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Abstract

Permutations have connections to other mathematical objects such as Schu-
bert varieties, sorting networks, and genome rearrangements. Often the con-
nection is described in terms of patterns that are absent from the permuta-
tions. There can be ambiguity in this description, in the sense that the same
subset of permutations can be defined with two different patterns. This is
called coincidence and we focus on the coincidence of mesh patterns, one
of the most descriptive version of patterns in permutations. We review and
extend previous results on coincidence of mesh patterns. We introduce the
notion of a force on a permutation pattern and apply it to the coincidence
classification of mesh patterns, completing the classification up to size three.
We also show that this concept can be used to enumerate classical permuta-
tion classes.
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Permutation patterns have been studied since the beginning of the 20th

century, starting with MacMahon [1], who considered the union of two de-
creasing sequences of points. Interest in modern day study was sparked by
Simion and Schmidt [2]. Classical permutation patterns have been gener-
alized to vincular patterns by Babson and Steingrímsson [3], to bivincular
patterns by Bousquet-Mélou et al. [4] and to barred patterns by West [5].
The focus of this paper will be on mesh patterns, introduced by Brändén
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and Claesson [6], and subsume the prior generalizations. In particular, we
study the classification of these patterns based on coincidence, an equivalence
relation derived from the avoidance sets of the patterns. A related subject
is the classification of patterns in terms of Wilf-equivalence where the size
of the avoidance sets determines the relation. This line of inquiry for mesh
patterns was started by Hilmarsson et al. [7], who provided sufficient condi-
tions for the coincidence of mesh patterns with the so-called Shading lemma.
This was further generalized by Claesson, Tenner, and Ulfarsson [8] in the
Simultaneous Shading lemma. The relationship between the avoidance sets
of mesh patterns and classical patterns has been studied by Tenner [9, 10],
who determined which mesh patterns are coincident with classical patterns.

We will review these earlier results, and extend them using the notion
of a force on a permutation pattern. This will culminate in the Shading
Algorithm, which is powerful enough to coincidence classify the set of mesh
patterns of size 3, except one case which we do by hand. We show how know-
ing the coincidence of mesh patterns can be used to enumerate permutation
sets avoiding a classical pattern. Furthermore, we show how the concept of
a force can be applied directly to that problem.

1. Preliminaries

A permutation on a set A is a bijection from A to itself. In this paper
we always have A = [1, n] = {1, . . . , n} for some non-negative integer n. We
denote the set of all permutations of size n as Sn and we write π ∈ Sn as the
word π(1)π(2) · · · π(n). Two sequences of integers a1a2 · · · ak and b1b2 · · · bk
are order isomorphic if ai < aj if and only if bi < bj for all i, j ∈ [1, k]. The
central definition in the study of permutation patterns is the following.

Definition 1.1. A permutation π ∈ Sn contains a permutation p ∈ Sk if
there exists a sequence of indices 1 ≤ i1 < i2 < · · · < ik ≤ n such that
the subsequence c = π(i1)π(i2) · · · π(ik) of π is order isomorphic to p. The
subsequence c is called an occurrence of p in π. If such a subsequence does
not exist then π avoids p. In this context p is called a classical (permutation)
pattern.

A permutation π ∈ Sn can be represented graphically by plotting the
points {(i, π(i)) | i ∈ [1, n]} on a grid such that the final figure resembles a
mesh. The elements (i, π(i)) are referred to as the points of the permutation
π. An example is illustrated in the first subfigure of Figure 1.1.

2



An occurrence of a pattern in a permutation can be viewed in the graph-
ical representation as scaling the indices and the values of the pattern to
coincide with points of the permutation, while maintaining the same rela-
tive ordering. An example is depicted in Figure 1.1 with the graph of the
permutation 42135 and one of its subsequences.

Figure 1.1: The graph of the pattern 213; an occurrence of this pattern within the per-
mutation 42135; and a graph focusing on the occurrence, showing the locations of the
remaining points in the permutation.

Using the graphical representation of permutations we recall the definition
of mesh patterns, which are generalizations of permutation patterns with
added restrictions. In the second subfigure of Figure 1.1, the points of the
permutation not in the occurrence can be thought of as being mapped into
the squares formed by the mesh. We can restrict when points are allowed to
map into these squares by shading the mesh.

Definition 1.2 (Brändén and Claesson [6]). A mesh pattern is an ordered
pair p = (τ, R) where τ ∈ Sk, and R is a subset of the (k + 1)2 unit squares
in [0, k + 1]2. The set R is the mesh (shading) and squares of the mesh are
indexed by their lower-left corners; that is, ⌊i, j⌉ ∈ R refers to the square
[i, i+1]×[j, j+1]. The mesh pattern (τ, R) is depicted graphically by drawing
τ as above, and shading the squares of the mesh R. The size of the mesh
pattern p is k and denoted |p|.

Informally, a permutation π ∈ Sn is said to contain a mesh pattern p =
(τ, R) if π has an occurrence of the underlying classical pattern τ such that
each of the shaded squares ⌊i, j⌉ ∈ R correspond to an empty region in the
permutation; see Example 1.3 and [6].

Example 1.3. Consider the mesh pattern p = (213, {⌊1, 2⌉, ⌊2, 2⌉, ⌊2, 3⌉}),
shown in Figure 1.2. In the permutation 42135 the subsequence 415 is an
occurrence of the classical pattern 213 and the squares in the mesh corre-
spond to empty regions in the permutation, as can be seen in the second and
third subfigures in Figure 1.2. Note that although the subsequence 215 is
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an occurrence of the pattern 213 it does not satisfy the requirements of the
mesh, as the point 3 in the permutation is in the region corresponding to the
shaded square ⌊2, 2⌉.

Figure 1.2: The graph of the mesh pattern (213, {⌊1, 2⌉, ⌊2, 2⌉, ⌊2, 3⌉}); an occurrence of
this pattern within the permutation 42135; and a graph focusing on the occurrence.

The set of permutations of size n that avoid a pattern p is denoted Avn(p).
We also define Av(p) =

⋃+∞
n=0Avn(p). Its complement, the set of permuta-

tions that contain the pattern p, is denoted Co(p). In more generality, if B
is a set of patterns, we define Avn(B) as the set of permutations of size n
that avoid all the patterns in B, and Av(B) =

⋃+∞
n=0Avn(B). If the set B

is minimal, i.e., no B′ ⊊ B with Av(B′) = Av(B) exists, then B is called
a basis. When all the patterns in B are classical patterns the set Av(B) is
called a permutation class.

Given two different classical patterns, p, q, it is never true that Av(p) =
Av(q). This property does not hold for mesh patterns. For example, the
patterns and are different mesh patterns that have the same avoiding
permutations. In fact, this is an equivalent way of stating that a permutation
has an inversion if and only if it has a descent. This leads to the following
definition.

Definition 1.4. Two patterns p and q are said to be coincident if Av(p) =
Av(q), denoted p ≍ q.

