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Abstract 
Social learning plays a key role in the evolution of cooperation 
in humans and other animals. It has also been shown both 
theoretically and experimentally that environmental adversity is 
also a key determinant of the evolution of cooperation among 
individuals. Here we investigate the impact of social learning 
on the evolution of cooperation in the context of a range of 
levels of environmental adversity. We used an agent-based 
simulated world of asexual individuals that communicate and 
play a probabilistic version of the Prisoner’s Dilemma game. 
We considered simulated worlds either with or without random 
spreading of the offspring and two variants of social learning, 
either copying to some extent all communication rules or 
copying fully some of the communication rules of the best 
performing neighbor individual. The results show that in the 
case of spreading of the offspring, social learning increases the 
level of cooperation and reverses the association between this 
and the level of environmental adversity, i.e. low adversity with 
social learning implies higher level of cooperation. Copying 
fully some communication rules also increases the steady-state 
level of communication complexity in the simulated agent 
communities. The results suggest that the level of cooperation 
in communities of individuals may get boosted alternately by 
highly adverse environments and by layers of social learning in 
low adversity environments. 

Introduction 
The emergence and evolution of cooperation among 
individual humans and animals is a fundamental question of 
social evolution (Axelrod, 1997). In general it is assumed that 
cooperation emerges either because of kin selection, or direct 
or indirect reciprocation, or because of some form of social 
clustering or due to the group level selection of groups with 
more cooperating individuals (Rand and Nowak, 2013). It has 
been also shown that social factors, such as enforcement of 
rule following, also contribute significantly to the evolution of 
cooperation (Sigmund et al, 2010). 
 An external factor that has critical influence on the level of 
cooperation is environmental adversity, which includes both 
the harshness of the environment (i.e. scarcity of resources) 
and the variability of the environment (i.e. the variability and 
extent of the lack of predictability of the level of available 
resources) (Andras et al, 2007; Andras et al. 2003). 
Theoretical, simulation and real world experimental results 
confirm that in general higher level of environmental 
adversity implies higher level of cooperation in communities 

of individuals existing in the presence of such environmental 
constraints (Krams et al, 2010; Spinks et al, 2000; Rand et al, 
2014; Potts and Faith, 2015).  
 Social learning in general means that individuals within a 
community adapt their behavior such that they follow 
behavioral patterns of other individuals (Flinn, 1997). The 
other individual may be chosen on various grounds, for 
example it can be the most successful individual in some pre-
defined sense or it can be the oldest neighboring individual. It 
has been suggested that social learning supports cooperation 
in communities of individuals, especially in the context of 
humans (Boyd and Richerson, 2009), however, there are also 
claims of the opposite effect in the relevant literature (Heyes, 
2013). 
 The level of cooperation can be measured directly in 
experiments (both in the case of agent-based simulations and 
in the real world). Having additional measures of correlates of 
cooperation is useful to understand better the context of the 
measured level of cooperation. One such measure is the 
communication complexity of the interactions between the 
individuals of the community (Andras, 2008). Communication 
complexity decreases with increased environmental adversity 
and this contributes to the increase in the level of cooperation 
(Andras, 2008). 
 Here we present the use of an agent-based simulation which 
implements communicating agents that play prisoner’s 
dilemma games (Axelrod, 1997) to investigate the role of 
social learning in the context of evolution of cooperation in 
communities of selfish individuals. We considered two 
variants of the simulated world, one where the offspring of the 
asexual individuals do not get dispersed widely from the 
location of their parent, and another where the offspring is 
dispersed away from the location of the parent – in general the 
simulation without dispersal of the offspring have higher 
levels of cooperation at the steady-state level than the 
simulation with offspring dispersal (Andras et al, 2003; 
Andras et al, 2006). We also considered two variants of social 
learning, in one case the learner copies to some extent the 
communication rules of the most successful neighbor, in the 
other case the learner copies fully some of the communication 
rules of the most successful neighbor. The results show that 
copying fully some communication rules increases the level of 
cooperation more than the considered alternative social 
learning method. Both social learning methods have much 
more effect if the offspring are widely dispersed. Social 



