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This study investigates the buckling of a uni-axially
compressed neo-Hookean thin film bonded to a neo-
Hookean substrate. Previous studies have shown
that the elastic bifurcation is supercritical if r=
py/ms >1.74 and subcritical if r<1.74, where puy
and us are the shear moduli of the film and
substrate, respectively. Moreover, existing numerical
simulations of the fully nonlinear post-buckling
behavior have all been focused on the regime r > 1.74.
In this paper we consider instead a subset of the
regime 7 < 1.74, namely when r is close to unity. Four
near-critical regimes are considered. In particular, it
is shown that when r > 1 and the stretch is greater
than the critical stretch (the subcritical regime), there
exists a localized solution that arises as the limit
of modulated periodic solutions with increasingly
longer and longer decaying tails. The evolution of
each modulated periodic solution is followed as 7
is decreased, and it is found that there exists a
critical value of 7 at which the deformation gradient
develops a discontinuity and the solution becomes
a static shock. The semi-analytical results presented
could help future numerical simulations of the fully
nonlinear post-buckling behaviour.
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1. Introduction

There exists a large number of bifurcation phenomena in nature, engineering, and everyday life
that are fully nonlinear and cannot be described by the traditional near-critical weakly nonlinear
analysis. Examples include the cusp-shaped patterns that appear on the inner surface of an
axially compressed hollow cylinder (Willis 1948) or an everted hollow cylinder (A. Juel, private
communication), kinks in a highly deformed solid cylinder or tube (Wadee et al 2006, Ghatak
and Das 2007), wrinkling patterns in film/substrate bilayers (see, e.g., Sun et al. 2011, Cao and
Hutchinson 2012b), and creases in swollen cellular foams and gels (see, e.g., Jin et al 2011). Because
of their fully nonlinear nature, such phenomena are usually studied either numerically using
finite element packages or with the aid of simplified model equations (see, e.g., Dai and Wang
2008). In this paper, we study one problem belonging to this class of elastic bifurcations using a
semi-analytical approach. In particular, we aim at investigating the nonlinear behavior of the Biot
instability by taking the limit from a coated to a homogeneous elastic half-space under uni-axial
compression. Taking this limit enables us to bring in all Fourier modes in a weakly nonlinear
analysis, and thus to demonstrate the existence of patterns that can usually only be observed in
the fully nonlinear regime.

Taking the limit from a coated to a homogeneous half-space can be viewed as one
scheme to unfold the nonlinear characteristics of the Biot instability. Linear buckling analysis
for a homogeneous half-space was first carried out by Biot in 1963, but its post-buckling
behavior has eluded full understanding for many decades. The difficulty lies in the fact that a
homogeneous half-space does not have a natural lengthscale and consequently there does not
exist a distinguished mode number — all modes having equal status. A naive weakly nonlinear
postbuckling analysis would be to write the solution as a Fourier integral or Fourier series,
and then impose a solvability condition at the second order of successive approximations. This
procedure would result in an infinite system of quadratic equations which do not seem to
have convergent non-trivial solutions (Ogden and Fu 1996). This indicates that if postbuckling
solutions existed, they should contain some form of discontinuities, e.g. in the form of static
shocks. The next natural step is then to approach such non-smooth solutions by a limiting process.
One such scheme is to assume that the surface of the half-space is corrugated and to follow the
evolution of surface profile as lateral compression is increased gradually. It was shown by Fu
(1999) that the evolution is indeed terminated by the formation of a static shock wave, and that
the bifurcation is likely to be subcritical. A similar scheme was employed by Cao and Hutchinson
(2012a) augmented also by a fully numerical simulation. Another scheme is to first assume that
the half-space is coated by a thin layer with bending stiffness and then let the bending stiffness
tend to zero. This scheme was carried out by Hohlfeld and Mahadevan (2011) where analysis of
a simplified model was combined with a fully numerical simulation.

The above search for a non-trivial postbuckling solution is closely associated with another
challenging problem in Continuum Mechanics, namely the problem of existence of surface
acoustic waves of permanent form (Parker and Talbot 1985). Since Biot’s surface wrinkling mode
is simply a standing surface wave with zero speed induced by pre-stress, it is not surprising that
similar problems were encountered in the determination of nonlinear surface wave solutions. We
refer to Fu and Hill (2001) for a critical review of the relevant literature.

The problem of pattern formation on a coated half-space, or a thin film bonded to a substrate,
has received much attention in recent years due to its potential application in a variety of
situations; see, e.g., Li et al (2012) for a comprehensive review. Given u; and us as the shear
moduli of the film and substrate, respectively, the post bucking analysis by Cai and Fu (1999)
demonstrated that the nature of the elastic bifurcation is determined by the ratio r = pus/us,
being supercritical if » > 1.74 and subcritical if » < 1.74 (note, however, that the r in that paper
corresponds to 1/r here). This fact was confirmed by a more recent study by Hutchinson (2013),
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using a slightly different procedure, under a more general framework where a prestretch in the
substrate before the film is attached is also considered. Seemingly unaware of this result, previous
authors have always focussed their attention on the regime r > 1.74; see, e.g., Cao and Hutchinson
(2012b). Thus, much remains unknown about the regime r < 1.74, which is expected to be harder
to simulate numerically due to sensitivity to imperfections. In this paper we provide some semi-
analytical solutions for the case when r is close to unity. The latter assumption enables us to
incorporate the effects of all modes in a self-consistent manner, and to offer some insight on the
post-buckling solution as the coated half-space reduces to a single homogeneous half-space. It is
hoped that our (weakly nonlinear) results will provide a basis for future numerical simulations
of the fully nonlinear post-buckling behaviour when r < 1.74.

The rest of the paper is organized as follows. After formulating the buckling problem in the
next section, we describe in Section 3 our asymptotic procedure and summarize the solution to
the leading-order buckling problem. The nonlinear amplitude equations are derived in Section 4
by two alternative procedures; one of them is to express the total energy in terms of the Fourier
amplitudes and then apply energy extremization. Numerical solutions are presented in Section 5,
and we conclude in Section 6 with a summary of the main results.