Note that if two mesh patterns p and q are coincident then they neces-
sarily have the same underlying classical patterns. Recently Tannock and
Ulfarsson [11, Definition 2.6] defined occurrences of mesh patterns in mesh
patterns. Informally, the added restriction is that for a shaded square in the
occurring pattern, the corresponding squares in the containing pattern must
all be shaded; see Example 1.5 and [11].

Example 1.5. Consider the mesh pattern p = (213, {⌊1, 2⌉, ⌊2, 2⌉, ⌊2, 3⌉}),
shown in Figure 1.3. In the mesh pattern m = (42135, {⌊0, 0⌉, ⌊0, 1⌉, ⌊0, 2⌉,
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Figure 1.3: The graph of the mesh pattern (213, {⌊1, 2⌉, ⌊2, 2⌉, ⌊2, 3⌉}); an occurrence of
this pattern within the mesh pattern m, defined in Example 1.5; and a graph focusing on
the occurrence.

⌊1, 4⌉, ⌊2, 4⌉, ⌊3, 3⌉, ⌊3, 4⌉, ⌊3, 5⌉, ⌊4, 0⌉, ⌊4, 3⌉, ⌊4, 4⌉, ⌊4, 5⌉, ⌊5, 0⌉}) the
subsequence 415 is an occurrence of the classical pattern 213 and the squares
in the mesh of p correspond to regions in m that are shaded and do not
contain any points, as can be seen in the second and third subfigures in
Figure 1.3.

The following remark follows from the previous definitions.

Remark 1.6. If a mesh pattern m contains a mesh pattern p and a permu-
tation π contains m, then π also contains p.

To compare two occurrences of a mesh pattern in a permutation, or in
another mesh pattern, we need the following definition.

Definition 1.7. Let p = (τ, R) and q = (σ, T ) be mesh patterns. If u = τ(u1)
· · · τ(uk) and v = τ(v1) · · · τ(vk) are occurrences of q in p, then we say that

• u is above v with respect to the point (i, σ(i)) if τ(ui) > τ(vi),

• u is below v with respect to the point (i, σ(i)) if τ(ui) < τ(vi),

• u is left of v with respect to the point (i, σ(i)) if ui < vi, and,

• u is right of v with respect to the point (i, σ(i)) if ui > vi.

In Figure 1.4 are the occurrences u = 415 and v = 435 of the mesh pattern
(213, {⌊1, 2⌉, ⌊2, 2⌉, ⌊2, 3⌉}). The occurrence u is below v and u is left of v
with respect to the point (2, 1).

We will need to add points to mesh patterns as is formally defined in
Tannock and Ulfarsson [11, Definition 3.2] and illustrated here in Figure 1.5.
As in [11] we let p = (τ, R) be a mesh pattern such that ⌊i, j⌉ ̸∈ R, and
p⌊i,j⌉ = (τ ′, T ′) be the mesh pattern with a point inserted into the square
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⌊i, j⌉. We define the following four mesh patterns, which have the same
underlying classical pattern as p⌊i,j⌉:

p⌊i,j⌉↑ =(τ ′, T ′ ∪ {⌊i, j + 1⌉, ⌊i+ 1, j + 1⌉})
p⌊i,j⌉↓ =(τ ′, T ′ ∪ {⌊i, j⌉, ⌊i+ 1, j⌉})
p⌊i,j⌉← =(τ ′, T ′ ∪ {⌊i, j⌉, ⌊i, j + 1⌉})
p⌊i,j⌉→ =(τ ′, T ′ ∪ {⌊i+ 1, j⌉, ⌊i+ 1, j + 1⌉})

Informally, these patterns are obtained by placing the highest, lowest, left-
most, or rightmost point in ⌊i, j⌉. We collect these mesh patterns in a set

p⌊i,j⌉⋆ = {p⌊i,j⌉↑, p⌊i,j⌉↓, p⌊i,j⌉←, p⌊i,j⌉→}

shown in Figure 1.6 for the case τ = 21 and ⌊i, j⌉ = ⌊1, 1⌉.
We record the following easily proven statement for future reference.

Remark 1.8. Let p = (τ, R) be a mesh pattern such that ⌊i, j⌉ ̸∈ R. A
permutation π that contains p either contains (τ, R ∪ ⌊i, j⌉) or all of the
patterns in p⌊i,j⌉⋆.

Given a mesh pattern p it is clear that p has an occurrence in p. The
indices of this occurrence, properly translated, give an occurrence of p in
p⌊i,j⌉a, for any a ∈ {↑, ↓,←,→}). We call this the trivial occurrence. Other
occurrences of p in p⌊i,j⌉a are called non-trivial. It follows that a non-trivial
occurrence contains the inserted point (i+ 1, j + 1).

In Sections 2 and 3 we will review existing methods to prove that two
mesh patterns are coincident and extend these methods. The central idea will
be the definition of a force on a permutation pattern, given in Definition 2.8.
This idea will be used to enumerate several permutation classes in Section 4.

Figure 1.4: The mesh pattern (213, {⌊1, 2⌉, ⌊2, 2⌉, ⌊2, 3⌉}) and two occurrences of it in the
permutation 42135.
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Figure 1.5: Adding a point to the mesh pattern p = (213, {⌊0, 1⌉, ⌊1, 2⌉, ⌊2, 2⌉, ⌊2, 3⌉}), to
create the mesh pattern p⌊2,1⌉.

2. Extending the Shading Lemmas

Several proofs will make use of the following, easily proven, property.

Remark 2.1. Let p = (τ, R) and q = (τ, S) be two mesh patterns with the
same underlying classical pattern. If S ⊆ R and a permutation π contains
the pattern p then it contains q, in other words Av(q) ⊆ Av(p).

We start by recalling the Shading Lemma, from Hilmarsson et al. [7,
Lemma 11], and give an alternative (sketch of a) proof.

Lemma 2.2 (Shading Lemma). Let (τ, R) be a mesh pattern such that
τ(i) = j and the square ⌊i, j⌉ ̸∈ R. If all of the following conditions are
satisfied:

1. The square ⌊i− 1, j − 1⌉ is not in R;

2. At most one of the squares ⌊i, j − 1⌉, ⌊i− 1, j⌉ is in R;

3. If the square ⌊ℓ, j − 1⌉ is in R (with ℓ ̸∈ {i − 1, i}) then the square
⌊ℓ, j⌉ is also in R;

4. If the square ⌊i− 1, ℓ⌉ is in R (with ℓ ̸∈ {j − 1, j}) then the square
⌊i, ℓ⌉ is also in R;

then the patterns (τ, R) and (τ, R ∪ {⌊i, j⌉}) are coincident. Symmetric
conditions determine if other squares neighboring the point (i, j) can be
added to R while preserving the coincidence of the corresponding patterns.

Figure 1.6: The set p⌊i,j⌉⋆ for p = 21 and ⌊i, j⌉ = (1, 1).
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The conditions of the above lemma are satisfied for the mesh pattern
p = (12, {⌊0, 2⌉, ⌊1, 0⌉, ⌊2, 0⌉, ⌊2, 1⌉}), shown on the left below, and the
square ⌊2, 2⌉. The lemma therefore implies the coincidence of p with the
pattern q on the right.

p = ≍ = q

The argument used in the original proof relies on replacing the point
corresponding to 2 in an occurrence of the pattern with the rightmost (or
highest) point in the region corresponding to the square ⌊2, 2⌉. See Figure 2.1,
where we have an occurrence of p in the permutation 12536487 from which
we produce an occurrence of q.