learning with full copying of some communication rules also 
reverses the association between environmental adversity and 
the level of cooperation, making the level of cooperation 
increase with the decrease of the environmental adversity. In 
addition, social learning with full copying of some 
communication rules leads to higher communication 
complexity in the simulated agent communities than the use of 
the other social learning method or simulations without any 
social learning. The results suggest that the level of 
cooperation in communities of individuals may get boosted 
alternately by highly adverse environments and by layers of 
social learning in low adversity environments. 
 The rest of the paper is structured as follows. First we 
review briefly the relevant results from the literature. Next we 
provide a description of the agent-based simulation that we 
used. This is followed by the presentation of the detailed 
results. Finally the paper is closed by the discussion and 
conclusions section. 

Background 
There are several theories about the mechanisms behind the 
emergence and evolution of cooperation in communities of 
selfish individuals. Kin selection assumes that related 
individuals recognize each other on the basis of their 
similarity and the likelihood of their cooperation with their kin 
is high in order to support the success and spreading of the kin 
(Rand and Nowak, 2013). Direct reciprocity assumes that 
individuals are likely to reciprocate the cooperative help 
received from others and expect further reciprocation of 
cooperation by others who benefit from this (Rand and 
Nowak, 2013). Indirect reciprocity relies on the assumption 
that individuals observe the behavior of other individuals and 
they are more likely to cooperate with those who are seen to 
cooperate with others (Rand and Nowak, 2013). Group 
selection based mechanisms assume that individuals belonging 
to groups characterized by higher level of cooperation are 
more likely to survive and have offspring because their group 
has a better chance of survival as a group due to the benefits 
from the high level of cooperation within the group (Rand and 
Nowak, 2013). Other models rely on emergent population 
structure (e.g. spatial constraints) that drive cooperators 
together and exclude non-cooperators, giving in such way an 
advantage to the emergent communities of cooperators over 
other emergent communities not dominated by cooperators 
(Rand and Nowak, 2013). 
 Environmental adversity is an important determinant of the 
emergence and evolution of cooperation (Andras et al, 2007; 
Andras et al, 2003). Theoretical analysis shows that higher 
environmental adversity (harsher environment or more 
variable environment) implies higher level of cooperation 
among individuals in communities that survive in high 
adversity environment (Andras et al, 2007; Andras et al, 
2003). Experimental results about a range of animals, humans 
and agent-based simulation results confirm this theoretical 
result, showing that indeed, exposure to higher predation risk 
or higher variability of environmental resources or risks lead 
to higher frequency of cooperative behavior between 
individuals (Krams et al, 2010; Spinks et al, 2000; Rand et al, 
2014). 

 Theoretical and agent-based simulation analysis of the 
environmental risk conceptualized as the variance of the 
available resources shows that the experienced subjective risk 
is always bigger than the objective risk and the difference is 
bigger in harsher environments (Andras et al, 2007). It has 
been also shown that the effective risk after taking into 
account the effect of cooperation is always smaller than the 
subjective risk and that the effective risk is practically stable 
across a range of subjective risk levels and this stable effective 
risk is slightly increasing with the harshness of the 
environment (Andras et al, 2006). This implies that higher 
subjective risk perceived by individuals triggers more 
cooperation in order to bring down the level of the effective 
risk to the stable level of this. 
 In the context of communicating individuals who negotiate 
before making the decision about cooperation the complexity 
of the communication language that they use contributes to the 
overall environmental risk. It has been shown through agent-
based simulation studies that indeed communication 
complexity is lower in the case of higher external 
environmental risk (Andras, 2008). Note that the language 
complexity is measured in terms of the variability of the 
communication rules and not as the length of communication 
sequences preceding the decision on cooperation. This result 
implies that the communication complexity measure is a 
useful correlate of the extent of reduction of the effective risk 
through reduction of the unreliability of communications 
between individuals. 
 Social learning plays a key role in organizing the social role 
of individuals in the context of their social environment 
provided by their community (Flinn, 1997). The essence of 
social learning is the copying or imitating the behavior of one 
individual by another individual. There are several 
mechanisms of social learning, some being context-dependent 
others being content-dependent, some are oriented towards 
specific individuals (e.g. richest, most successful, oldest, most 
similar) others are driven by frequency of behaviors (e.g. most 
frequent is copied) or by the state of individuals (e.g. 
experiencing high dissatisfaction) (Rendell et al, 2010). Social 
learning may work by copying a fully or partially a whole 
sequence of consecutive behaviors or by aiming to emulate the 
outcome of a sequence of behaviors, or by some intermediate 
variant of behavioral copying (Rendell et al, 2010). Social 
learning may also be supported by enforcement of rules in 
various forms of punishment applied to individuals who do 
not conform to the rules (Sigmund et al, 2010). 

