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The equations governing the appearance of flexural
static perturbations at the edge of a semi-infinite
thin elastic isotropic plate, subjected to a state of
homogeneous bi-axial pre-stress, are derived and
solved. The plate is incompressible and supported
by a Winkler elastic foundation with, possibly,
wavenumber dependence. Small perturbations superposed
onto the homogeneous state of pre-stress, within
the 3D elasticity theory, are considered. A series
expansion of the plate kinematics in the plate
thickness provides a consistent expression for the
second variation of the potential energy, whose
minimization gives the plate governing equations.
Consistency considerations supplement a constraint
on the scaling of the pre-stress so that the classical
Kirchhoff-Love linear theory of pre-stretched elastic
plates is retrieved. Moreover, a scaling constraint
for the foundation stiffness is also introduced.
Edge wrinkling is investigated and compared to
body wrinkling. We find that the former always
precedes the latter in a state of uni-axial pre-
stretch, regardless of the foundation stiffness. In
contrast, a general bi-axial pre-stretch state may favor
body wrinkling for moderate foundation stiffness.
Wavenumber dependence significantly alters the
predicted behavior. Results may be especially relevant
to modeling soft biological materials, such as skin or
tissues, or stretchable organic thin-films, embedded in
a compliant elastic matrix.
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1. Introduction
The edge buckling phenomenon is ubiquitous in nature and it can be observed at the boundary
of almost all biological thin structures. Examples include, among many, lettuce leaves, flower
petals or the gut tube in animals, see the review by Li et al. [1]. There, the driving force behind
edge wrinkling is undoubtedly growth. In [2], growth-induced buckling of cell microtubules
embedded in a compressed kinesin substrate is shown experimentally and it is modeled as
instability of a beam-plate supported by a Winkler elastic foundation. Alongside biological
systems, thin-film flexible materials, with special regard to organic films, easily develop stress-
induced instability and, with it, a great potential for integrated applications in moving parts
and complex geometries. In particular, stretchability (i.e. elasticity under tensile strain) and
flexibility have been identified as key material properties required to develop collapsible and
portable devices [3], bio-sensors and textile integration [4], energy scavengers [5] and embedded
capacitors and batteries. Lipomi et al. [6] experimentally investigated pre-stressed stretchable
organic photovoltaic cells laid on an elastic substrate as an application of body buckling to
increase integration compliance in portable devices.

From a mechanical standpoint, modeling of edge buckling is related to edge wave propagation, 
whose consideration dates back to 1960 and is now credited to Konenkov [7], despite a long 
history of discovery and re-discovery, see the overview by Norris [8] and the more recent 
contributions [9–13]. However, to move from edge waves to edge wrinkles, we must add the 
effects of a large enough pre-deformation such that the edge wave speed drops to zero. In this 
way, a localised static solution might exist in the neighborhood of this pre-deformation.

Alongside some established mathematical tools, such as Gamma convergence and the
asymptotic method [14], results which consistently separate flexural and extensional effects can
be obtained through a Taylor expansion of the potential energy in powers of the plate thickness
h, as in [15–17]. Kaplunov et al. [18] used an asymptotic technique to analyze vibrations of thin
elastic pre-stressed incompressible plates in the low-frequency limit η= kh≪ 1, where k is the
wavenumber, for the special case of plane deformation. Pichugin & Rogerson [19] provided an
extension to the 3D case. Tovstik [20] considered the vibrations of a pre-stressed transversely
isotropic infinite thin plate that is supported by an elastic foundation with inertial contribution.
Remarkably, no consistent attempt at considering edge wrinkles in pre-stressed elastic plates can
be traced in the literature, to the best of the authors’ knowledge.

In this paper, we derive the equations governing edge wrinkling of a homogeneously
pre-stressed plate made of incompressible isotropic hyperelastic material, together with the
corresponding boundary conditions, when the plate is bilaterally supported by a Winkler elastic
foundation [21,22]. As in [17], we adopt a through-the-thickness expansion for the second
variation of the plate energy, with the differences that our material is incompressible and the
plate is elastically supported. These assumptions are introduced to better model soft solids
and thin-films embedded in an elastic matrix. It is worth emphasizing that consideration of
different scalings for the pre-stress σ leads to a diverse mechanical response. In this paper, we
assume that the pre-stress is small as it scales as h2 and the plate is thin, i.e. h≪ 1. Besides, the
Winkler foundation is soft and its stiffness κ scales as h3. As a result, a flexural behavior for the
supported plate is considered. In contrast, in [18] and [19] attention is set on a large pre-stress, for
σ=O(1) independently of h. Consequently, in-plane deformation (membrane regime) takes over.
Indeed, we show that the scaling assumed for the pre-stress determines the leading term in the
energy expansion, while consistency considerations suggest the proper scaling for the foundation
stiffness.