The motivation for Lemma 2.3 is an alternative argument for the coin-
cidence of the two patterns. Consider again an occurrence of p in the same
permutation, as in Figure 2.2. Out of all the occurrences of p consider the
occurrence where the point corresponding to 2 is as far to the right as pos-
sible. If the square ⌊2, 2⌉ is not empty in this occurrence then taking the
lowest point in it (for example) as a new 2 would give us another occurrence
of p with the point corresponding to 2 further to the right, a contradiction.
Therefore the square ⌊2, 2⌉ is empty and this occurrence of p must also be
an occurrence of q.

Lemma 2.3. Let p = (τ, R) be a mesh pattern with ⌊i, j⌉ ̸∈ R. If a mesh
pattern in the set p⌊i,j⌉⋆ contains a non-trivial occurrence of p, then p and
q = (τ, R ∪ {⌊i, j⌉}) are coincident.

Proof. Take any m ∈ p⌊i,j⌉⋆ such that m has a non-trivial occurrence of p,
which exists by the premises. We consider the case where m = p⌊i,j⌉←, as the

Figure 2.1: Choosing the rightmost point in a region, as in the original proof of the Shading
Lemma.
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other cases are symmetric to the following argument; see Figure 2.3. In a
non-trivial occurrence of p in m, the inserted point (i+1, j +1) corresponds
to some point (k, τk) in p. The point corresponding to (k, τk) in the trivial
occurrence is either left or right of (i + 1, j + 1) in q. We consider the case
where it is to the left of (i + 1, j + 1), i.e., with a lower index, as the other
case is analogous.

Take any permutation π that contains an occurrence of p, and consider
the occurrence such that the point a corresponding to (k, τk) has the highest
possible index in π, i.e., is as far to the right as possible. Assume that the
region in π that corresponds to the square ⌊i, j⌉ in this occurrence of p is
non-empty. The leftmost point in this region, denoted by b, along with the
occurrence of p in π, gives us an occurrence of m = p⌊i,j⌉← in π; see Figure 2.4.
This implies there is an occurrence of p in π with b corresponding to (k, τk).
The point b is further to the right, i.e., has a higher index than a, which
contradicts the choice of an occurrence of p in π. Hence, our assumption that
the region corresponding to ⌊i, j⌉ was non-empty must be false. Therefore,
the region is empty, and this occurrence of p is an occurrence of q as well.

We have shown that if a permutation contains p then it contains q. By
Remark 2.1 it follows that if a permutation contains q then it contains p.
Therefore p and q are coincident.

To show that the previous lemma implies any coincidence obtained with
the Shading Lemma we need the following result.

Lemma 2.4. Let p = (τ, R) be a mesh pattern such that τ(i) = j and the
square ⌊i, j⌉ ̸∈ R. If conditions (1)–(4) in Lemma 2.2 (Shading Lemma) are
satisfied, then some m ∈ p⌊i,j⌉⋆ contains a non-trivial occurrence of p.

Proof. We will only consider the case where ⌊i, j − 1⌉ is shaded, as the other
cases are similar. Let m = p⌊i,j⌉↓, as depicted in Figure 2.5. By swapping out

Figure 2.2: If the region is not empty, we can derive a contradiction.
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the point (i, j) in the original occurrence of p in m with the inserted point, we
get a non-trivial occurrence of the classical pattern τ in m. The conditions
(3), (4) and the choice of m = p⌊i,j⌉↓ guarantee that all the squares in R are
still shaded in this new occurrence, making it a non-trivial occurrence of p
in m.

The previous result implies the Shading Lemma (Lemma 2.2) is a con-
sequence of Lemma 2.3. It is then natural to ask if these two lemmas are
equivalent, in the sense that they can identify exactly the same coincidences
of mesh patterns. In the following example we show that Lemma 2.3 is
strictly stronger than the Shading Lemma.

Example 2.5. Consider the mesh patterns

p = q =

Then p⌊0,0⌉↑ is the mesh pattern

which contains a non-trivial occurrence of p, in the subsequence 123. By
Lemma 2.3 this implies that p and q are coincident. However, the condi-
tions of Lemma 2.2 are not satisfied for the square ⌊0, 0⌉ and, hence, the
coincidence of these patterns does not follow from that lemma.

(k, τk)

⌊i, j⌉

(k, τk)

⌊i, j⌉(i+ 1, j + 1)

Figure 2.3: On the left is the pattern p. On the right is the pattern m = p⌊i,j⌉←.
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b

⌊i, j⌉

(k, τk)

Figure 2.4: The region corresponding to the square ⌊i, j⌉ in a permutation π, containing
a point b.

A previous strengthening of the Shading Lemma was given by Claesson,
Tenner, and Ulfarsson [8, Lemma 7.6]:

Lemma 2.6 (Simultaneous Shading Lemma). Let p = (τ, R) be a mesh
pattern. Fix a subsequence G of τ and, for each g ∈ G, let Ug be a square or
a pair of adjacent squares that are shadeable1 from g. Then p is coincident
with (τ, R ∪ S), where S =

⋃
g∈G Ug.

1As defined in Tenner, Claesson, and Ulfarsson [8], a square is shadeable if it satisfies
the conditions of Lemma 2.2 or any of its symmetries, and a pair of adjacent squares are
shadeable if they satisfy the conditions of Corollary 7.1 in [8] or any of its symmetries.
The conditions of Corollary 7.1 are those required so that the two squares can be shaded
by two applications of Lemma 2.2.

(i, j)

Figure 2.5: Obtaining a new occurrence of p.
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An example of a coincidence following directly from the Simultaneous
Shading Lemma is the following:

Example 2.7.

≍

In the pattern on the left, the square pair {⌊0, 0⌉, ⌊1, 0⌉} is shadeable from
the point 1 and the square pair {⌊2, 1⌉, ⌊2, 2⌉} is shadeable from the point 2.
Thus the coincidence of the patterns follows from the Simultaneous Shading
Lemma. This, however, does not follow from Lemma 2.3.

To give a common strengthening of Lemma 2.3 and the Simultaneous
Shading Lemma we need some definitions. In Definition 1.7 we compared
occurrences of mesh patterns using a point and a direction. We generalize
this notion to include multiple points.

Definition 2.8. Given a mesh pattern p = (τ, R), with τ ∈ Sk, we define
a force on it as a tuple of pairs F = ((τi1 , a1), (τi2 , a2), . . . , (τiℓ , aℓ)) where
ℓ ∈ [0, k], the indices ij ∈ [1, k] are distinct, and aj ∈ {↑, ↓,←,→} represents
the direction we are forcing the point τij in. The size of the force F is ℓ and
denoted |F |.