Agent-based simulations have been used to study various 
aspects of social learning (e.g. choice of social learning 
mechanisms) (Nakahashi et al, 2012; Seltzer and Smirnov, 
2015; Molleman et al, 2013). Such simulations usually 
implement a small range of alternative social learning 
mechanisms and analyze their impact on the behavior of the 
simulated agent community. 
 The role of social learning in the context of emergence and 
evolution of cooperation has been considered in a number of 
settings. In general it is suggested that social learning is a key 
contributor to the evolution of cooperation among humans and 
possibly also among other animals (Boyd and Richerson, 
2009; Rendell et al, 2010; Chudek et al, 2013) It has been 
shown that in simulated social networks imitation of socially 
distant individuals increase the level of cooperation within the 



agent community (Seltzer and Smirnov, 2015). Other agent-
based simulation studies show that certain forms of social 
learning (e.g. conformism) reduces the level of cooperation in 
simulated communities (Molleman et al, 2013; Burton et al, 
2015). There are also more theoretical / conceptual 
investigations that question the level of contribution of social 
learning to the emergence and evolution of cooperation among 
humans (Heyes, 2013). 

Simulated Agent Communities 
The simulated world of agents is placed in a two dimensional 
space arranged as a torus in both dimensions and having the 
size of 1000 in both dimensions. The agents move randomly 
in this space in each turn (up to 5 units in both dimensions). 
 Each simulation runs for 400 time turns. In each turn each 
agent picks randomly another agent from its spatial 
neighborhood to interact with. An agent is allowed to interact 
with only one other agent at any time and some agent may 
stay without interaction partner in some of the time turns.  
 The agents own resources and they spend these to survive. 
If the resource amount of an agent goes below zero the agent 
dies. The agents use their current level of resources to set their 
level of resources in the next turn. They may also play a 
resource generation game with their interaction partner. 
 The agents interact using a communication language 
consisting of the symbols: ‘0’,’s’,’i’,’y’,’n’,’h’ and ‘t’. The 
meaning of the communication symbols are as follows: ‘0’ – 
no intention of communication, ‘s’ – start of communication, 
‘i’ – maintaining the communication, ‘y’ – indication of the 
willingness to engage into resource sharing, ‘n’ – indication of 
no further interest in communication, ‘h’ – effective sharing of 
the resources, ‘t’ – not sharing the resources after an 
indication of willingness to engage into sharing. The last two 
symbols, ‘h’ and ‘t’ effectively mean the resource-sharing or 
no-resource-sharing actions of the agents. The generation of 
communication symbols by agents is determined by 
probabilistic communication rules of the agents. These rules 
are expressed as follows 

L: 
Ucurrent,U’current→p1Unew,1; → p2Unew,2;…; → pkUnew,k 

(1)

where Ucurrent is the current communication symbol produced 
by the agent, U’current is the current communication symbol 
produced by the communication partner agent, Unew,j is the j-th 
possible communication symbol that may be produced by the 
agent following the previous production of the symbol Ucurrent 
and the production of the symbol U’current by the 
communication partner agent, and pi is the probability of 
producing Unew,i the symbol. Naturally we have that p1+ 
p2+…+ pk = 1. For example, a communication rule can be the 
following 

L: 
i,i’→0.5 i; →0.2 y; →0.3 n 

(2) 

which means that after producing the symbol ‘i’ and receiving 
the symbol ‘i’ from the communication partner, with 0.5 
probability the agent will produce the symbol ‘i’, with 0.2 
probability the symbol ‘y’ and with 0.3 probability the symbol 
‘n’. 