2. Governing equations

Let us consider a general homogeneous elastic body B that is composed of a non-heat-conducting
incompressible elastic material. We denote by By its initial unstressed state and by Be a finitely
deformed configuration. We choose a rectangular coordinate system relative to which the position
vector of a material particle in Be is denoted by « with components (x;). Suppose that Be
is further subjected to a small amplitude static perturbation. The corresponding incremental
displacement and pressure fields are denoted by u and p, both of which are functions of . The
governing equations for u and p consist of the incremental equilibrium equation

Xij,j = 0, i,j = 1, 2, 3, (21)
and the incompressibility condition
1 2
Uiyi = 5 Um,ntn,m = 5(“1}%’) — det (um,n), (2.2)

where a comma stands for differentiation with respect to the implied spatial coordinate, and x;;
are components of the incremental stress tensor defined by

1 1 9 _ 3
Xij = Ajitk k1 + 5 Ajitknm Uk itmn + ()i = ujpur,i) = p(85i = uj,i) + O(e7). (2.3)

In the above expression, .A;il , and A2 are the first- and second-order instantaneous elastic

jilknm
moduli whose expressions can be fourj1d in Fu & Ogden (1999), p is the pressure corresponding to
the primary deformation from By to Be, and € is a small parameter characterizing the amplitude
of (u; ;) and p. To simplify the analysis, we assume that both the primary and incremental
deformations are plane-strain so that u3 =0 and u; and uo are independent of x3. Throughout
this paper the usual summation convention on repeated suffices is observed and the range of
summation is from 1 to 2.

In terms of the stress tensor ', the incremental surface traction ¢ on a material surface with

outward unit normal n in Be is given by
t=xn. (2.4)

In our illustrative calculations, we shall use the neo-Hookean material model for which the strain
energy function is given by W = $u(I; — 3), where p is a shear modulus and I; is the first
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principal invariant of the left Cauchy-Green strain tensor. We then have
Afir = 1k Bj, (2.5)

where B is the left Cauchy-Green strain tensor associated with the finite deformation from By to
Be. For a neo-Hookean material, the second and higher order elastic moduli are all zero. Thus, a
neo-Hookean material behaves as a linear material under incremental deformations, so that only
geometrical nonlinearity is taken into account.

We now specialize the above general equations to the structure of a neo-Hookean elastic layer
with shear modulus p1y bonded to another neo-Hookean elastic half-space with shear modulus
s. We choose our co-ordinate system such that the layer and half-space occupy in Be the regions
—h* <29 <0 and —oo < xzg < —h*, respectively, where h* is a constant. The first order elastic
moduli are given by

. . J— — *
.Al { Msészjla oo <z < —h ) (26)

gitk = pfdip By, —h* <2 <0.

We further assume that the finite deformation from By to B is a uni-axial compression. We
then have B=diag{\?, A~2}, where ) is the principal stretch along the z1-direction. Applying the
traction-free boundary condition on x2 = 0 and the traction continuity condition on the interface
x9 = —h™, we obtain

A2 - —h*
_{Ms , —o00 <y < —h*, 27

N ppAT2 —h* <29 <0.

Thus, the finite deformation from By to B and the associated stress field are determined by a
single parameter: the principal stretch A. It is expected that if A reaches a certain critical value, an
inhomogeneous solution may bifurcate from the above homogeneous state. The bifurcation value
and the post-buckling states are determined by solving (2.1), (2.2) in —oo < z2 <0, together with
(2.3), (2.6) and (2.7), subjected to the dead-load boundary condition

t=0, on xz3=0, (2.8)
the interfacial continuity conditions
u, p, and t are continuous at zo = —h*, (2.9)
and the decay conditions
u,p—0 as xg — —o0. (2.10)

In Cai and Fu (1999) and Hutchinson (2013) a weakly nonlinear analysis was carried out for the
case when the coating and half-space have distinct material properties. In this case, there exists a
single critical mode number and the weakly nonlinear analysis follows a standard procedure the
results of which determine whether the bifurcation is super-critical or sub-critical. In contrast, in
this paper we consider the case when the coating and half-space have similar material properties,
with a view to investigating the patterns arising from the interaction of an infinite number of
buckling modes.

We non-dimensionalize all the governing equations and auxiliary conditions by using us as
the stress scale (for p, p, Ajl-il 1), L as a typical lengthscale (for x; and u;), where L is a positive
constant that will be specified later. For the sake of clarity we shall use the same letters to denote
their non-dimensional counterparts except that the non-dimensional film thickness is denoted
by k. Then the non-dimensional governing equations and auxiliary conditions are obtained from
their dimensional counterparts by setting pus =1, puy =7, h* =h, where r =y /s is the only
non-dimensional material constant that characterizes the stiffness of the coating layer relative to
that of the half-space.
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3. Asymptotic expansions and the leading order problem

Let us now consider the limit » — 1 by writing
r=1+ erg, (3.1)

where ¢ is the same small parameter as in (2.3) and rg is an arbitrary O(1) constant. The deviation
(r — 1) is chosen to be O(¢) so that weakly dispersive and nonlinear effects appear at the same
order. The case of a homogeneous half-space is recovered by taking the limit 7o — 0.

We shall focus on the near-critical regime by writing

A= Acro + €Ao, (3.2)

where A0 and Ao are constants. The critical stretch A..o will be determined shortly, whereas
Ao is to be specified. Note that we have reserved A¢r to denote the mode-number-dependent
critical stretch for an arbitrary coated half-space later. Correspondingly, the strain tensor B has
the expansion

B=BY + exgBY 1 0(), (3.3)

where
B(O) = dlag {A('T07 crO} B(l) = dlag {2)‘67"07 —2X,

crO

The first-order elastic moduli and p have the expansions

Al =B + Ak e+ 0(), p=A7%+em +0(), (3.4)
where
" 51kBJ(l)’ —0o < x2 < —h,
.Aﬂlk (3.5)

5ik(ToB§»?) + Aij(ll)), —h <9 <0,

2)‘0)\:7"0’ —o00 < x9 < —h,
D1 = (3.6)
(TO)\CT'O - 2)\0)>‘c_r07 —h <x9<0.
We look for an asymptotic solution of the form
u; = (1)+eu() cee —ep()—i-ep()—i- BRI (3.7)
where ul(.l), ugz), ... and p(l) , p(2), ... are functions of z1 and z3. On substituting (3.1)—(3.7) into

the nonlinear eigenvalue problem and equating the coefficients of ¢, we obtain at the leading order