Let p be a mesh pattern with force F . If we have an occurrence c =
c1c2 · · · ck of p in a permutation π, then for each (τij , aj) we define the strength
of the point cij with respect to the force F as

strengthF (π, c, ij) =


cij if aj =↑
−cij if aj =↓
−π−1(cij) if aj =←
π−1(cij) if aj =→

Finally, we define the strength of an occurrence c of p in a permutation π
with respect to the force F as the tuple

strengthF (π, c) = (strengthF (π, c, i1), . . . , strengthF (π, c, iℓ)).

An occurrence c in π is stronger than another occurrence c′ in π (with re-
spect to F ) if strengthF (π, c) > strengthF (π, c

′), in the lexicographical order,
otherwise it is weaker.
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Example 2.9. Consider the pattern τ = (1342, ∅) along with the force
F = ((2, ↑), (3, ↓)). In the permutation 2147563 the subsequence 2463 is
an occurrence of τ with strength (3,−4), while the subsequence 1563 has
strength (3,−5). The first occurrence is stronger with respect to this force.

Lemma 2.10. Let p = (τ, R) be a mesh pattern with force F , and assume
S = {s1, s2, . . . , sk} where S ∩ R = ∅. If all the sets p1 = (τ, R)s1⋆, p2 =
(τ, R ∪ {s1})s2⋆, . . . , pk = (τ, R ∪ {s1, s2, . . . , sk−1})sk⋆ contain an occurrence
of p that is stronger than the trivial occurrence of p with respect to F , then
p and q = (τ, R ∪ S) are coincident.

Proof. Let π be a permutation and let c be an occurrence of p in π which has
maximal strength with respect to the force F . Let i ∈ {1, 2, . . . , k} and let c′
be a non-trivial occurrence of p in some mesh pattern in pi that is stronger
than the trivial occurrence. The occurrence c′ gives rise to an occurrence of p
in π which is stronger than c, which is a contradiction. Hence, in the original
occurrence c, the region corresponding to the square si is empty. Letting i
range from 1 to k shows that the regions in π corresponding to all the squares
in S are empty, i.e., c is an occurrence of q.

In the previous lemma, the special case where |F | = 1 and k = 1 is equiv-
alent to Lemma 2.3. To show that Lemma 2.10 can prove any coincidence
proven by the Simultaneous Shading Lemma we need the following result.

Lemma 2.11. Let p = (τ, R) be a mesh pattern. Fix a subsequence G of
τ and, for each g ∈ G, let Ug be a square or pair of adjacent squares that
are shadeable from g. Then there exists a force F such that S =

⋃
g∈G Ug

satisfies the conditions of Lemma 2.10.

Proof. Let k = |G|. We define the force F = ((g1, a1), (g2, a2), . . . , (gk, ak))
as follows:2

ai =


↑ if the square(s) Ugi are north of gi
↓ if the square(s) Ugi are south of gi
← if the square(s) Ugi are west of gi
→ if the square(s) Ugi are east of gi

2Note that in some cases Ug satisfies many of the cases, in which case we can make an
arbitrary choice.
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It suffices to show that for each si ∈ S, some mesh pattern in (τ, R)si⋆ con-
tains a non-trivial occurrence of p that is stronger than the trivial occurrence
of p. Let Ug be the square (or a pair of squares) corresponding to si. Since
Ug is shadeable from g there is a mesh pattern in (τ, R)si⋆ that contains a
non-trivial occurrence of p that is stronger than the trivial occurrence of p.

The previous result implies the Simultaneous Shading Lemma (Lemma 2.6)
is a consequence of Lemma 2.10. The following example shows that Lemma 2.10
is strictly stronger.

Example 2.12. Consider the two mesh patterns

p = q =

Then p⌊0,0⌉↑ is the mesh pattern

which contains p in the subsequence 123. This is a stronger occurrence of
p than the trivial occurrence with respect to the force F = ((1, ↓)). By
Lemma 2.10, p and q are coincident, but p does not satisfy the conditions of
Simultaneous Shading Lemma for shading ⌊0, 0⌉.

We introduce one final strengthening of our lemmas, before presenting
an algorithm that recursively applies them. Up to now all of the lemmas
could be used to prove that two patterns are coincident, i.e., Av(q) = Av(p).
The next lemma, like Remark 2.1, can be used to prove results of the form
Av(q) ⊆ Av(p).

Lemma 2.13. Let p = (τ, R) be a mesh pattern with force F , and q = (τ, R′)
be another mesh pattern. Let S = {s1, s2, . . . , sk} where S = R′\R. If all the
sets p1 = (τ, R)s1⋆, p2 = (τ, R∪{s1})s2⋆, . . . , pk = (τ, R∪{s1, s2, . . . , sk−1})sk⋆
contain an occurrence of p that is stronger than the trivial occurrence of p, or
an occurrence of a pattern that implies an occurrence of q,3 then containment
of p implies containment of q.

3For instance, a previous application of the lemma might have shown that a pattern pi
contains a pattern with shadings that form a superset of the shadings of q.
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Proof. The proof is analogous to the proof of Lemma 2.10, with one excep-
tion. If a pattern pi is ever reached such that containment of pi implies the
occurrence of q, then p implies the occurrence of pi, which in turn implies
the occurrence of q.

Note that we can prove coincidence of two patterns p and q by applying
the above lemma twice: Once to prove that containment of p implies contain-
ment of q, and then again in the other direction to prove that containment
of q implies the containment of p.

We have already shown that the lemmas are ordered by implication as in
Figure 2.6. To get a better idea of the power of these results, we compare

Shading Lemma

Lemma 2.3 Simultaneous Shading Lemma

Lemma 2.10

Lemma 2.13

Figure 2.6: Comparison of the lemmas.

them across all mesh patterns with underlying classical patterns 1, 12, 123
and 132.4 This is a total of 131.600 mesh patterns. Before we apply any
of the lemmas we compute Avk(p) for k ≤ 10. This allows us to perform
an experimental coincidence classification of these patterns: two patterns p,
q are in the same experimental class if Avk(p) = Avk(q) for k ≤ 10. For
any two patterns p and q in different experimental classes, the experimental
classification finds a permutation that shows that p and q are not coincident.
The number of experimental classes for each underlying pattern is given in
Table 1. Some of these classes contain a single mesh pattern, and we call
these resolved (res.) classes, since a pattern in such a class is not coincident

4The remaining patterns of size 2 and 3 are symmetries of these patterns.
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to any other pattern. An example of such a class is the class which contains
a fully shaded mesh pattern. Such a pattern is avoided by every permutation
but the underlying pattern itself. Therefore it is coincident only to itself
and the class is a singleton. The remaining classes are said to be unresolved
(unr.). An unresolved class becomes resolved when we have shown that all
the patterns in the class are coincident and therefore that the experimental
class is in fact a coincidence class.