 An example of a sequence of communications between two 
agents is: ‘s1, s2, i1, i2, i1, i2, y1, i2, y1, n2’, where the indices are 
the identifiers of the two agents. If the communication process 
between two agents carries on for too long without reaching 
the production of the action symbols ‘t’ or ‘h’ (the length limit 
was set to 20 symbols), the communication terminates as it is 
considered too long for the time turn. The communication 
between two agents may also terminate if either of them starts 
by producing the ‘0’ symbol, if one of them produces the ‘n’ 
symbol, or if they both produce a ‘t’ or ‘h’ symbol. In the 
latter case the agents engage in a prisoners’ dilemma game 
where the outcome of the game depends on the actions of the 
involved agents, i.e. they cooperate if both of them produce 
the symbol ‘h’ otherwise one of them or both of them tries to 
cheat (by producing the symbol ‘t’).  
 When the agents enter the playing of the prisoners’ 
dilemma game they jointly invest their available resources to 
generate new resources. The overall payoff of the game is the 
difference between the sum of the amounts of new resources 
that each agent would have without entering the game and the 
amount of resources that can be generated by using the 
combined current resources of the agents. If an agent cheats  
while the interaction partner is willing to cooperate the 
cheating agent takes the full payoff and the other agent gets no 
extra resources in addition to what it can generate by itself 
with its own available resources. If they both decide to 
cooperate they share the full payoff equally and this gets 
added to the amount of resources that they would generate 
individually. If both agents decide to try to cheat no extra 
resource is allocated to either of the agents. 
 The generation of effective new resources is realized in a 
probabilistic manner. The actual value is picked from a 
uniform distribution where the mean value of the distribution 
is given by the calculated value of new resources and the half-
width (equivalent of variance) of the distribution is given by 
the environmental risk level (σ) that characterizes the 
simulated world of the agents. Low environmental risk (low 
variance) means than the actual value of the new resource is 
close to the calculated mean value of the resource value 
distribution, while high environmental risk (high variance) 
means that the actual value may differ significantly from the 
calculated mean value (can be also much smaller and much 
larger). 
 The agents have a memory of their most recent interactions 
with other agents (last ten interacting agents). The memories 
record the outcome of the interactions with these other agents 
and depending on the experience of the agent the probability 
of the resource sharing action of the agent is altered – it gets 
more likely to cooperate again with interaction partners who 
cooperated previously and less likely with those who cheated 
previously (i.e. the probabilities of the rule components 
y,y’→p t and y,y’→q h change – e.g. the latter gets bigger if the 
sharing gets more likely according to the past experience). 
 The agents engage in social learning. They select the 
individual with the highest amount of resources in their 
neighborhood as target of imitation – the neighborhood  
consists of the 10 closest other agents. Two kinds of social 
learning approaches have been implemented. In one case the 
agents copy to some extent the communication behavior of the 
imitated agent by setting their communication rule 



probabilities similar to the matching probabilities of the 
imitated agent. This is implemented as 

prevised(Ucurrent,U’current,Unew) = (1-η) ⋅ poriginal 
(Ucurrent,U’current,Unew)+ η⋅ pimitated 

(Ucurrent,U’current,Unew) 