Xy =0, ufl) =0, —co<ws <0, (3.8)
X4/nj =0, on xz=0, (3.9)
ugl),p(l) —0 as x9g — —o0, (3.10)
where
XEJ) BJ(‘?) N Acrouﬁ Z) pMsj, (3.11)

valid for both —oco < 29 < —h and —h < 29 < 0. We note that since the coating and half-space
behave as the same material at leading order, the interfacial continuity conditions (2.9) are
automatically satisfied. The leading order problem (3.8)—(3.11) is then the same as the one for
a single homogeneous half-space, that was first solved by Biot (1963). Next we summarize the
main results which will be used later.
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Equation (3.8b) implies the existence of a function (1, x2) such that
uil) =92, ugl) =—91. (3.12)

The equilibrium equation (3.8a) and the boundary conditions can then be expressed entirely in
terms of 1. The resulting equations admit a single-mode surface-wave type solution of the form

¥ = H(za, k)eF®1, (3.13)

where H(xzg, k) is the shape function which can be determined by substituting (3.13) into the
equilibrium motion (3.8);. It can be shown with the use of the decay condition (3.10) that, to
within a multiplicative constant,

1 2
Hws, )= o (glel’“‘“ + fge)\”OIklIz) 7 (3.14)
where A
1+ A2, 2
1= —5%, L=—T"5—. (3.15)
1- )‘grO 1- Azro

On substituting the above solution into the boundary condition (3.9), we find that ..o must
satisfy AS, + A% + 3)\2.o — 1 =0, which has a single real root given by

Aero = 0.543689. (3.16)

This is the value of the principal stretch at which the half-space becomes marginally stable.
Substituting (3.13) and (3.14) into (3.12), we obtain

ul) = Wi (o, k)™, ub) = Waea, ket (3.17)
with W and W» defined by

Wi (22, k) = Emsme®™ F172 Wy (za, k) :—% me’mlklz2 (3.18)

where here and hereafter we adopt a modified summation rule whereby a suffix that appears in

one term more than twice is also summed over its range. In (3.18), the two constants s; and s3 are

defined by s1 =1, 50 = /\gTO, and are introduced in order to apply the summation rule.
Corresponding to (3.17), the pressure p(l) must necessarily take the form

P = P(zq, k)e'F®1. (3.19)
On substituting (3.19) into (3.8a) with i = 1, we find
P22, k) = —ikémF (sm)em 172 (3.20)
where
F(sm)=(s3, — sms3)/so. (3.21)

Although (3.20) can be simplified using the fact that F'(s2) = 0 in the present case, we choose not
to use the simplified form in order to facilitate comparison with the more general cases.
We finally note that the above leading order solution is valid for any mode number k.

4. Amplitude equations

For the leading-order problem which is “non-dispersive", we look for a solution of the form

[ee] oo
uﬁf): Z AmWn(:vg,m)eimrl, p(l): Z AmP(mQ,m)eimml7 4.1)

m=—0o0 m=—0o0

where A, are complex constants and the summations exclude m = 0 (or equivalently we assume
Ap =0). Without loss of generality, we have taken the length-scale L to be the inverse of the
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dimensional fundamental mode number, k* say, so that the non-dimensionalized mode number of
the fundamental mode in the above expression is unity. Correspondingly, we have h=k*h™.
Thus, for example, if the original (dimensional) coating thickness h* were fixed, h — 0 would
correspond to the small mode number limit.

It can be checked that if only a finite number of modes are included in (4.1), the second order
problem will become unsolvable. This is a unique feature of non-dispersive bifurcation or wave
propagation problems.

To ensure that the expressions (4.1) for u%l) and p(l) are real, we impose the condition that

A—m:Am: (m:1,2,~~-), (4.2)

where an overbar signifies complex conjugation.

In principle, the evolution equations for the Fourier amplitudes A, (m=1,2,---) can be
determined from a solvability condition imposed on the governing equations for ug) and p?);
these governing equations are obtained by substituting (3.1)—(3.7) into the nonlinear eigenvalue
problem (specified in section 2) and equating the coefficients of ¢2. However, this approach is
algebraically cumbersome. A more efficient method is the virtual work method proposed in Fu
(1995); this method was used in Fu and Hill (2001) to derive the evolution equations for nonlinear
traveling waves in a coated elastic half-space having similar material properties as the one
considered in the current paper. Since we would need to assess the energy of different solutions
anyway, as a by-product we may also derive the amplitude equations from the stationarity of the
total energy. In the following both approaches are employed and are used to provide a useful
check on each other.

We start with the general (incremental) energy expression

e :J (W(F) — W(F)}dv J £.wds, 43)
Bo ast

where S; is the part of 9By where traction ¢ is specified. Expanding around the pre-stressed state

Be and then using the divergence theorem to eliminate the surface integral, we obtain

_ 1
G= JB <pum- + E-Ajilkui,juk,l> dv. (44)

This expression is exact for neo-Hookean materials but has an error of order € for other material
models because of material nonlinearities.

We now specialize the above general energy expression to the coated elastic half-space with
Be replaced by

Because of the periodicity of our solution, we may consider the average energy per unit
wavelength and write

1 0 27 1
G= —J J <13u1,Z + §Ajilkui,juk,l> dv. (4.5)
—0o0

On substituting the expansions (3.4)2 and (3.7) into the above expression, we obtain

3 0 2m
_ € 1, @, 0 - 1) 1) 1 @, 1)
=i J',oo L (p( )ui,j w;; +Pruy jus g+ Ajz‘lkuz’,j um) dxidxa, (4.6)
where the order €2 term can be shown to vanish identically, whereas terms of order e or higher
are neglected in the following. We observe that in terms of unscaled coordinates the actual energy
per unit wavelength is equal to the above G divided by h, a fact that will be used when we
compare energies of different wavelengths when the coating thickness is fixed.