To resolve an unresolved class we start by creating a directed graph with
a vertex for each pattern in the class. The graph is completely disconnected
at first. If two patterns p and q are shown to be coincident by the Shad-
ing Lemma, the Simultaneous Shading Lemma, Lemma 2.3 or Lemma 2.10,
we add edges between the patterns in both directions. If Remark 2.1 or
Lemma 2.13 shows that the containment of p implies containment of q then
we add a directed edge from p to q. If the graph becomes strongly connected
(i.e., is one strong component) then the class is resolved, as we have proven
the coincidence of all the patterns in the class.5

Pattern 1 12 123 132

unr. res. unr. res. unr. res. unr. res.
Exp. 1 7 59 161 9608 23908 10315 23035
Shading L. 0 8 2 218 205 33311 183 33167
Lemma 2.3 0 8 2 218 205 33311 183 33167
Sim. Shading L. 0 8 1 219 94 33422 145 33205
Lemma 2.10 0 8 1 219 94 33422 145 33205
Lemma 2.13 0 8 1 219 74 33442 121 33229

Table 1: The results of using the lemmas for coincidence classification of size 1, 2, and 3
mesh patterns.

As can be seen in Table 1, less than one percent of the classes remain
unresolved after the Shading Lemma has been applied. We know from
Lemma 2.4 and Example 2.5 that Lemma 2.3 is strictly stronger than the
Shading Lemma. However, the lines for these two lemmas in Table 1 are iden-
tical, implying that (at least for mesh patterns with these underlying classical
patterns), this extra strength is not enough to fully resolve any more classes

5The computations were performed on resources provided by the Icelandic High Per-
formance Computing Centre at the University of Iceland.
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than the Shading Lemma. The same phenomenon occurs for Lemma 2.10
and the Simultaneous Shading Lemma. After Lemma 2.13 has been applied,
the remaining unresolved classes are 196. In the next section we further im-
prove Lemma 2.13 and reduce this number down to one exceptional case,
which we do by hand.

3. The Shading Algorithm

We define the Shading Algorithm (Algorithm 2) which iterates Lemma 2.13.
The algorithm takes as input two mesh patterns p = (τ, R) and q = (τ, R′),
a force F on τ and a depth d. It outputs Success if it can show that con-
tainment of p implies containment of q. The core of the algorithm is the
recursive function SA, which takes as input a mesh pattern w = (σ, Y ), an
occurrence c of p in w and a depth d. The depth d serves as a maximum
recursion depth of the function. The mesh pattern w represents a state and
describes an occurrence of p in an arbitrary permutation. The algorithm uses
w to explore the occurrence of p with maximum strength with respect to the
force F , which in turn is used to infer on the shadings of p. Similar to the
previous lemmas, the algorithm branches, depending on whether a square in
w is empty or not. In the latter case it attempts to derive a contradiction
by showing that the square can not contain a point, and is therefore empty.
We start by giving an example of what the algorithm is meant to do.

Example 3.1. We want to show that an occurrence of the pattern p = (τ, R)
implies an occurrence of the pattern q = (τ, R′).

p = q =

We think of p as an occurrence in a permutation. The goal is to show that
S = R′ \ R = {⌊1, 0⌉, ⌊2, 1⌉} can be shaded (or more precisely that there
is an occurrence of p in the permutation where S is empty), or there is an
occurrence of q. We choose the force F = ((1,→)). Assume the occurrence
of p in the permutation maximizes the strength with respect to the force F .
Consider the case when ⌊1, 0⌉ is not empty, and add the rightmost point in
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that square to p.

w1 = p⌊1,0⌉→ = q1 =

Consider the subsequence at indices 234 in w1. This is an occurrence of q1,
which implies (since it has a superset of shadings) an occurrence of p, which
is stronger than the original occurrence of p with respect to F . This is a
contradiction. Thus ⌊1, 0⌉ in p must have been empty. Consider the case
when ⌊2, 1⌉ is not empty in p, and add the leftmost point in that square to
p.

w2 = (τ, R ∪ ⌊1, 0⌉)⌊2,1⌉← = q2 =

We take the subsequence at indices 123 in w2. This is an occurrence of q2.
The square ⌊1, 2⌉ is not shaded, and corresponds to ⌊1, 2⌉ in w2. Let us
consider the rightmost point in ⌊1, 2⌉ in w2, giving:

w3 = w
⌊1,2⌉→
2 = q3 =

Here we take the subsequence at indices 235 in w3 which is an occurrence of
q3, which implies a stronger occurrence of p with respect to F . Hence, ⌊1, 2⌉
in w2 is empty, which implies that ⌊1, 2⌉ is empty in q2. Therefore q2 is a
stronger occurrence of p with respect to F , thus ⌊2, 1⌉ is empty in p. The
original occurrence of p in the permutation is therefore an occurrence of q.

In Algorithm 1 we record two subfunctions we will need in the main
algorithm.

Before proving our main result we prove a lemma about the case when
the function SA in Algorithm 2 returns Success.

Lemma 3.2. For fixed mesh patterns p, q and a force F on p, if the function
SA in Algorithm 2 returns Success for input w = (σ, Y ), c (an occurrence
of p in w), F ′ and d, then at least one of the following is false:
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1. In the strongest occurrence of w with respect to F ′ in any permutation
π, the occurrence c of p in w corresponds to the strongest occurrence
of p in π with respect to F .

2. The occurrence of w does not imply an occurrence of q.

Proof. We prove this by induction on the depth d. When d = 0, the base
case of the procedure on line 4 checks whether statement (1) fails and the
second base case of the procedure on line 7 checks whether statement (2) fails.
Statement (1) fails when an occurrence of p that is stronger than c w.r.t. F
is found in w. If we consider the strongest occurrence of w w.r.t. F ′ in
some permutation, then this stronger occurrence of p in w is also a stronger
occurrence of p in the permutation. The second statement fails when w
contains an occurrence of q. Since the algorithm returned Success, either
statement (1) or statement (2) is false.

Assume the lemma holds for d. We now prove the inductive case for d+1.
Since the call to SA returned Success, there is some (τ, T ) constructed on
line 3 that resulted in Success. If one the two tests in line 4 or line 7
succeeds then we are done. We consider the case where the tests fail and the
algorithm continues to line 10.

For each i = 1, . . . , k we claim that if there is some a ∈ {↑, ↓,←,→}
such that SA((σ, Y ∪ {s1, . . . , si−1})sia,UO(c, si),UF(F ′, si), d − 1) returns
the value Success, then an occurrence of (σ, Y ∪ {s1, . . . , si−1}) implies
an occurrence of (σ, Y ∪ {s1, . . . , si}). Consider the case when i = 1. By
Remark 1.8 this occurrence of w = (σ, Y ) implies an occurrence of either
(σ, Y ∪ {s1}) or the occurrence of w⌊i,j⌉a. The first case is trivial. For the
second case we will show that the containment of w⌊i,j⌉a leads to the same
conclusion. The functions UO and UF update the occurrence c in w and the
force F ′, respectively, such that they refer to the same points after the new
point was inserted into ⌊i, j⌉. Since the strongest occurrence of p w.r.t. F
is contained in the strongest occurrence of w w.r.t. F ′, it is contained in
the strongest occurrence of w⌊i,j⌉a w.r.t. UF(F ′, s1). But since the recursive
call on w⌊i,j⌉a with the updated c and F ′ results in a contradiction, the
strongest occurrence of w does not imply the strongest occurrence of w⌊i,j⌉a
and therefore implies the occurrence of (σ, Y ∪ {s1}). The same argument
holds for every i and hence the claim holds.