(3)

where p(Ucurrent,U’current,Unew) is the probability of generating 
the symbol Unew by the agent after previously having 
generated the symbol Ucurrent and having received the symbol 
U’current from the communication partner, and η is the extent of 
the fidelity of the imitation. In the second social learning 
approach the agent copies fully some of the communication 
behaviors of the imitated agent. In this case η, the extent of 
the fidelity of the imitation, is the probability of copying for 
all communication rules L (i.e. includes the copying of all 
related probabilities). 
 The agents have a limited life span (60 time turns at most in 
the simulations that are reported here – the agent start their 
life at a randomly set starting age that is at most 20). When 
they reach the end of their life they reproduce asexually, by 
generating potentially mutated offspring which inherit the 
communication rules with possible small changes to the 
relevant probabilities. The number of offspring depends on the 
resources available to the agent (ρ) at the time of death and it 
is determined by the equation 

n = [β ⋅ ((ρ – ρmean)/ ρstdev) + γ] (4)
where ρmean and ρstdev are the mean and standard deviation of 
the resource across the whole agent community at the time 
when the offspring is generated and β and γ are parameters, [.] 
is the integer part function (β =1.5, γ = 1.5). We also capped 
the number of offspring, i.e. if n > nmax then the number of 
offspring is nmax (nmax = 15). If the above calculation gives n < 
1 then the agent has no offspring. 
 The offspring of the agent may be spread closely around 
the location of their parent or may get widely dispersed in the 
full extent of the two dimensional world in which the agents 
exist. The first offspring location option may create clumps of 
cooperating agents, while the second option prevents this. We 
implemented both options of placing of the offspring of dying 
agents. 
 More details about the simulated agent world described 
above can be found in Andras et al (2003), Andras et al (2006) 
and Andras (2008). The code developed in Delphi for the 
implementation of the simulated agent worlds is available on 
request from the author. 

Results and Analysis 
We considered the following six simulation scenarios: (I) 
partial copying of all rules without wide dispersion of the 
offspring; (II) partial copying of all rules with wide dispersion 
of the offspring; (III) full copying of some rules without wide 
dispersion of the offspring; (IV) full copying of some rules 
with wide dispersion of the offspring; (V) no social learning 
and without wide dispersion of offspring; (VI) no social 
learning and with wide dispersion of offspring. For all 
scenarios with social learning we considered two variants with 
low and high levels of copying (η), i.e., η = 0.2 and η = 0.8. 
We ran 20 simulations for five levels of environmental risk (σ 
= 0.1, 0.3, 0.5, 0.7, 0.9) for each variant of the simulation 

Figure 1. The evolution of the level of cooperation and the 
level of language complexity for agent communities without 
wide dispersion of offspring and social learning by partial 

copying of all language rules (scenario I): A) level of 
cooperation with η = 0.2; B) level of cooperation with η = 

0.8; C) level of language complexity with η = 0.2; D) level of 
language complexity with η = 0.8; where η is the level of 

copying. 

scenarios. All data shown in the figures are averages of 20 
simulation runs, the standard deviations are small and are not 
shown to not clutter the figures. 

In the case of scenarios without wide dispersion of 
offspring the starting size of the agent population is 1,800, 
while in the case of scenarios with wide dispersion of 
offspring the populations have 7,500 individuals at start. In 
scenarios with wide dispersal of the offspring the likelihood 
that an agent dies without offspring is higher than in scenarios 
with closely located offspring. Thus in scenarios with wide 
dispersal of the offspring the likelihood that a smaller agent 
population goes extinct is relatively high. For this reason the 
population size was increased in these scenarios. Simulations 
with larger population sizes take more time to run but do not 
influence the nature of the results presented here. 
 We measured the level of cooperation (c) by calculating the 
percentage of agents that engage in a cooperation interaction 
(i.e. both agents communicate the symbol ‘h’ at the end of 
their interaction) among all agents in the current agent 
population.  