The paper is structured as follows. Section 2 introduces the problem and presents the
variational framework. We carry out the through-thickness energy expansion in section 3 and
minimize the second variation of the potential energy in section 4. The plate governing equation
as well as the boundary conditions are given in section 5. We draw a comparison with the classical
Kirchhoff-Love theory of pre-stressed plates in section 6. In section 7, we seek solutions in the form
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Figure 1. Hyperelastic semi-infinite plate resting on a Winkler foundation. Here the plate has been homogeneously

pre-stretched along x1 (equilibrium configuration) by the application of a uni-axial stress σ11.

of edge wrinkles and derive the corresponding bifurcation curve. Body wrinkling is considered in
section 8 and its occurrence is compared to that of edge wrinkling as a function of the foundation
stiffness and wavenumber dependence. Finally, conclusions are drawn in section 9.

2. Formulation of the problem
Consider a hyperelastic plate B occupying the region B, named equilibrium configuration, of the
three-dimensional Euclidean space E and let {e1, e2, e3} denote a fixed orthonormal basis set
for E along the axes {x1, x2, x3}. The plate is incompressible and it has been homogeneously
pre-deformed. The equilibrium configuration takes the form

B= ω × [− 1
2h,

1
2h], (2.1)

where h> 0 denotes the plate thickness and the region ω in the plane x3 = 0 is named the plate
mid-plane. Here, we assume that e3 is a principal axis for the homogeneous pre-deformation, while
no such provision is taken for e1 and e2. Hence, the plate is pre-deformed by the application of a
constant Cauchy stress σ such that σ13 = σ23 = 0, whereas the other shear stress components are
generally nonzero (see Fig.1 for the case of a uni-axial stress). For simplicity, we further assume
σ33 = 0.

Having been homogeneously pre-stretched, the plate undergoes a small incremental motion.
Thus, the deformation reads

χ=χ(0) + ϵχ(1) (2.2)

where χ(0) is the homogeneous pre-stretch and ϵχ(1) the small incremental deformation, where
|ϵ| ≪ 1. Let F = gradχ(0) be the homogeneous gradient of the pre-deformation.

In this paper, we focus on flexural edge wrinkles arising in a thin plate, where thin is to be
understood in the sense that the plate thickness h is small compared to the wrinkle wavelength ℓ=

2πk−1, i.e. kh≪ 1. The plate is uniformly and bilaterally supported along e3 by an elastic Winkler
foundation with stiffness κ> 0. Besides, to fix ideas, we assume that the foundation reaction
is directly applied to the plate mid-plane, although this restriction will prove unnecessary.
Consequently, the plate top and bottom faces are stress-free, i.e.

σe3 = 0 at x3 =±h/2. (2.3)

The gradient of the incremental displacement (deprived of the small parameter ϵ) is

Γ = gradχ(1) = χ
(1)
i,j ei ⊗ ej . (2.4)

Likewise, let the incremental nominal stress [23]

Σ =AΓ + pΓ − ṗI, (2.5)
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with components

Σji =AjilkΓkl + pΓji − ṗδij . (2.6)

Here, A is the fourth-order tensor of the instantaneous elastic moduli, which is endowed with the
major symmetry property [24, Eq.(2.10)]

Aijkl =Aklij , (2.7)

while the scalar p is a Lagrange multiplier due to the internal constraint of incompressibility and
ṗ is its increment. We recall the connections among the instantaneous elastic moduli [24, Eq.(3.6)],

Ajikl −Aijkl = (σjk + pδjk)δil − (σik + pδik)δjl, (2.8)

whence, multiplying through by Γlk and summing over repeated indexes, we get

Σji −Σij = σjkΓik − σikΓjk. (2.9)

Since the deformation χ is a one-parameter family in ϵ, we can write the potential energy E of the
system as a function of ϵ,

E(ϵ) =

∫
B
WdV −

∫
∂B

t · χdS + EW (ϵ), (2.10)

where W =W (F + ϵΓ ) is the elastic energy stored in B, t denotes the traction applied on ∂B, the
boundary of B, and the last integral accounts for the contribution of the foundation. Following [15,
17], when the potential energy E(ϵ) is expanded as a Taylor series about ϵ= 0, the first variation
vanishes because the current configuration is an equilibrium one. The second variation of the
potential energy is

E′′(0) =E′′
B(0) + E′′

W (0), (2.11)

where the body contribution, E′′
B(0), is developed in Section 4 while the Winkler foundation

contribution is simply

E′′
W (0) =

∫
ω
κw2dS, (2.12)

where κ> 0 is named the Winkler modulus or the foundation stiffness.

3. Through-the-thickness expansions
Unless otherwise stated, the summation convention over twice repeated indexes is adopted,
with the understanding that all Greek subscripts take on values in the set {1, 2}, while Roman
subscripts range in the set {1, 2, 3}. A comma is used to denote partial differentiation with respect
to the relevant co-ordinate, i.e. w,1 = ∂w/∂x1. We assume that the incremental fields admit the
following through-the-thickness expansions in x3 ∈ [−h/2, h/2]

χ(1) = v + we3 + x3a+ 1
2x

2
3b+ 1

6x
3
3c+ . . . , (3.1a)

ṗ= ṗ(0) + x3ṗ
(1) + 1

2x
2
3ṗ

(2) + . . . , (3.1b)

where v,a, b, c and w, ṗ(0), ṗ(1), ṗ(2) are functions of x1 and x2 (see also [25,26]). Note that,
at leading order, the displacement of the mid-plane has been decomposed as the in-plane
displacement vαeα, plus the transverse displacement we3. Consequently, it may be assumed that
v3 = 0 without loss of generality.