We have shown that for every i = 1, . . . , k, an occurrence of the mesh pat-
tern (σ, Y ∪{s1, . . . , si−1}) implies an occurrence of (σ, Y ∪{s1, . . . , si−1, si}),
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and hence that w implies the occurrence of (σ, Y ∪ {s1, . . . , si−1, si}). This
pattern contains an occurrence of q, thus w implies an occurrence of q, con-
cluding our proof.

We now state our main result.

Theorem 3.3. If Algorithm 2 returns Success for p, q and some choice of
F , then an occurrence of p implies an occurrence of q.

Proof. Algorithm 2 calls the function SA with p, τ , F and d. By Lemma 3.2,
the algorithm returns Success when either in the strongest occurrence of p
w.r.t. F , the occurrence τ in p does not correspond to the strongest occur-
rence of p w.r.t. F , or an occurrence of p implies the occurrence of q. Since
the first case would be a contradiction, it must be the second case.

When we run the algorithm with depth d = 2 we are able to automatically
classify mesh patterns of size 2, showing that the total number of coincidence
classes is 220. The results from running Algorithm 2 with d = 1, . . . , 6 on
mesh patterns of size 3 are given in Table 2. The algorithm fully classifies
the coincidence of mesh patterns with the underlying pattern 123 at d = 4,
while two classes remain unresolved for 132 at d = 6. The implementation is
available on GitHub [12], and further description of the repository is given
in Section Appendix A.

Pattern d = 1 d = 2 d = 3 d = 4 d = 5 d = 6

123 74 8 6 0 0 0
132 121 32 13 6 2 2

Table 2: The number of unresolved classes after running the Shading Algorithm at depths
d = 1, . . . , 6.

 ,


 ,


Figure 3.1: The two unresolved classes with underlying pattern 132 after Algorithm 2 has
been applied.
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The two remaining unresolved classes are symmetries of each other as can
be seen in Figure 3.1. We will therefore only prove the coincidence of the
first class since the arguments will be identical for the second class. We start
by proving that the the pattern 21 is coincident with a decorated pattern (See
Ulfarsson [13] for the definition).

Proposition 3.4. The patterns p and q, shown below, are coincident. The
second pattern is a decorated pattern that contains a (possibly empty) in-
creasing sequence in the union of the squares ⌊0, 0⌉ and ⌊0, 1⌉, denoted by
the diagonal line.

p = ≍ = q

Proof. Let π be a permutation. If π contains q then it contains p. Assume
that π contains p. Since an occurrence of p is an inversion, π must have a
descent. Consider the first descent in π, ab, with a > b.

Consider the points in the region left of the point a in p, the squares ⌊0, 0⌉,
⌊0, 1⌉ and ⌊0, 2⌉. If this region contains an inversion, then it must contain a
descent. As we picked the leftmost occurrence of p already, this region must
avoid any 21 and can only contain an increasing sequence. Furthermore, the
square ⌊0, 2⌉ must be empty, since the rightmost point in that region would
form a descent with its right adjacent point. Thus, this descent ab is an
occurrence of q.

Proposition 3.5. The following mesh patterns are coincident.

p = ≍ = q

Proof. By Remark 2.1 it suffices to show that an occurrence of p implies
an occurrence of q. Let π be a permutation that contains p. Either the
points in the region corresponding to the square ⌊1, 2⌉ form an increasing
sequence (possibly empty) or contain an inversion. We will show in both
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cases, which are depicted below, that the occurrence implies an occurrence
of q.

In the first case, when the square ⌊1, 2⌉ contains an increasing sequence,
the square ⌊2, 2⌉ either contains a point or is empty. If the square is empty,
we are done, since this occurrence will then be an occurrence of q. Otherwise
we pick the leftmost point in the square and place it into the occurrence of
the pattern p.

with ⌊2, 2⌉ non-empty
implies the occurrence of =

The square ⌊1, 2⌉ is either empty or contains a point. If it is empty, the
occurrence implies an occurrence of q with the subsequence 143. Otherwise,
the square contains a point. Pick the rightmost point, which is also the
highest point.

with ⌊1, 2⌉ non-empty
implies the occurrence of =

This occurrence of p with the inferred points forms an occurrence of q, namely
the subsequence 354.

Consider the case when the square ⌊1, 2⌉ in p contains an inversion. By
Proposition 3.4 an inversion is coincident with the decorated pattern in that
proposition, which we place instead of the inversion into the occurrence of p.

implies the occurrence of =

The square ⌊1, 2⌉ in the occurrence is either empty or contains a point. If the
square is empty, the occurrence forms an occurrence of q with the subsequence
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132. We assume it contains a point and place the rightmost point in the
square into the pattern of the occurrence.

implies the occurrence of

The subsequence 354 forms an occurrence of q, and we conclude that an
occurrence of p implies an occurrence of q.

This completes the coincidence classification of mesh patterns of sizes 1,
2, and 3. There are 8 coincidence classes of mesh patterns of size 1. The
number of classes for longer patterns are shown in Table 3. The number of

Pattern 12 123 132

Number of mesh patterns 512 65536 65536
Coincidence classes 220 33516 33350
Coincidence classes of size 1 161 23908 23035
Coincidence classes of size 2 37 6116 6598
Coincidence classes of size 3 2 132 286
Coincidence classes of size 4 11 1961 2182
Coincidence classes of size 5 0 16 46
Coincidence classes of size 6 0 172 164
Coincidence classes of size 7 0 0 0
Coincidence classes of size ≥ 8 9 1211 1039

Table 3: Number of coincidence classes of mesh patterns with underlying patterns 12, 123
and 132.

singleton classes in Table 3 shows how effective the experimental classification
is, since roughly a third of the patterns are not coincident with any other
mesh pattern. From the table we can also see that for 123 and 132 more
than 90% of the coincidence classes contain at most four mesh patterns,
which greatly reduces the number of comparisons in contrast to running the
algorithm on every pair of patterns.
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4. Applications of mesh patterns and the force to enumeration

Knowing coincidences of mesh patterns can be used to enumerate permu-
tation classes, as the following example shows.

Example 4.1. Let B = {1234, 1243, 1324, 1342, 1423, 2314, 2341, 3124, 4123}
and consider the permutation class Av(B). Since 123 appears as a subpattern
in every pattern in B we can write Av(B) as the disjoint union

Av(B) = Av(123) ⊔ (Av(B) ∩ Co(123)).

The enumeration of Av(123) is well known to be given by the Catalan num-
bers, which have the generating function

C(x) =
1−
√
1− 4x

2x
.

Therefore we only need to consider Av(B) ∩ Co(123). Using any of the
lemmas in Table 1 we can show that 123 is coincident with the pattern

A permutation in Av(B) contains the previous pattern if and only if it con-
tains the following pattern.