H
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To evaluate (4.6) explicitly, we follow Fu and Hill (2001) and write

o0
u%)n = Z —i&q|r|"(m,n,r, a)eS“‘T“T“’Arelml7 (4.7)
r=—00
where
I'(m,n,r,a) = (isad1m + 02m — B )(151n B + Sad2n)- (4.8)

The integral in (4.6) can now be evaluated by making use of the fact that only terms that are
independent of =1 will survive the integration. We thus obtain

(oo}

G_;ES{ ST WM AA —i Z Z r)ArAp—r A } (49)

r=—00 pP=—00 Tr=—00
where the coefficients w(l)( ) and wf (p, r) are defined by

D) = £alp|r|

p— Sbf(m,n,r, a)l(n,m,—r,b) {7"0)‘cr0 2X0\

crO

*TO)\;QQ e*(5a+5b)|r|h}

fafb|7’|

. 0 )
Sa+sb r(m,l,r,a)I"(m, j,—r,b) {TOB](_I)+)\OB](_Z)

—rgBearenlrity

Ea&péc - plrllp — 7|
salr| + splp — 7| + sclpl

w®(p,r) = - F(se)I'(m,n,r,a)l(n,m,p — r,b).

The amplitude equations can be obtained by differentiating G with respect to Ay, for any k, and
then setting the resulting derivative to zero. Their reduced form has been checked against the
amplitude equations derived by adapting the procedure used in Fu and Hill (2001) and given by

oo
—2ixge(kh)Ap + > K(k, k')A A =0, (4.10)

k'=—o0

A*k:Akv (k:172>)7

where
c(kh) =2X_3 T(n,m, k,a)T(m,n, —k, b)ﬂ
Sa + Sp
—B(l)F(m Lk ,a)I'(m,n, —k, b)——"— Sath
nl Y b) b b) Sa+sb
B(O)F Lk ol §alp 1 o= (satsp)kh
B Tm 1k a)D(m,m, —k, ) =2 i
TO \—2 éaﬁb (Sa+sb)kh
— 22 r r 1—e (5a .
Ao >‘cr0 (717 m7kaa) (m7na Sa T sp { } (4 11)
/ Eabpéelk — K| / /
= 2k’ F(sp) I —k,a)I -
K(k7k) Sa|k| i Sblk/| 4 Sclk _ k/| { k (Sb) (n,m, k7a) (manvk k aC)
—|K'|F(sa)(n,m, k', b)(m,n,k — k', c)} . (4.12)

It is found that numerical calculations can be speeded up significantly if the many summations
over a,b, c, m,n in (4.12) are carried out beforehand. It turns out that the resulting expression is
not too long, as written in Appendix A.

Neglecting the nonlinear terms in the amplitude equations (4.10), we would obtain c(kh) =0,
which is the leading order bifurcation condition. This condition gives a relation between ¢ and
Ao, or equivalently a relation between r — 1 and the bifurcation value A¢r — Ao 0f A — Aerg. On
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Figure 1. Exact bifurcation curve (solid line) and the two-term asymptotic result (dotted line) given by (4.13) for two typical
values of r, namely » = 1.05 (left) and » = 0.95 (right).

the other hand, by taking the limit » — 1 in the (exact) bifurcation condition of Cai and Fu (1999),
we may obtain

Aer = Aero + a1 (kR)(r — 1) + O((r — 1)?), (4.13)
where

253 sinh®((1 — sp)kh/2]

kh) =
a1 (kh) 1—3so+s2  exp[(1+s2)kh]

~ 5.42 - sinh?[0.35kh] e 130k (4.14)

The asymptotic relation (4.13) together with (3.1) and (3.2) implies that the leading order
bifurcation condition must be given by Ag = a1(kh)ro. We have checked numerically to verify
that A\g = a1(kh)ro with a1 (kh) given above does indeed satisfy c¢(kh) = 0. Furthermore, since
c(kh) must necessarily be a multiple of (Ag — a1 (kh)rg) and the first two terms in the expression
for ¢(kh) are independent of A\g and 7o, we may also write ¢(kh) in the alternative form

c(kh)=(1—-a1 (kh);—g) x first two terms on the right hand side of (4.11).

With the use of the software Mathematica (Wolfram 1991), when k > 0 this expression can be
simplified to

c(kh) =8/52(s5 2 — 3)(1 — al(kh);—g) ~ 18.36(1 — al(kh):—?)). (4.15)

The behaviour of the critical principal stretch given by (4.13) is determined by that of a1 (kh)
defined by (4.14); the latter is monotone increasing for 0 < kh < kcr, and monotone decreasing
for kh > kcr, with the maximum a1max (= 0.2418) attained at kh = kcr, where kcr = 1.73. Fig. 1
compares the exact bifurcation condition and the two-term asymptotic expression given by (4.13)
for the cases when r =1.05 and r = 0.95, respectively. It shows that the asymptotic expression
provides a uniformly valid approximation for the exact bifurcation condition over the entire range
of kh.

5. Post-buckling solutions

Let us now investigate the behavior of post-buckling solutions. Since the kernel K(k, k') is real,
the infinite system of quadratic equations (4.10) admits a solution of the form

Ak = 21)\0Dk7 Dk real.
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It follows from A_j, = Ay, that D_j, = — Dy, and the amplitude equations (4.10) then reduce to the
following system of real equations:

oo
c(kh)Dp =Y {K(k, k") Dy Dy — K(k, =k ) D Dy}, (k=1,2,--).  (5.1)
k'=1

Correspondingly, the total energy has the reduced expression

G =4\ {— STW®EDE a0 Y. ST WP W k)DRDy kD } . (5.2)
k=0 k/=—o0c0 k=—

Simple differentiations then yield

189G
463)\% 8Dk

=200 (®k)Dy + 20 Y w® (k1) DDy + 0 (<, 1) DrDyyr,  (53)

r=1

1 G _ (1) ®) 3)
463\2  ODOD; =20 (k) 4+ Ao {[w (k,r) = w ™ (=k, 1 — k)| D—y

o (—k,7) = w® (b k4 D] D } (54)
where
Wk, r) =@ k) + 0@ (=1, —k) + w(2)(r —k,r)
@ (k=) =P (r k) =@ (k —r, 7).