For the gradient operator, we use the decomposition

grad f = f ,i⊗ ei = f ,α⊗ eα + f ,3⊗ e3 =∇f + f ,3⊗ e3, (3.2)

where ∇ denotes the 2D nabla operator through which the 2D divergence of a vector, ∇ · f =

fα,α, of a tensor, (∇ ·Σ)j =Σαj,α, and the 2D gradient of a vector, ∇f = fi,βei ⊗ eβ , may be
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defined. Then, from (2.4) we obtain

Γ =Γ (0) + x3Γ
(1) + 1

2x
2
3Γ

(2) + . . . , (3.3)

where

Γ (0) =∇v + w,αe3 ⊗ eα + a⊗ e3, (3.4a)

Γ (1) =∇a+ b⊗ e3, (3.4b)

Γ (2) =∇b+ c⊗ e3, (3.4c)

or, in terms of components,

Γ
(0)
αβ = vα,β , Γ

(0)
α3 = aα, Γ

(0)
3β =w,β , Γ

(0)
33 = a3, (3.5a)

Γ
(1)
αβ = aα,β , Γ

(1)
α3 = bα, Γ

(1)
3β = a3,β , Γ

(1)
33 = b3, (3.5b)

Γ
(2)
αβ = bα,β , Γ

(2)
α3 = cα, Γ

(2)
3β = b3,β , Γ

(2)
33 = c3. (3.5c)

Upon substituting (3.3) into (2.5), we obtain

Σ =Σ(0) + x3Σ
(1) + 1

2x
2
3Σ

(2) + . . . , (3.6)

where, clearly,

Σ
(0)
ji =AjilkΓ

(0)
kl + pΓ

(0)
ji − ṗ(0)δij , (3.7a)

Σ
(1)
ji =AjilkΓ

(1)
kl + pΓ

(1)
ji − ṗ(1)δij , (3.7b)

and so forth.
The stress-free boundary conditions at the top and bottom surfaces of the plate, Eqs.(2.3),

extend to the incremental stress and give

Σ
(0)
3i ±Σ

(1)
3i

1
2h+Σ

(2)
3i

1
8h

2 ±O(h3) = 0, (3.8)

at x3 =±h/2. Then, adding and subtracting together the two conditions, we get, to leading order
[17, Eq.(51)],

Σ
(0)
3i =−Σ

(2)
3i

1
8h

2, (3.9a)

Σ
(1)
3i =−Σ

(3)
3i

1
48h

2. (3.9b)

We observe that Eq.(3.8) shows that the assumption that the foundation reaction acts directly at
the plate mid-plane may be abandoned with no harm provided that, as it will appear later, the
foundation is soft and its reaction is O(h3).

The incremental incompressibility condition, divχ(1) = 0, applied to the expansion (3.1a),
gives

∇ · v + x3∇ · a+ 1
2x

2
3∇ · b+ a3 + x3b3 + 1

2x
2
3c3 + · · ·= 0, (3.10)

and because the above expression needs to vanish for any value of x3, the coefficients of this
polynomial in x3 vanish independently, i.e.

∇ · v + a3 = 0, ∇ · a+ b3 = 0, ∇ · b+ c3 = 0 . . . (3.11)

We only consider flexural deformations, so we may set vα = 0. It then follows, from the first of
Eqs.(3.11), that

a3 = 0. (3.12)

Now, taking i= α in (3.9a) and making use of Eqs.(3.5a,3.7a), we obtain

Σ
(0)
3α =A3α3βaβ + (A3αβ3 + pδαβ)w,β =O(h2), (3.13)

from which we deduce, with the help of Eqs.(2.7,2.8) and σ33 = 0, that

aα =−w,α +O(h2). (3.14)
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To leading order, this result amounts to the well-known assumption in the Kirchhoff-Love plate
theory of zero shear deformation along the cross-section, the latter remaining orthogonal to the
mid-plane. Taking i= 3 in (3.9a) yields ṗ(0) =O(h2) and it follows from Eqs.(3.5a,3.7a,3.14) that

Σ
(0)
αβ =O(h2). (3.15)

Together, the second equation of (3.11) and Eq.(3.14) give

b3 =−aα,α =w,αα +O(h2). (3.16)

In a similar manner, taking i= α in Eq.(3.9b) and using (3.5b,3.7b,3.12), we obtain

bα =O(h2), (3.17)

which, up to O(h2) terms in (3.1a), amounts to the Kirchhoff-Love hypothesis that cross-sections
remain plane during bending. Using the last of Eqs.(3.11) with (3.17), we find c3 =O(h2). Besides,
taking i= 3 gives the leading term in the incremental pressure

