of phase 2 has increased compared with 1: Bartlett Wash. (C) Phases of dune growth at 3: Duma Point 668 

Transition 1, note that this is the closest locality to the margin and here only one phase of dune 669 

expansion is evident. 670 

Figure 8: Depositional environment models for the temporal translation of assemblages. T1 represents 671 

the regression of the Curtis Sea and the development of the Moab member dune field following the 672 

major transgressive event preserved within the J3. T2 marks continued development of the dune field, 673 

with dune size and complexity increasing with continued fall in sea level. T3 represents the point of 674 

starvation, after which the dune field begins to deflate and the coastal plain begins to expand both 675 

landward and seaward. T4 shows the inability of the dune field to recover from this high-magnitude, 676 

rapid regression, shutting down sediment supply and preserving small dune forms and sand sheets. T5 677 

marks the final shut down of all aeolian processes in the east of the study area and the complete 678 

takeover of the coastal plain sediments of the Summerville Formation. 679 



Figure 9: Cyclicity and sequence stratigraphy within the studied Curtis-Summerville formations. The left-680 

hand side separates the interpreted units into parasequences. (A) Broad scale transgressive-regressive 681 

sequence from the maximum transgressive surface of the J-3 to the maximum transgressive surface 682 

within the Summerville. Red represents regression, blue represents transgression. (B) Smaller scale 683 

transgressive and regressive events. Red represents regression, blue represents transgression. (C - E) 684 

Schematic logs of the associations identified from the distal setting with tide-dominated shallow-marine 685 

deposits, through to the proximal setting with continental aeolian deposits. (F) Regional sea-level 686 

fluctuation associated with the broad-scale transgressive-regressive sequence. (G) Local scale sea-level 687 

fluctuations associated with the smaller-scale transgressive and regressive events. (H) Interpreted 688 

sedimentation rate curve across the margin, note the rate of sedimentation increases to the point of 689 

starvation and then decreases towards the maximum regressive surface. 690 
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