Setting the right hand side of (5.3) equal to zero, we obtain the same amplitude equations (5.1);
this provides a useful check from which we also obtain the connection w® (k) = —Xokc(kh). The
Hessian matrix of G, formed from the second-order derivatives above, will be used to assess the
stability of the solutions obtained. A solution is said to be unstable if this matrix has at least one
negative eigenvalue, and be stable if all the eigenvalues are positive (see, e.g., Thompson and
Hunt 1973).

We also observe that the kernel KC(k, k') in (5.1) has the property that K(ak, ak’) = aK(k, k') for
any positive scalar a. Thus, if we obtain a solution such that the only non-zero Fourier coefficients
are Dy, Dok, D3k, ... with K a fixed integer, then the amplitude equations (5.1) may be replaced
by

C(mKh)DKm = Z {KIC(m, m/)DKm/ DKmem’ — KlC(m, —m/)DKm/ DKm+Km’ } , (55)
m
where m =1,2,.... It then follows that when h is replaced by Kh, there is a solution in which
the m-th Fourier coefficient is given by K D, (and, in particular, the 1st Fourier coefficient is
non-zero). In fact it can be shown that these two solutions correspond to the same solution in
terms of the unscaled variables, and so in our interpretation of numerical results solutions with
Dy =D3=-.--=Dg_; =0 for some integer K are not counted as independent solutions.

(a) Numerical procedure for solving the amplitude equations

We first observe that the infinite system (5.1) depends on rg and Ag through the combination
r0/Ao. We shall therefore take rg to be £1 and only vary Ag in our numerical calculations, bearing
in mind that increasing Ao, for instance, is equivalent to decreasing 7o. Once a solution for Dy, is

found, various quantities can be evaluated. For instance, the vertical displacement uél) is given

by
oo
ugl) (z1,22) =4X0 Z D (€172 + £9e™52%2) cos may.
m=1
However, we find it more convenient to interpret our numerical results by using the coating
thickness h* in B, instead of 1/k*, as the lengthscale. This is adopted in the rest of this paper,
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and we then have

o0
uél) (z1,22) = % Z D, (flemhz2 + erthng) cosmhzx, (5.6)
m=1
where we recall that h = k*h* denotes the non-dimensional fundamental mode number (i.e. mode
number per unit film thickness).
We first replace the infinite system (5.1) by the truncated system

M
(k) Dy = >~ {K (ks k') Dy Dy = K(ky =K ) Dy Dy} k=1,2,..., M, (57)
k'=0
where M is a suitably chosen positive integer. This truncated system is augmented with the
assumption

Dyy1=Dpyz=---=0,

so that (5.7) is a finite system of M quadratic equations with M/ unknowns.
We start with M = 2, in which case the two quadratic equations can be solved explicitly to give

— K21[K12 + ICH]]D% =c(h)c(2h), D= ICng%/c(%)7 (5.8)

where here and hereafter we use the short notation Ko1 =K(2,1), K17 =K(1,—1), and so on.
Starting from each solution given by (5.8), we increase the truncation number M in unit steps. At
each step, M = N + 1 say, the solution from the previous step together with Dy ; =01is used as
the initial guess in the solution of N + 1 quadratic equations. If the convergence criterion

N+1 N
1- > D/ Di|<tol, (5.9)
k=1 k=1

is satisfied, the calculation is stopped and the corresponding solution is taken as a valid solution.
The tolerance tol in (5.9) is usually set to be between 10~* and 1075, I the above criterion is not
satisfied for NV as large as 300, we consider that the procedure does not produce a valid solution.
The procedure usually has one of four outcomes: (i) the trivial solution, (ii) a nicely converged
non-trivial solution, (ii) a situation where convergence seems possible but an infinite number of
modes would be needed (the case of a static shock), and (iv) a situation where convergence is
impossible because the Fourier coefficients do not decay at all. This procedure is validated using

a simple problem in Appendix B.
We may also start with M = 3, in which case the three simultaneous equations can be reduced

to
2 Dac(2h)c(3)

D = bl
! c(3h)Ka1 — Da(Ko1 + K23) (K31 + K32)

Dae D1 D2 (K31 + K32)
3 c(3h) ’

(5.10)

D3 (K15 + K13)(Ka1 + Ka2) + D2c(3h)Kq1 + ¢(3h) K12 + c(h)e(3h) =0.

The last equation is a quadratic equation and so the reduced system has up to four solutions.
The coefficient of D7 in (5.8); is found to be a positive constant. It then follows that the
associated solutions are real only if c(h)c(2h) > 0, that is,
[Ao —roa1(h)] [Ao —roa1(2h)] = 0. (5.11)
Similarly, the roots of the quadratic equation (5.10)3 are real if c(3h)[c(3h) + 5.02969¢(h)] > 0, that
is
Ao — roa1 (3h)] [6.02969\0 — ro{a1(3h) + 5.02969a; (h)}] > 0. (5.12)

In Fig. 2 we have shown the domains where (5.11) and (5.12) are satisfied, respectively.
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Figure 2. Domains where the truncated system at M = 2 or 3 have real solutions. The shaded area is where (5.11) is
satisfied, and the area above the dashed line is where (5.12) is satisfied. There is also another curve below which (5.12)
is satisfied but it is not shown for the sake of clarity. The solid dot in both plots has coordinates (kcr, r0a1max), and lies

at the maximum (when rg = 1) or minimum (when ro = —1) of the bifurcation curve Ag = roa1 (h).
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Figure 3. Variations of |u2(0,0)| and |uz2,11(0, 0)| with respect to 1/\¢. Dashed line: periodic solution corresponding
to h = ke, Solid line: localized solution with the two segments before and after the kink in (a) obtained with h =1/15
and h = 1/4, respectively (there is a similar kink in (b) although it cannot be seen easily). In (b) the value of |uz,11(0, 0)]
for the periodic and localized solutions become infinite when 1/ tends to 3.82 and 3.89, respectively.

(b) Numerical results

In view of the fact that the neutral case corresponds to A\g = rpai (h) and the maximum of rga (h)
is 7o@1max When rg >0 and zero when 7o < 0 (see Fig. 2), we shall discuss the following four

different cases separately:

ro =1, Ao <T0@1max;
ro=—1, Ag <0.