ṗ(1) =A33βαaα,β + (p+A3333)b3 +O(h2). (3.18)

Therefore, we have, up to O(h) terms,

a3 = 0, bα = 0, c3 = 0, ṗ(0) = 0 (3.19)

and the kinematics of the plate (3.1a) simplifies to

χ(1) =we3 − x3w,αeα + 1
2x

2
3(∇2w)e3 + 1

6x
3
3c+ . . . (3.20)

It is emphasized that, in the foregoing derivations, c rests undetermined.
A comparison of the results with the literature shows that the plate kinematics (3.20)

encompasses Eqs.(3.17,23,29,30) of Kaplunov et al. [18]. For instance, the linear-through-the-
thickness-ζ expression for the axial displacement U [2] = ℓ(u

(0)
1 + η2u

(2)
1 ), given by their Eqs.(3.17)

and (3.23)1, using Eq.(3.31) and (3.33) corresponds to the 1D version of the second term in (3.20)
here, given that V [2] = ℓ(U

(0,0)
2 + η2U

(0,2)
2 + . . . ) corresponds to w. Likewise, Eq.(3.23)2 brings

in the quadratic term in the transverse displacement u2, corresponding to the third term in (3.20),
which is proportional to the curvature. Finally, Eq.(3.23)3 gives the last of Eqs.(3.19) for the leading
term in the pressure increment. Conversely, the governing equation for pre-stressed plates (7.4)
cannot be directly obtained from the static limit of (3.56) of [18], in light of the fact that the latter
equation is obtained under the assumption of pre-stress σ11 =O(1), plate thickness 2h and in
the absence of the foundation. However, once such assumptions are modified, correspondence
can be achieved. We observe that in the works of Dai & Song [27] and Wang et al. [28] a theory
for, respectively, compressible and incompressible thin plates is developed through an expansion
of the plate kinematics about the lower surface x3 =−h/2, which is then fed into the governing
equations.

4. Variational formulation
We begin with the following general expression for the second variation of the total potential
energy of a hyperelastic body B:

E′′
B(0) =

∫
B
Σ · Γdv. (4.1)

The integration domain B may be the configuration of any pre-stressed body and, in the
following, it is identified with the set (2.1). Hereinafter, a general material and a general state of
pre-stress σαβ are considered. Besides, in order to restrict the formulation to bending, we assume
that the pre-stress scales as h2, i.e. σαβ =O(h2). The essence of the approach is to reduce the
right-hand side of (4.1) consistently to order h3, and then obtain the reduced boundary value
problem by energy minimization [17]. Consequently, in the following derivation, terms of order
higher than h3 are neglected.
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With the help of the results established in the previous Sections, we can proceed to simplify
the second variation (4.1). First, by substituting (3.3) and (3.6) into (4.1) and integrating along the
thickness of the plate, we obtain, up to O(h3) terms,

E′′
B(0) =

∫
ω

{
hΣ

(0)
ji Γ

(0)
ij +

h3

12

(
1
2Σ

(0)
ji Γ

(2)
ij +Σ

(1)
ji Γ

(1)
ij + 1

2Σ
(2)
ji Γ

(0)
ij

)}
dS

=

∫
ω

{
hΣ

(0)
ji Γ

(0)
ij +

h3

12

(
Σ

(0)
ji Γ

(2)
ij +Σ

(1)
ji Γ

(1)
ij

)}
dS,

=

∫
ω

{
hΣ

(0)
ji Γ

(0)
ij +

h3

12

(
Σ

(0)
α3 b3,α +Σ

(1)
βαaα,β

)}
dS, (4.2)

where, in obtaining the last expression, use has been made of the results (3.5a,3.5b,3.19) and of
the boundary condition (3.9a). Indeed, the latter indicates that the term Σ

(0)
3α cα +Σ

(0)
33 c3 =O(h2)

brings a higher order contribution which may be omitted in the round brackets. For the first term
in (4.2), using Eqs.(3.5a,3.12,3.14,3.19), we get

Σ
(0)
ji Γ

(0)
ij =Σ

(0)
α3 w,α +Σ

(0)
3α aα = (Σ

(0)
α3 −Σ

(0)
3α )w,α +O(h4) = σαβw,αw,β +O(h4) (4.3)

and the last expression is deduced with the aid of (2.9). It is observed that hΣ(0)
ji Γ

(0)
ij =O(h3).

For the second term in (4.2), we have∫
ω
Σ

(0)
α3 b3,αdS =

∫
ω

{
(Σ

(0)
α3 b3),α −Σ

(0)
α3,αb3

}
dS =

∫
∂ω

Σ
(0)
α3 b3nαds−

∫
ω

(
∇ ·Σ(0)

)
3
b3dS,

(4.4)
where nα is the unit vector normal to the mid-plane boundary ∂ω. On account of the incremental
equilibrium equation in the absence of incremental body forces, i.e. divΣ = o, and with (3.9b), it
is Σ(0)

αi,α =−Σ
(1)
3i =O(h2), whence, in the absence of incremental surface traction,∫

ω
Σ

(0)
α3 b3,αdS =O(h2). (4.5)

Thus, with Eq.(3.14), the second variation (4.2) becomes, to leading order,

E′′
B(0) =

∫
ω

{
hσαβw,αw,β − h3

12
Σ

(1)
βαw,αβ

}
dS. (4.6)

Note that both terms in this expression are O(h3) since we have assumed that σαβ =O(h2). In
fact, it is this very assumption that makes our expansion self-consistent.