This is because the existence of a point in any square (except ⌊0, 1⌉) would
imply an occurrence of one of the basis elements in B. In such a permuta-
tion the region corresponding to the square ⌊1, 0⌉ must avoid 12, or else an
occurrence of 3124 would be realized. This implies that every permutation
in Av(B) ∩ Co(123) has a unique occurrence of 123 that is an occurrence
of the pattern above. Moreover, any decreasing sequence of points can be
placed in this region without creating a basis element. Every permutation in
Av(B)∩Co(123) can therefore be constructed by starting with the permuta-
tion 123 and placing a 12 avoiding permutation in the region corresponding
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to ⌊1, 0⌉. Hence, we obtain the following generating function FB(x) of the
permutation class Av(B):

FB(x) = F123(x) + x3 · F12(x)

= C(x) +
x3

1− x
.

This example motivates the following definitions.

Definition 4.2. Let C be a permutation class. Two patterns p and q such
that Av(p)∩ C = Av(q)∩ C are said to coincident with respect to C, denoted
p
C≍ q.

Definition 4.3. Define occp(π) as the number of occurrences of a pattern p in
a permutation π. A pattern p is binary if occp(π) ≤ 1 for every permutation
π. A pattern p is binary with respect to a permutation class C if occp(π) ≤ 1
for every π ∈ C.

Example 4.1 gives an approach to enumerating permutation classes C:
First choose a classical pattern p ∈ C , and find a coincident pattern q ≍ p
with the Shading Algorithm. Add in the shadings implied by the basis of C,
obtaining a pattern q′

C≍ p. If q′ is binary with respect to C it can be used to
find structural information about C ∩ Co(p).

It is not clear what is a good choice for the pattern p ∈ C, or for the
coincident pattern q ≍ p. In more generality, how can it be determined when
a pattern can only occur at most once in any permutation?

Proposition 4.4. For every classical permutation pattern p (except ϵ, the
pattern of length 0) and every i > 0 there exists a permutation π such that
occp(π) ≥ i.

Proof. Let p be a classical permutation pattern of size n. Insert the element
n + 1 to the left of the element n. This new permutation is of size n + 1
and has at least two occurrences of p. The occurrence where the element n
corresponds to the element n in p and the occurrence where n+1 corresponds
to the element n in p. This process can be repeated and the element n + 2
added, giving a permutation with at least one more occurrence of p than the
previous permutation. This process can be continued to obtain a permutation
with as many occurrences of p as desired.
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Figure 4.1: An example of an anchored pattern. The point with value 5 is anchored to the
boundary as the highest point and the remaining points are anchored to it through each
other.

This proposition does not hold for mesh patterns in general. Take for
example the mesh pattern m = . An occurrence of m in a permutation
corresponds to the leftmost point in the permutation. Every permutation
has at most one leftmost point, hence every permutation has at most one
occurrence of m. There are also bigger and more complex mesh patterns that
exhibit this behavior, i.e., occur exactly once or never in any permutation.

Although Proposition 4.4 implies that no classical permutation pattern
is binary, the pattern m shows that mesh patterns can be binary. The pat-
tern contains a single point that is forced, in a similar manner to what was
discussed in Definition 2.8. Larger patterns of this type exist, such as the
pattern q = . The 1 in an occurrence of q in π corresponds to 1. Similarly
2 must be the rightmost point in π. A point in a mesh pattern of size n
is anchored to a boundary if it is an occurrence of at least one of the mesh
patterns , , , . Furthermore, a point is anchored to another point
if together they are an occurrence of at least one of the mesh patterns ,

, , .

Definition 4.5. A mesh pattern p is anchored if for every point pi1 of the
pattern there exists a sequence of points pi1pi2 . . . pin such that piℓ is anchored
to piℓ+1

and pin is anchored to a boundary.

An example of an anchored pattern is given in Figure 4.1 in which the
point (5, 5) is anchored to the top boundary. The point (4, 1) is anchored to
(5, 5), (1, 2) to (4, 1), (3, 3) to (1, 2) and (2, 4) to (3, 3), hence each point is
anchored through a sequence of points to a boundary-anchored point.

Proposition 4.6. Every anchored mesh pattern is a binary mesh pattern.

Proof. Let p be an anchored mesh pattern and let π be a permutation that
contains p. Any occurrence of p in π will use the same point in π for a
boundary-anchored point in p, e.g., if p contains a point anchored to the
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bottom boundary (fully shaded bottom row), (i, 1) then the corresponding
point in π must be the lowest point in π. Any point anchored to (i, 1) is
therefore uniquely determined in any occurrence of p in π, since it must have
an adjacent index, i + 1, or value, 2. This argument can be iterated on the
points anchored to the points anchored to i and so on. Since every point in p
is anchored to a boundary-anchored point through a sequence of points, each
point is uniquely determined in every occurrence of p in π. Hence, there can
only be one occurrence of p in π.

The previous result implies:

Corollary 4.7. There are infinitely many binary mesh patterns.

Proposition 4.6 shows that anchored patterns are binary. However, non-
anchored binary patterns do exist, such as the pattern in Figure 4.2.6

Figure 4.2: Example of a non-anchored binary mesh pattern.

While several permutation classes can be enumerated using the method
in Example 4.1 we now turn our attention to a more powerful method, which
is including a force with the pattern.

Definition 4.8. A forced pattern is a tuple (p, F ) of a pattern p and a
force F . An occurrence of a forced pattern (p, F ) in a permutation π is an
occurrence c of p in π such that

strengthF (π, c) = max
occ. c′ of p in π

strengthF (π, c
′)

where the force strengths are compared in the lexicographical order.

From the definition it follows that a permutation π contains a forced
pattern (p, F ) if and only if it contains its underlying pattern p. We extend
Definition 4.3 to also apply to these new patterns.

6This pattern can be shown to be binary with Lemma 4.11
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Remark 4.9. We note that although forced patterns are similar to anchored
mesh patterns in some aspects, these are different in general. We leave it to
the reader to show that the forced pattern (12, ((1,←))) does not have the
same occurrences as the mesh pattern , or the mesh pattern in a
permutation.

Proposition 4.10. A forced pattern (p, F ) with |p| = |F | is binary.

Proof. Assume a permutation σ has two occurrences of p, c1 = σi1 . . . σin and
c2 = σj1 . . . σjn that have equal strength with respect to F . Then for every
k ∈ [1, n] we have either ik = jk or σik = σjk from which it follows that the
two occurrences are equal.

Proposition 4.10 shows that any (classical) pattern can be made binary by
adding a force to it. The more points that are forced, the fewer occurrences
there are of the pattern. If all the points are forced, then there is a unique
occurrence of the pattern with maximum strength.

Sometimes it may be preferable to use a force of smaller size. This can
be important if one wants to apply the technique of Example 4.12 to several
permutation classes. Then for each potential pattern of length k it might
be too computationally hard to check if a force of length k gives a good
description of the subclass of the permutation class that contains the pattern.

Lemma 4.11. Let p be a pattern that is not binary with respect to the
permutation class C. If p has size n, then there exists a permutation π ∈ C
of size at most 2n such that occp(π) > 1.