We also measured the complexity of the agent language. 
For this purpose we considered all language rules Lr, r = 
1,…,R (in the presented agent world simulations we had R = 2 
language rules) and all corresponding probabilities pj,r, j = 
1,…,kr and calculated the variance of the values for each of 
where K = Σr=1,R kr. This language complexity measure is 
inspired by the concept of Kolmogorov complexity (Li and 



 
Figure 2. The evolution of the level of cooperation and the 

level of language complexity for agent communities without 
wide dispersion of offspring and social learning by full 

copying of some language rules (scenario II): A) level of 
cooperation with η = 0.2; B) level of cooperation with η = 

0.8; C) level of language complexity with η = 0.2; D) level of 
language complexity with η = 0.8; where η is the level of 

copying. 
Vitanyi, 1997) in the sense that more variable application of 
the language rules (higher variance of the corresponding  
probability values) requires a longer description of the 
language than the description of a language with the same 
number of rules but less variable application of the rules.  
 We expect that allowing the agents to use social learning 
increases the steady-state level (i.e. after many time turns, 
when this level gets stabilized) of cooperation in agent 
communities due to the copying of successful neighboring 
agents who are expected to be the ones that often cooperate. It 
is also expected that social learning will reduce the 
complexity of the language across the agent community, again 
due to the copying of language rules between agents. 
 First we considered the scenarios without wide dispersion 
of the offspring of the agents – scenarios (I), (III) and for 
reference also scenario (V). For both variants of social 
learning we analyzed the evolution of the level of cooperation 
and of the communication complexity for low and high levels 
of behavioral copying. The results are shown in Figures 1 and 
2. These confirm that in both cases of social learning the 
steady-state level of cooperation grows with the level of 
environmental risk similar to previously reported results 
(Andras et al, 2003; Andras et al, 2007). Also, similarly to 
previous results (Andras, 2008) the results show that the 
steady-state language complexity decreases with the 
environmental risk. 

Increased level of copying in social learning leads to 
smaller differences in terms of steady-state levels of  

Figure 3. The evolution of the level of cooperation and the 
level of language complexity for agent communities without 
wide dispersion of offspring and social learning by partial 

copying of all language rules (scenarios I and V): A) level of 
cooperation with σ = 0.3; B) level of cooperation with σ = 

0.7; C) level of language complexity with σ = 0.3; D) level of 
language complexity with σ = 0.7; where σ is the level of 

environmental risk. 
cooperation for different levels of environmental risk, for 
example the differences for σ = 0.7 and σ = 0.9 become 
statistically not significantly different for both kinds of 

Figure 4. The evolution of the level of cooperation and the 
level of language complexity for agent communities without 

wide dispersion of offspring and social learning by full 
copying of some language rules (scenarios III and V): A) level 
of cooperation with σ = 0.3; B) level of cooperation with σ = 
0.7; C) level of language complexity with σ = 0.3; D) level of 

language complexity with σ = 0.7; where σ is the level of 
environmental risk. 



 
Figure 5. The evolution of the level of cooperation and the 

level of language complexity for agent communities with wide 
dispersion of offspring and social learning by partial copying 

of all language rules (scenario II): A) level of cooperation 
with η = 0.2; B) level of cooperation with η = 0.8; C) level of 

language complexity with η = 0.2; D) level of language 
complexity with η = 0.8; where η is the level of copying. 

social learning. On the other hand, increased level of copying 
in social learning leads to increased differences between the 
steady-state levels of language complexity associated with 
different levels of environmental risk. 
 We also note that an impact of the social learning is that at 
the beginning (until over 120 time turns) the ordering of the 
language complexity levels associated with risk levels is 
reversed, i.e. low risk level implies low language complexity. 
In the absence of social learning the steady-state ordering of 
risk level associated language complexity levels is already 
established by around 80 time turns (see Figures 3 and 4). The 
time point, by which the steady-state ordering of language 
complexity levels emerges, changes with the level of copying. 
Interestingly in the case of social learning with partial copying 
of language rules, higher extent of copying implies delaying 
this time point, while in the case of social learning with full 
copying of some rules, the increase in the extent of copying 
makes this time point earlier. 
 Next we compared the levels of cooperation and language 
complexity for different extents of copying in the two kinds of 
social learning for two fixed levels of environmental risk σ = 
0.3 and σ = 0.7. The results are shown in Figures 3 and 4.  