Finally, we have, with the help of Eqs.(3.5b, 3.18) and up to O(1),

Σ
(1)
βα =AβαlkΓ

(1)
kl + pΓ

(1)
βα − ṗ(1)δαβ

=Aβαγδaδ,γ +Aβα33b3 + paβ,α − ṗ(1)δαβ
=
(
Aβαγδ −A33γδδαβ

)
aδ,γ +

(
Aβα33 − pδαβ −A3333δαβ

)
b3 + paβ,α

=−
(
Aβαγδ −A33γδδαβ

)
w,δγ +

(
Aβα33 − pδαβ −A3333δαβ

)
w,γγ − pw,αβ , (4.7)

where we used (3.14) and (3.16) in the last equality. Therefore, the second variation of the potential
energy can be written as

E′′
B(0) =

∫
ω

{
hσαβw,αw,β + D̂αβδγw,δγw,αβ

}
dS, (4.8)

whose first and second terms are quadratic forms in ∇w and ∇∇w, and where

D̂αβδγ =
h3

12

{
Aβαγδ −A33γδδβα −A33βαδγδ + (A3333 + p) δαβδδγ + pδβγδαδ

}
. (4.9)

The fourth rank tensor D̂ exhibits the major symmetry, yet it may be equally well replaced by its
minor-symmetric part D, which has 6 independent component out of 16. Furthermore, expanding
the instantaneous moduli in powers of the thickness h about the undeformed state λi = 1 only the
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leading order term may be consistently retained, i.e. D is a constant tensor. Indeed, we have [29,
Eq.(3.16)]

Aβαγδ = µδβγδαδ +O(h), (4.10)

and p= µ, whence Eq.(4.9) gives

Dαβδγ = 1
4D

{
δβγδαδ + δβδδαγ + 2δαβδδγ

}
, (4.11)

where we have introduced the classical plate flexural rigidity [30]

D=
Eh3

12(1− ν2)
, ν = 1

2 , (4.12)

in light of the connection µ=E/(2(1 + ν)) between the shear modulus, µ, and Young’s modulus,
E. In this context, the only nonzero elements of D are

D1111 =D2222 = 2D1122 = 2D2211 = 4D1212 = 4D2112 = 4D1221 = 4D2121 =D. (4.13)

5. Plate governing equation
Let us define the moments (per unit length) by

Mαβ =−Dαβδγw,δγ . (5.1)

In particular, the bending moments are

M11 =−D
(
w,11 + 1

2w,22
)
, M22 =−D

(
w,22 + 1

2w,11
)
, (5.2)

while the twisting moments are
M12 =M21 =− 1

2Dw,12. (5.3)

Likewise, let us define the shearing force (per unit length)

qα = hσαβw,β +Mβα,β . (5.4)

It follows that
E′′
B(0) =

∫
ω
qαw,αdS −

∫
∂ω

Mαβw,αnβds. (5.5)

Taking the first variation of (5.5) with respect to w, we obtain

1
2δE

′′
B(0) =−

∫
ω
qα,αδw dS +

∫
∂ω

(
qαδw −Mβαδw,β

)
nα ds. (5.6)

The last term in the boundary integral is better expressed in terms of the normal and the tangential
(with respect to the boundary) derivatives, making use of the formula [31, §36.4]

δw,β = τβ
∂δw

∂τ
+ nβ

∂δw

∂n
. (5.7)

Setting to zero the first variation inside ω gives the plate governing equation

∇ · q= 0 in ω, (5.8)

which reads
D∇2w − hσ11w,11 − 2hσ12w,12 − hσ22w,22 = 0, (5.9)

and it amounts to enforcing out-of-plane equilibrium of a plate element. Here, ∇2w=w,1111 +

2w,1122 + w,2222 is the biharmonic operator applied to w. In the same fashion, setting to zero the
first variation of the boundary integral yields the natural boundary conditions

Vnδw= 0, Mnδ
∂w

∂n
= 0, on ∂ω, (5.10)

where Vn = qαnα + ∂
∂τ (τβMβαnα) is the well known Kirchhoff equivalent shearing force and

Mn = nβMβαnα is the bending moment, both acting on a surface with unit normal nα. Setting
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n= cos θe1 + sin θe2, they read

Vn = qn −Mnτ ,1 sin θ +Mnτ ,2 cos θ, (5.11)

and
Mn = 1

2 (M11 +M22) +
1
2 (M11 −M22) cos 2θ +M12 sin 2θ, (5.12)

where we have let qn = q1 cos θ + q2 sin θ and

Mnτ = 1
2 (M22 −M11) sin 2θ +M12 cos 2θ. (5.13)