(i): ro=1, Ao > ro@imax; (ii):
(iii): ro=-1, Ao >0; (iv):

In cases (i) and (iii) all the modes in the Fourier expansions (4.1) are sub-critical, whereas in the
other two cases the Fourier expansions contain both super-critical and sub-critical modes.

Case (i): 79 =1, Ao > ro@imax-

This is the subcritical regime when the coating is slightly stiffer than the substrate and there exists
a critical mode number k¢ = 1.73. In this case it is found that the two starting solutions given by
(5.8) lead to two solutions which are equivalent in the sense that one is simply a translation of the
other (by ) in the x1-direction. We have also tried starting with M = 3. It is found that two of the
four solutions given by (5.10) do not lead to a convergent solution, whereas the other two lead to
the same solution as when M = 2.
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Figure 4. Profiles of uz(x1,0) and w2 1(x1,0) when h = k¢,. The three curves in each plot correspond to Ag —
a1max”0 = 0.01,0.015, 0.02, respectively, with larger values of Ao corresponding to steeper profiles.

Recalling that h denotes the non-dimensional mode number of the fundamental mode, we
first consider the case when h = kcr, which is usually the concern of a weakly nonlinear analysis.
An unmodulated sinusoidal solution is found for each value of \g less than a certain cut-off
value (to be defined shortly). The dashed line in Fig. 3(a) shows how the amplitude of surface
elevation varies with respect to 1/\g (we have used 1/Ag because it increases with the load),
where here and hereafter we use u2 to denote uél) to simplify notation. Two main features emerge
from our calculations. Firstly, as g is gradually increased, more and more modes are needed to
obtain a convergent solution, resulting in a steeper and steeper surface profile. The evolution is
terminated with the formation of a static shock in which u2 1 (z1, 0) becomes discontinuous; see
Fig. 4. To show this behavior more clearly, we have shown in Fig. 3(b) the variation of |u2,11(0, 0)]
with respect to 1/Ag. It is found that this gradient tends to infinity as 1/Ag approaches a cut-
off value approximately equal to 3.82. Secondly, although as 1/X¢ is decreased higher modes
contribute to the steepening of the surface elevation profile, they have very little effect on the
amplitude |uz(0, 0)|: this quantity when calculated using the three-mode approximation (5.10) is
almost inextinguishable from the dashed curve presented in Fig. 3(a).

For values of h in a small neighborhood of ker, other periodic solutions are also found. Two
such solutions corresponding to h/kcr =1.15,0.8 are shown in Fig. 5 (the top two plots). To
demonstrate its unmodulated periodic nature, we have shown each profile over the interval
[—7/h,3mw/h] which is twice the period. The rest of the plots in this figure shows how the
periodic solution changes character as h is reduced further: it gradually evolves into a modulated
solution in which the fast oscillation seems to have a mode number equal to ke whereas the
slow modulation has a mode number equal to k. With regard to the two profiles corresponding
to h/ker =0.2,0.1, which typify those obtained with other small values of A, it is found that the
central part of each profile over one period, e.g. the part consisting of the two main peaks and
the single trough at x1 =0, is almost identical to each other (i.e. it is almost independent of the
value of h). The main difference between the two profiles is that the oscillatory tail is much longer
when h/ker is smaller. In the limit h/ker — 0, the tail becomes infinitely long and the modulated
periodic solution becomes a fully localized solution. Therefore, as far as the calculation of u2 (0, 0)
and u2,11(0, 0) for the localized solution is concerned, we may use the profile obtained with any
h that is small enough. It is found, however, that the maximum £ that can be used to serve this
purpose depends on the value of Ag: it decreases as A9 — a1max70 decreases. For instance, taking
h =1/4 will produce a modulated periodic solution when \g — a1max7o is greater than 0.0025, but
it only returns an unmodulated periodic solution when Ag — a1maxro becomes less than 0.0025.
This is why the solid curves in Fig. 3 are obtained by taking two different values of h: 1/10 for
the left segment and 1/4 for the right segment. There is a noticeable kink at the joint in Fig. 3(a),
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demonstrating the fact that the two solutions are not exactly identical, but both provide a good
approximation for the localized solution.

In trying to understand what solutions are returned when the numerical procedure does not
return a modulated periodic solution, we consider small values of A\g — @1maxro and find the
following “mode-locking”behaviour when h is not small enough: the D;’s are non-zero only for
j > K and j an integer multiple of K, where the integer K depends on the value of h. For instance,
when \g — @1max70 = 0.001, we have the following correspondence:

1 1 1 1 1 1

(h7 K) = (17 2)7 (57 3)7 (57 5)7 (Z’ 7)7 (57 8)’ (67 10)’ (?7 12)' (513)
It is immediately observed that the product Kh always lies between 1 and 2, the two integers
bracketing the critical value 1.73 of h. In view of the comments made below (5.5), these solutions
are the same solutions as when h is replaced by hK and the fundamental mode is non-zero.
Thus, when g is sufficiently close to its critical value a1max70, the fundamental mode selected
in the solutions is always the mode nearest to the critical mode. The associated surface profile
in each case is unmodulated and convergence is achieved with only a few modes. The mode-
locking exhibited in (5.13) stops when h is approximately smaller than 1/8, in which case all the
subharmonic modes, relative to the critical mode, are non-zero, and they interact constructively to
produce a modulated periodic solution. This change of behavior can be explained by the fact that
as Ao approaches aimaxro, the modulation takes place over an increasingly greater and greater
lengthscale and this can only be achieved by decreasing the fundamental mode number.

As we may expect, the longer the tail of the modulated solution is, the smaller the averaged
energy over one period is. This is also verified numerically using the expression (5.2). Thus, the
limiting localized solution has the smallest energy among all modulated periodic solutions. For
each modulated periodic solution obtained, the associated Hessian matrix of the energy function
G has exactly one negative eigenvalue. If we order the eigenvalues w; (:=1,2,---) such that
|wi| < |wz| < |ws| < --- and denote the negative eigenvalue by wy;, then the index N increases as
h decreases. For instance, for h=2,1,1/2,1/5,1/10,1/15, the N is equal to 1, 2, 3, 8,18, and 27,
respectively, and with the tolerance in (5.9) set to be 10~* convergence of solution is achieved
with 12,26, 34, 72,128 and 180 modes, respectively. It has also been verified that the index N is
independent of the tolerance set and hence of the number of modes included.