The results indicate that social learning at small extent of 
copying does not change the level of cooperation. However, at 
lager extent of copying the impact is a statistically significant  
(t-test, p=0.05) increase in the level of cooperation. In terms 
of language complexity both kinds of social learning has a 
major effect in reducing earlier and by a considerable extent 
the level of language complexity. Interestingly this effect is 

Figure 6. The evolution of the level of cooperation and the 
level of language complexity for agent communities with wide 
dispersion of offspring and social learning by full copying of 
some language rules (scenario IV): A) level of cooperation 

with η = 0.2; B) level of cooperation with η = 0.8; C) level of 
language complexity with η = 0.2; D) level of language 

complexity with η = 0.8; where η is the level of copying. The 
blue and red-purple lines stop early in B) and D) due to the 

early growth of the simulated populations beyond the 
population size limit. 

larger at lower level of environmental risk and in the case of 
social learning by partial copying of all language rules the 
increase in the level of copying reduces the reduction effect on 
the language complexity. 

Next we considered the simulation scenarios with wide 
dispersion of the offspring – scenarios (II), (IV) and (VI) for 
reference. The wide dispersion of the offspring reduces in 
general the level of cooperation in the agent communities, but 
the ordering of the levels of steady-state cooperation 
associated with levels of environmental risk remains the same 
as in the case without wide dispersion of the offspring in the 
case of agent communities without social learning. 

For both kinds of social learning that we implemented we 
found that the steady-state level of cooperation associated 
with levels of environmental risk do not follow the ordering 
pattern found without social learning or with social learning 
but without wide dispersal of the offspring. In the cases of 
social learning with wide dispersal of the offspring lower 
environmental risk leads to higher level of cooperation – the 
difference becomes statistically significant for higher extent of 
copying in the social learning. In terms of language 
complexity again the ordering of the steady-state levels is the 
reverse of the ordering that we found for scenarios without 
wide dispersion of the offspring. Lower environmental risk 
implies higher language complexity in the case of agent 
societies with widely dispersed offspring and either form of 



 
Figure 7. The evolution of the level of cooperation and the 

level of language complexity for agent communities with wide 
dispersion of offspring and social learning by partial copying 

of all language rules (scenarios II and VI): A) level of 
cooperation with σ = 0.3; B) level of cooperation with σ = 

0.7; C) level of language complexity with σ = 0.3; D) level of 
language complexity with σ = 0.7; where σ is the level of 

environmental risk. 

social learning that we implemented. The results are shown in 
Figures 5 and 6. 

The results show that higher extent of copying in social 
learning implies an increase in the steady-state level of 
cooperation for all levels of environmental risk for both kinds 
of social learning and this effect is stronger in the case of 
social learning with full copying of some language rules. 
Similarly, higher extent of copying in social learning increases 
the effect of environmental risk on the steady-state level of 
language complexity (i.e. the distinction between steady-state 
level of language complexity for high and medium level 
environmental risk becomes clearer). Again, the effect is more 
accentuated for the social learning with full copying of some 
language rules. We also note that the steady-state level of 
language complexity is lower for all levels of environmental 
risk in the case of social learning with partial copying of all 
language rules. The evolution of language complexity shows a 
wavy nature in all cases considered here, which is likely to be 
due to a generational effect (each generation of agents lasts for 
around 60 time units). 
Further, we considered again two fixed levels of 
environmental risk (σ = 0.3 and σ = 0.7) and compared the 
corresponding levels of cooperation and language complexity 
for different extents of copying in the two kinds of social 
learning. The results are presented in Figures 7 and 8. 
 The results show that at lower level of environmental risk 
both kinds of social learning increase the level of cooperation 
relative to the case with no social learning. Notably even at 
higher levels of environmental risk, at the initial part of the 
evolution of the agent community the level of cooperation 
increases with the extent of copying in social learning. For 
both kinds of social learning, higher extent of copying leads to  

Figure 8. The evolution of the level of cooperation and the 
level of language complexity for agent communities with wide 
dispersion of offspring and social learning by full copying of 

some language rules (scenarios IV and VI): A) level of 
cooperation with σ = 0.3; B) level of cooperation with σ = 