6. Stress distribution and comparison with the classical theory
Eqs.(3.15,4.7,4.9) give the normal stress distribution (no sum over α in this section)

Σαα = x3Σ
(1)
αα +O(h2) =− 12

h3 x3Dααβγw,βγ +O(h2), (6.1)

that is, using (4.13) and to leading order,

Σ11 =− 12
h3 x3D

(
w,11 + 2w,22

)
, Σ22 =− 12

h3 x3D
(
w,22 + 2w,11

)
. (6.2)

It is a straightforward matter to show that, up to O(h3), the bending moments (5.2) are obtained
integrating along the plate thickness the normal stress couples, i.e.

Mαα =

∫h/2
−h/2

x3Σααdx3. (6.3)

Similarly, for the in-plane shear stress, we have, to leading order,

Σαβ = x3Σ
(1)
αβ =− 12

h3 x3Dαβγδw,δγ , (6.4)

which is symmetric owing to the minor symmetry of Dαβγδ and it reads

Σ12 =Σ21 =− 6
h3 x3Dw,12. (6.5)

By integrating along the thickness and up to O(h3), it gives the twisting moment (5.3)

Mαβ =

∫h/2
−h/2

x3Σαβdx3. (6.6)

Eqs.(3.9) allow us to write the out-of-plane stress Σ3α consistently at O(h2)

Σ3α = 1
2

(
x23 − h2

4

)
Σ

(2)
3α , (6.7)

which amounts to the classical ad-hoc assumptions that the out-of-plane stress is of higher order
than the in-plane stress and its distribution along the thickness is parabolic (cf. [30]). From
Eqs.(3.5c,2.8) and to leading order,

Σ
(2)
3α =A3αβ3

(
cβ + w,γγβ

)
+ p (cα + w,γγα) , (6.8)

which, in light of (4.10), reduces to

Σ
(2)
3α = µ (cα + w,γγα) . (6.9)

The so-far-undetermined vector cα may be obtained, to leading order, through the incremental
equilibrium equation divΣ = o, i.e.

Σ
(2)
3α =−Σ

(1)
βα,β , (6.10)

whence its components are

c1 = 3
(
w,111 + 3w,122

)
, c2 = 3

(
w,222 + 3w,112

)
. (6.11)
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Figure 2. Buckling wrinkles with wavenumber k localised near the edge of a compressed thin plate with thickness

h.

Thus, through Eqs.(5.4,6.4,6.6,6.10), the shearing force may be related to the out-of-plane stress
distribution and the pre-stress as

qα = hσαβw,β +

∫h/2
−h/2

x3Σβα,βdx3 = hσαβw,β +

∫h/2
−h/2

x23Σ
(1)
βα,βdx3

= hσαβw,β −
∫h/2
−h/2

x23Σ
(2)
3α dx3 = hσαβw,β − h3

12Σ
(2)
3α , (6.12)

which gives the classical formula [30, §21], corrected to account for the pre-stress, namely

Σ3αmax =
3

2h

(
qα − hσαβw,β

)
=O(h2). (6.13)

Besides, integrating Eq.(6.7) along the thickness and comparing with the last of Eqs.(6.12), we
may write

qα = hσαβw,β +

∫h/2
−h/2

Σ3αdx3, (6.14)

which corresponds to the classical definitions of Qx and Qy , respectively, in Eqs.(106,107) of [30],
corrected to incorporate the pre-stress. The bending moments (5.2) as well as the twisting moment
(5.3) correspond to the classical definitions (101,102) of Timoshenko & Woinowsky-Krieger [30,
§21]. The Kirchhoff shearing force (5.11) amounts to the corresponding definition (g) of [30],
provided that we take M12 =Myx =−Mxy . The governing equation (5.9) coincides with the
classical equation for combined bending and compression (or tension) of thin plates, first derived
by Saint Venant [32]. Finally we observe that Eq.(3.20), up to O(h)-terms, parallels the classical
plate kinematics, the remaining terms being a higher order correction.

7. Edge wrinkling solution
Let us consider the hyperelastic plate B to occupy the semi-infinite region (Fig.1)

B= {|x1|<∞, 0≤ x2 <∞, |x3| ≤ h/2}. (7.1)

From now on, we assume that the ei are directed along the principal axes of the underlying
homogeneous deformation, in which case the deformation gradient has a diagonal representation,
namely

F = gradχ(0) =diag(λ1, λ2, λ3). (7.2)

In particular, given that the plate edge corresponds to the plane x2 = 0, we have θ= π/2 and the
boundary conditions (5.11) and (5.12) now specialize to

2M21,1 +M22,2 = 0, and M22 = 0, (7.3)

respectively. The governing equation Eq.(5.9) is now supplemented by the Winkler term (2.12)