Proof. Since p is not binary with respect to C there exists a permutation
σ ∈ C such that occp(σ) > 1. Let c1 = σi1 . . . σin and c2 = σj1 . . . σjn be two
distinct occurrences of p. Let π be the permutation that is order-isomorphic
to the union of the occurrences c1 and c2. Then π has size at most 2n,
contains at least two occurrences of p, and is a member of C.

By Lemma 4.11 we only need to check permutations up to size 2n to
verify that a forced pattern of size n is binary. Given a classical pattern,
this allows us to discover, in a brute force manner, a small force that makes
the pattern binary. We start with the pattern with the empty force. If the
pattern is binary we are done, otherwise we pick a point and direction and
add this to the force. If this forced pattern is now binary, we are done, else
we repeat this process. By Proposition 4.10, this will eventually result in a
binary forced pattern.
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Example 4.12. Let B′ = {1324, 1342, 1423, 2143, 2413, 3142} and consider
the permutation class Av(B′). Similarly as in Example 4.1 we get

Av(B′) = Av(132) ⊔ (Av(B′) ∩ Co(132)).

An occurrence of 132, in a permutation in Av(B′), will be an occurrence of
the mesh pattern

It is possible to check that there is no mesh pattern q
Av(B′)
≍ 132 that is

binary with respect to Av(B′). However, 132 is coincident to the forced
pattern (132, ((3, ↑), (1, ↓), (2, ↓))), which is binary by Proposition 4.10. An
occurrence of this pattern, in a permutation in Av(B′), will be of the form

Because of the force the region corresponding to the square ⌊0, 3⌉ avoids the
pattern 132. The restrictions from the basis B′ imply that the regions cor-
responding to the squares ⌊1, 1⌉, ⌊2, 2⌉, ⌊3, 0⌉ avoid 21, 12, B′, respectively.
It is easy to check that there are no other conditions causing these regions
to be dependent. We therefore obtain the following equation satisfied by the
generating function FB′(x) for the permutation class Av(B′):

FB′(x) = F132(x) + F132(x) · F21(x) · F12(x) · FB′(x) · x3

= C(x) +
x3C(x)FB′(x)

(1− x)2
,

where we have used the fact that F132(x) = C(x), the generating function of
the Catalan numbers. Solving this equation gives

FB′(x) =
(1− x)2C(x)

(1− x)2 − x3C(x)

= 1 + x+ 2x2 + 6x3 + 18x4 + 54x5 + 167x6 + 534x7

+ 1755x8 + 5896x9 + 20167x10 + · · · .
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By applying the process used to enumerate Av(B′) in the previous ex-
ample to non-insertion encodable7 permutation classes with bases consisting
of size 4 classical patterns we are able to enumerate 316 classes. No permu-
tation class with fewer than six patterns in its basis is successful. Detailed
results are in Table 4.

Size of basis Nr. of classes Successes %
12 1 1 100.0
11 10 10 100.0
10 48 39 81.3
9 151 86 57.0
8 337 106 31.5
7 547 62 11.3
6 659 12 1.8
5 578 0 0.0

Table 4: Number of permutation classes with bases consisting of size 4 patterns that can
be enumerated with the process used in Example 4.12.

5. Future work

The experimental classification is sufficient to coincidence classify (with-
out proof) the mesh patterns of sizes 0, 1, 2, 3 correctly by considering the
permutations of size 1, 3, 5, 10, respectively. This leads to the following
conjecture.

Conjecture 5.1. The mesh patterns of size n can be coincidence classified
by experimental classification with permutations of size (n+ 1)2 + n.

The intuition behind the expression (n + 1)2 + n is similar to the proof
of Lemma 4.11. Consider two mesh patterns p, q with the same underlying
classical pattern and a permutation π that contains p but not q. Then in
every occurrence of p in π, there must be a point in a region that corresponds
to a shaded region in q. Since there are (n + 1)2 squares and n points in a
mesh pattern of size n, we obtain the term in Conjecture 5.1.

7Albert, Linton, and Ruškuc [14] studied permutation classes with a regular language
for their insertion encoding. Vatter[15] provided an algorithm for automatically computing
the generating function of such classes.
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One of the obvious next steps with the Shading Algorithm would be the
classification of size 4 mesh patterns. The main issue is the number of mesh
patterns to classify since the size of the underlying pattern increases and the
number of different shadings increases to 225. The experimental classification
becomes even more vital in this case, but the size of the permutations to
consider also increases dramatically and the task becomes computationally
impractical.

We end with two open enumerative problems:

Problem 5.2. Given a classical pattern p, determine the number of anchored
mesh patterns (p,R).

Problem 5.3. Given a classical pattern p, determine the number of binary
mesh patterns (p,R).
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Appendix A. Implementation of the Shading Algorithm

The Python implementations of the Shading Algorithm, Shading Lemma
and The Simultaneous Shading Lemma are available at Bean et al. [12].
The core of the implementations is in the file tsa5_knowledge.py under a
directory called the_shading_algorithm. The script classify.py reads in
experimental classes with known coincidence relations of the patterns and
calls the Shading Algorithm on pairs of patterns to decide their coincidence.
The full classification of the mesh patterns with underlying classes 12, 123
and 231 is given in the files located in the directory results/final_results.

Each file in the results/final_results of the GitHub repository [12],
contains multiple lines, where each line represents a coincidence class. We
represent the mesh of the patterns with an integer such that the binary rep-
resentation of the integer describes the shadings. Starting with the least sig-
nificant bit, the i-th bit is set to 1 if ⌊⌊i/(n+ 1)⌋, i mod (n+ 1)⌉ is shaded.
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Algorithm 1 Subfunctions of the Shading Algorithm.
Updating an occurrence after the insertion of a point

1: function UO(c = c1 · · · cn, ⌊x, y⌉)
2: for all ci do
3: if ci ≥ y then c′i ← ci + 1 else c′i ← ci
4: end for
5: return c′1c

′
2 · · · c′n

6: end function
Updating a force after the insertion of a point

7: function UF(F ′ = ((t1, a1), . . . , (tk, ak)), ⌊x, y⌉)
8: for all ti do
9: if ti ≥ y then t′i ← ti + 1 else t′i ← ti

10: end for
11: return ((t′1, a1), . . . , (t

′
k, ak))

12: end function
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Algorithm 2 The Shading Algorithm.
1: function SA(w = (σ, Y ), c, F ′, d)
2: for each occurrence c′ of the classical pattern τ in w do
3: Let T be the maximal shading so c′ is an occurrence of (τ, T ) in

w
4: if R is a subset of T and strengthF (c

′) > strengthF (c) then
5: return Success
6: end if
7: if R′ is a subset of T then
8: return Success
9: end if

10: if d > 0 then
11: OK← True
12: Let S = {s1, s2, . . . , sk} be squares in w corresponding to R′\T
13: for i← 1 to k do
14: if for all a ∈ {↑, ↓,←,→},

SA((σ, Y ∪{s1, s2, . . . , si−1})sia,UO(c, si),UF(F ′, si), d−1)
returns Failure then

15: OK← False
16: end if
17: end for
18: if OK then
19: return Success
20: end if
21: end if
22: end for
23: return Failure
24: end function

25: return SA(p, τ, F, d)
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