As in the case of periodic solutions with h = k., the surface elevation profile also steepens up
as \g increases; see Fig. 6. In this case the value of u2 11(0,0) tends to infinity when 1/Xq tends to
3.89, slightly higher than the corresponding value for periodic solutions; see Fig. 3(b).

We finally observe that the fully localized solution is similar to the localized solution predicted
by the simple model of a linearly elastic beam on a nonlinearly elastic softening foundation;
see e.g. Potier-Ferry (1987) and Hunt (2006). In fact that we believe that the localized solution
determined here can be matched with the localized solution determined in Cai and Fu (1999)
under appropriate limits.

Case (ii): 70 =1, A\g < @1max70-

In this case the conditions (5.11) and (5.12) are both satisfied only for values of i in some intervals;
see Fig. 2. For instance, when A\g — a1maxr0 = —0.001, these intervals are

(0,0.5383), (0.6172,0.8074), (0.9258,1.6148), (1.8517,00),

and some solutions obtained have the following characteristics:

1 1 1 4 1 1 1 1
(h7 K) - (2’ 1)7 (17 2)7 (57 3)7 (gﬁ 0)7 (Zv 0)7 (57 2)7 (7 8)7 (Tov 16)’ (B7 24)7 (%’ 40)7
where the K has the same meaning as in (5.13) and K =0 signifies the fact that only the zero
solution is obtained. All of the non-zero solutions are unmodulated periodic solutions, and in
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Figure 5. Profiles of surface vertical displacement when Ao = a1max70 + 0.01 and when the fundamental mode number
h take increasingly small values.

Figure 6. Localized solutions of ua(x1,0) and w2 1(x1,0) obtained with h=1/4. Only the profiles for z; €
[=m/(3h),7/(3h)] are shown in order to show more details. The three curves in each plot correspond to Ao —
a1max”0 = 0.005,0.01, 0.015, respectively, with larger values of Ao corresponding to steeper profiles.

view of the comments made below (5.5) these are the same solutions as the ones when h is

10000000 V 208 4 0014 Buo-BuysiandAieioseforeds



U(x1,0) U2,01§X1,0)

0.2

0.1

Figure 7. Typical solutions when ro = —1, h=1/10, with the four curves in each figure corresponding to Ao =
0.001,0.005,0.01, 0.012, respectively. In each plot higher values of Ag correspond to steeper profiles

replaced by the product Kh. Thus, only solutions with mode numbers close to kcr are selected.
In particular, no non-trivial solutions are obtained when h is larger than 2.5, and in contrast with
the previous case no modulated periodic solutions are obtained no matter how small the value of
his.

Case (iii): 79 =—1, A\g >0.

We first observe that when rg = —1 the bifurcation value of \g, namely rqa1(h), approaches zero
from below as kh — co. In this case unmodulated periodic solution can be found when Ag and h
are both small enough, but modulated periodic solutions are never found. For each unmodulated
periodic solution found, the associated Hessian matrix of G has one negative eigenvalue, and so
the solution is unstable. In Fig. 7 we have shown a typical solution corresponding to rg = —1,h =
1/10 with increasingly larger values of Ao = 0.001,0.005,0.01,0.012. It is observed that as Ag is
increased, the solution has larger and larger amplitude but we believe that it does not tend to a
static shock based on two reasons. Firstly, the gradient of surface elevation does increase but it
does not change significantly as A is increased. Secondly, as A\ becomes large enough, it becomes
impossible to obtain a convergent solution since the solution becomes increasingly more and more
sensitive to the tolerance imposed and the truncation number. In Fig. 8 we have shown the Fourier
amplitude Dy, against k when three typical truncation numbers are used. It is found that although
Dy, for large values of k are sufficiently small to have a negligible effect on the profile of ua(x1,0),
they do not decay as k increases and make w2 1(z1,0) and u2 11(x1,0) diverge. This divergent
behaviour becomes more and more pronounced (through increase in the amplitudes of Dy, for
large k) as Ao or h is increased. The amplitudes of Dy, for large k may even grow with respect
to k when A\g or h is large enough. Reliable convergent solutions could be obtained only for h
approximately smaller than 1/8 no matter how small Ag is. Thus, in this case only (unmodulated)
periodic solutions with wavelengths much larger than the coating thickness are obtained.

Case (iv): g = —1, Ao <O.

Finally, we consider the case when ro <0 and )Xo is reduced from zero. As in Case (ii) the
conditions (5.11) and (5.12) are both satisfied only for values of h in some intervals; see Fig. 2.
For instance, when Ag = —0.001, these intervals are (0,0.0198) and (0.0396, 4.0660). No solutions
are found for values of h in the first interval. For values of h in the second interval, unmodulated
periodic solutions are only found for i between 0.0396 and 0.14, but modulated periodic solutions
are never found. For h > 0.14 and no matter how small |X\g| is, the procedure produces either a
trivial solution or a divergent solution that has the same behaviour as in Fig. 8. For each choice
of h for which an unmodulated periodic solution could be found when )\ is reduced from zero,
the solution can be viewed as a continuation of the solution found in the previous case at the

10000000 V 208 4 0014 Buo-BuysiandAieioseforeds



Dy Dy

0.0010
0.0004 -

0.0005 -
0.0002 -

| -0.0005 [

-0.0002 -

Figure 8. Variation of Fourier amplitudes Dy, with respect to k when rg = —1, h =1/10, Ao = 0.012. Left: truncation
number M = 150 (dashed line) and M = 250 (solid line). Right: truncation number M = 350.

same value of h. The solution can be continued all the way to when the equality in (5.11) holds,
in which case the solution has zero amplitude.

6. Conclusion

In this paper we have investigated the post-buckling behavior of a coated elastic half-space in
which the coating and substrate have almost identical properties. This parameter regime has
previously not been examined in the literature, either numerically or analytically. A theoretical
analysis is much desired since this problem would be very hard to study by only using numerical
tools, such as finite elements. In fact, since the bifurcation in this parameter regime is subcritical,
the post-buckling behaviour would be sensitive to imperfections. Such imperfection sensitive
would in turn introduce major issues in the characterization and continuation of post-buckling
solutions. Thus, our semi-analytical results and the phase map of the solution behavior over
the entire parameter space would provide a useful guide in any future analytical or numerical
investigations.