D∇4w − hσ11w,11 − hσ22w,22 + κw= 0. (7.4)
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It is emphasized that, for the expression (2.11) of the second variation E′′(0) to be consistent,
we need to assume that κ1 = κ/h3 is of order O(1). This assumption is analogous to the scaling
requirement for a thin coated half-plane, see [33]. Similarly, the boundary conditions (7.3) may be
written as

w,11 + 2w,22 = 0, 3w,112 + 2w,222 = 0. (7.5)

We look for a wrinkling solution to Eq.(7.4), which varies sinusoidally along the edge and decays
away from it as x2 →∞, in the form [9,13]

w(x1, x2) =ℜ{[A1 exp(−γ1kx2) +A2 exp(−γ2kx2)] exp(ıkx1)} , (7.6)

where A1, A2 are yet-undetermined amplitude constants, γ1, γ2 the attenuation coefficients, such
that ℜ(γα)> 0, and k > 0 is the wavenumber, see Fig.2 for an illustration. Substitution into the
plate equation (7.4) shows that γ1 and γ2 are the roots of the bi-quadratic equation

γ4 − 2γ2 + 1 +
σ + κ̂

d0
= 0, (7.7)

where the following O(1) quantities (with physical dimension of stress) have been introduced:
d0 =D/h3 = µ/2, σ= (σ11 + σ22)/(kh)

2 and κ̂= κ1/k
4 = κh/(kh)4.

Enforcing the boundary conditions (7.5) gives a homogeneous linear algebraic system of two
equations in the two unknowns A1, A2

(1− 2γ21)A1 + (1− 2γ22)A2 = 0,

[3− 2γ21 ]γ1A1 + [3− 2γ22 ]γ2A2 = 0,

which admits nontrivial solutions provided that the determinant of the coefficient matrix is zero.
Hence we arrive at the bifurcation condition,

(γ1 − γ2)
[
4γ2γ1 + 3− 2

(
γ21 + γ22

)
+ 4γ21γ

2
2

]
= 0. (7.9)

The bifurcation condition (7.9) is satisfied whenever γ1 = γ2 or when the term in square
brackets vanishes. It can be shown that the former case is spurious, whereas the latter yields√

1 +
σ + κ̂

d0
+

σ + κ̂

d0
+ 3

4 = 0 (7.10)

and the plus sign has been chosen for the square root in light of the requirement ℜ(γα)> 0.
Eq.(7.10) expresses the bifurcation criterion for the appearance of wrinkles on the edge of a semi-
infinite plate compressed by a lateral stress. It can be rationalized by squaring and then solved to
yield

σ11 + σ22 =−(kh)2
[
1
4d0

(
1 + 2

√
2
)
+ κ̂

]
, (7.11)

which shows that, as it was assumed, σ11 + σ22 =O(h2). Besides, in the absence of the supporting
foundation (i.e. κ1 = 0), Eq.(7.11) is trivially satisfied by kh= 0, which amounts to a zero pre-
stress condition and, consequently, to a critical buckling stretch of λ= 1. In other words, without
the substrate, the plate would buckle as soon as it is laterally compressed.

Substituting the expansion λα = 1 + (kh)2λ
(2)
α and retaining terms up to h2, we find the

bifurcation condition

1
2 (λ1 + λ2) = 1− (kh)2

96

(
1 + 2

√
2 +

8

(ℓsk)4

)
(7.12)

in terms of the characteristic length ℓs = 4
√

µ/κ1 =
4
√

3D/κ, expressing the relative flexural rigidity
of the plate compared to the stiffness of the foundation. It is observed that ℓs =O(1). In the case
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Figure 3. Bifurcation curves for the appearance of edge wrinkles with scaled wavenumber kh on a thin plate made

of incompressible elastic material with flexural rigidity D, resting on a Winkler foundation with elastic modulus

κ= 3ℓ−4
s D. The curves are for uni-axial pre-stress and foundation relative compliance h/ℓs = 0 (dotted), 1/3

(solid) and 1/2 (dashed). In the first case (no Winkler foundation), the plate buckles as soon as it is compressed

laterally.

Figure 4. Bifurcation curves for the appearance of edge wrinkles on a thin plate resting on a local foundation whose

elastic modulus κ= (h/ℓs)
4µk is proportional to the wavenumber k. The curves are for uni-axial pre-stress and

foundation relative compliance h/ℓs = 0 (dotted), 1/3 (solid) and 1/2 (dashed).

of uni-axial pre-stress, λ2 = 1/
√
λ1 and Eq.(7.12) becomes

λ1 = 1− (kh)2

6

(
1

4
+

√
2

2
+

2

(ℓsk)4

)
. (7.13)

In Fig.3, the bifurcation curves (7.13) are plotted considering three values of the foundation
relative compliance h/ℓs. Typically, curves go through a maximum which determines the effective
critical stretch of contraction as well as the edge wrinkles wavenumber. A similar pattern is shown
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Figure 5. Edge (solid) vs. body (dashed) bifurcation curves for a thin incompressible elastic plate resting on a

Winkler foundation with relative compliance h/ℓs = 0, 1/3, 1/2 in a state of bi-axial pre-stretch (λ1 < 1, λ2 =