0.7; C) level of language complexity with σ = 0.3; D) level of 
language complexity with σ = 0.7; where σ is the level of 

environmental risk. The olive-green line stops early in A) and 
C) due to the early growth of the simulated populations 

beyond the population size limit. 

higher level of cooperation at both environmental risk levels. 
In terms of language complexity, again both kinds of social 

learning lead to a significant drop in comparison with the case 
with no social learning. This effect is much larger at the lower 
level of environmental risk. Higher extent of copying in social 
learning leads to smaller steady-state language complexity at 
the lower level environmental risk, at the higher level 
environmental risk the same effect is smaller. As we already 
noted, for both kinds of social learning higher level of 
environmental risk implies higher steady-state language 
complexity. The level of language complexity is lower for the 
social learning with partial copying of all language rules than 
for the social learning with full copying of some language 
rules for both considered values of extent of copying and for 
both considered levels of environmental risk.  

Discussion and Conclusions 
Our results show that in the simulated agent communities 
social learning has more effect on the level of cooperation and 
the level of language complexity at low level environmental 
risk than at high level of environmental risk. This difference is 
more accentuated in the case of simulations with wide 
dispersal of the offspring of agents. 
 We found that low extent social learning does not increase 
the level of cooperation and in the case of high environmental 
risk this may even reduce the level of cooperation. The extent 
of social learning influences the level of language complexity 
in all cases. More social learning leads to lower language 
complexity quicker in the context of low environmental risk. 



 A very interesting result is that in the case of simulations 
with wide dispersal of the offspring adding social learning to 
the simulations reversed the ordering of levels of cooperation 
and language complexity associated with levels of 
environmental risk, compared to the case without social 
learning. There is no such effect if the offspring of the agents 
are not dispersed widely in the space where the agents live. 
 The results suggest that social learning is most impactful in 
terms of supporting cooperation and reducing language 
complexity in the context of low environmental risk 
situations. High environmental risk situations support the 
emergence of relatively high level of cooperation and low 
level of language complexity even in the absence of social 
learning (Krams et al, 2010; Andras et al, 2007; Rand et al, 
2014; Potts and Faith, 2015). Thus it is possible that animal or 
human populations develop high level of cooperation in harsh 
and risky environments without relying much on social 
learning, and these populations get to even higher level of 
cooperation and lower level of language complexity as they 
move to less harsh and less risky environments. 

The results also suggest that social learning gets a much 
more significant role in communities where related individuals 
get dispersed widely in the community. In close knit 
communities where kin are likely to stay close to each other 
the simulation results suggests that the impact of social 
learning is mainly in terms of reducing the language 
complexity within the community. 

The observations based on the simulation data that social 
learning may reduce the level of cooperation or increase the 
level of language complexity in high risk environments, and 
that in general it may have little effect on the level of 
cooperation at small extent of social learning, suggest that 
social learning has the potential to reduce cooperation in some 
settings (especially high environmental risk situations). This 
fits well with some of the experimental observations and 
theoretical explorations about how social learning may 
influence negatively the disposition towards cooperation of 
humans (Molleman et al, 2013; Burton et al, 2015). 

In general the results presented here suggest that social 
learning and environmental risk may take alternating roles in 
driving animals and humans towards communities that rely 
increasingly on cooperation among individuals. High 
environmental risk is the first driver to higher level of 
cooperation in the community of individuals. Following a 
move to a low risk environment social learning takes over as 
driver toward more cooperation and lower language 
complexity. High level of cooperation in low risk environment 
combined with social learning may lead to the emergence of 
novel social structures that add new risks to the environment 
and also increase the language complexity (Boyce et al, 2012). 
This may lead to a new high risk environment which in turn 
facilitates further cooperation in the evolving community. 
Next, with the maturation of the previously new social 
structures the environmental risk may get reduced and the 
community may experience a new bout of increase in 
cooperation due to social learning. This way the evolving 
community may increase the level of cooperation and the 
extent of social institutions, in steps driven alternately by high 
environmental risk and social learning. The investigation of 
generation of novel social structures in agent-based 
simulations of communities will be part of future work. 
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