When the coating and half-space have almost identical properties, the coated half-space
becomes “almost non-dispersive”in the sense that all the modes are near-critical so that solvability
conditions need to be imposed at second order of a successive asymptotic analysis, whilst for
"dispersive" problems involving a single critical mode the solvability is imposed at third order
to obtain the amplitude/evolution equation. We have adopted the approach of using Fourier
series expansion of the incremental displacement and pressure fields. The mode number of the
fundamental mode is not fixed to be the critical mode number and is allowed to be arbitrary. If the
fundamental mode number were small and all subharmonics (relative to the critical mode) were
found to be non-zero, we would obtain modulated or localized solutions. Unmodulated periodic
solutions would be obtained if all the subharmonics were found to be zero. Both situations did
arise in our numerical calculations.

Our numerical calculations divide the near-critical parameter space into four regimes. The
most interesting regime seems to be where the coating is slightly stiffer and the uni-axial
stretch is slightly above its critical value, which corresponds to the case (i) in Section 5(b).
In this case there is a distinguished critical mode given by kh =1.73 although all the other
modes can interact resonantly. This is also the regime where our numerical calculation met least
difficulties because each solution can be followed in a well-understood manner, and divergence
or convergence is always clear-cut. As a consequence, we have been able to understand this
regime completely. Two main results may be highlighted. Firstly, among all solutions possible,
the localized solution always has the least energy. Secondly, under the assumptions made, our
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solution for the displacement field is of the form

r—1

r
u = E)\OU({L'], T2, )\7‘3) = ()\ — ACTO)U(Zvl,xQ; m
CT

), (6.1)

that is, the amplitude is proportional to A — Ao and the Fourier coefficients depend on the
loading parameter A and material constant r through the combination ro/Ag. It is found that
as 79 /Ag approaches 3.82, or equivalently,

r—1
A= AcrO + 382" (62)

the solution seems to develop into a static shock solution where deformation gradient suffers a
discontinuity. We may conjecture that the appearance of such a discontinuity is a precursor to
the immediate development of a fold. It would be of much interest to check this condition in a
fully numerical simulation and investigate how it is modified by imperfections. We observe that
although not pursued here, modal imperfections may be incorporated in the current framework
using the same approach as in Fu (1999) and Cao and Hutchinson (2012a).

We further note that the localized solution reported is the limit of modulated periodic solutions
with increasingly longer tails. This limit is achieved when the fundamental mode number tends to
zero. For each such nearly-localized solution, which is typically formed from 200 modes, the total
energy G is a cubic function of the Fourier amplitudes, and its Hessian matrix always has a single
negative eigenvalue, which indicates that the solution is unstable. However, it is observed that as
his decreased, the negative eigenvalue is associated with an increasingly higher and higher mode.
It seems that in the limit when the fundamental mode number tends to zero, the single negative
eigenvalue would be associated with a mode with an infinite mode number. In the present context
we have not been able to deduce stability or instability for the localized solutions. However, it
might be possible to draw an analogy with perhaps a similar situation, namely the bifurcation of
a pressurized long membrane tube into a localized bulge (see, e.g., Fu and Ilichev 2014). In that
case although the localized bulging configuration is unstable in its early stage of development, it
does eventually lead to a stable bulging state, and analysis of the intermediate (unstable) bulging
configurations is an essential part in the understanding of the whole inflation process.
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Appendix A: Simplified expression for the kernel lC(p, q) given by (4.12)

& (53 - 1) lql [p — ql

K(p,q) = p

(fi+ fo+ fa+ fa+ f5+ fo),
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where

ho= 2¢s565 (sgn(p — q) +sgn(p))®  s3&3(sgn(p — q) — sgn(q))*
lg| (s2 [p — q| + s2 [p| + lal) s2(lp — ql + lql) + |p|
= 196 (s2sgn(p—q) +sgn()” €162 (sgn(q) — sasen(p — )
lg| (Ip — gl + s2 |p| + lal) Ip — q| + Ip| + s2 g
6162 (20— lal)sgn(p — 0)* + 4gs2sgn(p)sgn(p — q) + 2as3sgn(p)” )
fz = ,
lgl (s2|p — ql + [p| + lql)
, G (252 lalsgn(a)sgn(p — a) — 53 lal sgn(a)?)
v lal (s2|p — al + [pl + [a]) ’
N & ((2q — |ql)sgn(p — q)* + 2gsgn(p)* + 4gsgn(p)sgn(p — q))
o lal (Ip — al + [p] + [a]) ’
f & (2 lq| sgn(q)sgn(p — q) — lq| Sgn(Q)Q)
6

lgl (I[p — gl + Ipl + lgl)

Appendix B: Validation of the numerical procedure

The procedure proposed used in Section 5(a) is validated by considering the simple equation

du 2

pral A (B1)
which have a localized solution as well as periodic solutions. The localized solution is given
explicitly by

— 3ecn2(X
u= 2sech (Qm), (B2)

and it corresponds to the homoclinic orbit passing through the point (0,0) in the phase plane.
Each closed curve enclosed by the homoclinic orbit represents a periodic solution, and the
homolinic orbit can be viewed as a periodic orbit with an infinite period.

If we expand u as a Fourier series:

oo oo
u= Y A =40+ 24 cos(aka), (B3)
k=—o0 k=1
where a is a constant characterizing the mode number of the fundamental mode, then the Fourier
coefficients satisfy the following system of quadratic equations:

o0 o0
1+a®k)Ap= > ApAp_w=A0Ar+ > Ap(Ap—p + Ap_i)- (B4)
k! =—o00 k'=1
It is verified that in the limit a — 0, the procedure reproduces the exact solution (B2) and no other
spurious solutions.

This numerical scheme proposed above has also previously been validated by considering the
more complicated equation uzzze + Puge +u — u® = 0 that has a richer family of solutions; this
equation describes the deflection of an elastic beam on a softening foundation that is subjected to
a compressive force P; see, e.g., Fu (2001).
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