1.05). Body wrinkling takes place in compression and parallel to the edge (i.e. n2 = 0); it occurs prior to edge

wrinkling for h/ℓs = 0 and 1/3 and after it for h/ℓs = 1/2.

in Fig.4 where the foundation stiffness is taken to be proportional to the wavenumber k, which is
the situation of a linear elastic half-space foundation considered in [20,34]. In contrast, when the
foundation stiffness scales as the wavenumber squared, bifurcation curves become straight lines
and edge wrinkling starts at zero wavenumber. This is indeed the nonlinear correction considered
by Brau et al. [34] and it may be argued that appearance of edge wrinkles at zero wavenumber is
a good test for such an assumption. Furthermore, any dependence of the foundation stiffness on
powers of the wavenumber greater than 2 leads to bifurcation at λ1 = 1 and zero wavenumber.

8. Body vs. edge wrinkling
The body wrinkling solution takes the form

w(x1, x2) =ℜ{exp [ık(n1x1 + n2x2)]} , n2
1 + n2

2 = 1, (8.1)

which, when plugged into Eq.(7.4) and expanded for λα = 1 + (kh)2λ
(2)
α , gives the wrinkling

condition

(3− 2λ1 − λ2)n
2
1 + (3− λ1 − 2λ2)n

2
2 =

1
4 (kh)

2
[
1 + 2

1

(ℓsk)4

]
. (8.2)

This equation may be plotted for different values of n2, thus giving the bifurcation curves for
bulk wrinkling. In the special case of uni-axial pre-stress along x1 (i.e. n2 = 0, n1 = 1), Eq.(8.2)
simplifies to

λ1 = 1− (kh)2

6

[
1 +

2

(ℓsk)4

]
. (8.3)

Comparing this equation with (7.13), it is concluded that, under uni-axial pre-stress, body
wrinkling takes place in compression with n2 = 0 at a critical stretch λ∗1 body which is a little
smaller than the corresponding threshold for edge wrinkling λ∗1 edge >λ∗1 body, i.e. edge wrinkling
is preferred to body wrinkling. This result holds regardless of the foundation stiffness and it is
not affected by the foundation responding to the wrinkles’ wavenumber. However, in the general
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Figure 6. Edge (solid) vs. body (dashed) bifurcation curves for a thin incompressible elastic plate resting on a

local foundation with stiffness κ= (h/ℓs)
4µk proportional to the wavenumber k and relative compliance h/ℓs =

0, 1/3, 1/2, in a state of bi-axial pre-stretch (λ1 < 1, λ2 = 1.05). Body wrinkling takes place in compression and

always prior to edge wrinkling.

bi-axial pre-stressed case, this is not always the case. Indeed, for n2 = 0, Eq.(8.2) gives

λ1 =
3− λ2

2
− (kh)2

8

[
1 +

2

(ℓsk)4

]
(8.4)

which may be greater than the edge wrinkling bifurcation curve for λ2 > 1. Fig.5 shows that
body buckling may be preferred to edge buckling in a bi-axially pre-stretched scenario, where
transverse extension λ2 = 1.05 favors body wrinkle formation in compression, i.e. λ1 < 1, up to
moderate values of foundation compliance. Similarly, Fig.6 compares body and edge wrinkling
for a thin plate supported by a Winkler foundation whose stiffness is proportional to the
wavenumber k: in this situation, body wrinkling is preferred to edge wrinkling up to large values
of foundation compliance.

9. Conclusions
In this paper, a consistent model for flexural edge wrinkling of bi-axially pre-stressed thin
incompressible elastic plates, supported by a local elastic foundation, is developed and solved.
The governing equations and boundary conditions are derived from minimizing a reduced form
for the second variation of the potential energy, which is obtained by expanding the 3D kinematics
through the plate thickness. Small deviations from the homogeneously pre-stressed state are
investigated. Consistency of the expansion demands that, to obtain purely flexural deformations,
the pre-stress scales as the plate thickness squared. Besides, it demands that the foundation
stiffness scales as the plate thickness cubed. Within such assumptions, the classical Kirchhoff-
Love theory of pre-stressed elastic plates is obtained. Furthermore, the ad-hoc assumptions on
the stress distribution are also retrieved, while parabolic and cubic terms are introduced to correct
the classical linear (along the thickness) plate kinematics. Edge wrinkling is described by means
of bifurcation curves and it is compared with body wrinkling. It is found that edge wrinkling
always occurs prior to body wrinkling in a uni-axially pre-stressed situation, regardless of the
foundation stiffness. The bifurcation landscape is more involved in a bi-axial condition and body
wrinkling may precede edge wrinkling for moderate foundation stiffness. The situation where the
foundation reaction depends on the wavenumber k is also discussed. In particular, it is observed
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that dependence on k2 determines buckling at zero wavenumber while dependence on kβ , β > 2

produces buckling at λ= 1. Such results may be employed to infer the mechanical behavior of
the supporting matrix in flexible embedded systems, with special regard to biological tissues or
organic thin-films.
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