Subject Areas:
Mechanics, Mathematical Physics, Materials Science

Keywords:

Edge wrinkles, Buckling, Pre-stressed
plate, Foundation, Incremental
deformation

Author for correspondence:
Andrea Nobili e-mail:
andrea.nobili@unimore.it

Edge wrinkling in elastically supported pre-stressed incompressible isotropic plates

Michel Destrade ${ }^{1,2}$, Yibin Fu ${ }^{3}$, Andrea
Nobili ${ }^{4}$
${ }^{1}$ School of Mathematics, Statistics Applied Mathematics National University of Ireland Galway, Ireland
${ }^{2}$ School of Mechanical Materials Engineering, University College Dublin, Belfield, Dublin 4, Ireland ${ }^{3}$ Keele University, Keele, Staffordshire ST5 5BG, UK
${ }^{4}$ Dipartimento di Ingegneria Enzo Ferrari, via
Vignolese 905, 41125 Modena, Italy

The equations governing the appearance of flexural static perturbations at the edge of a semi-infinite thin elastic isotropic plate, subjected to a state of homogeneous bi-axial pre-stress, are derived and solved. The plate is incompressible and supported by a Winkler elastic foundation with, possibly, wavenumber dependence. Small perturbations superposed onto the homogeneous state of pre-stress, within the 3D elasticity theory, are considered. A series expansion of the plate kinematics in the plate thickness provides a consistent expression for the second variation of the potential energy, whose minimization gives the plate governing equations. Consistency considerations supplement a constraint on the scaling of the pre-stress so that the classical Kirchhoff-Love linear theory of pre-stretched elastic plates is retrieved. Moreover, a scaling constraint for the foundation stiffness is also introduced. Edge wrinkling is investigated and compared to body wrinkling. We find that the former always precedes the latter in a state of uni-axial prestretch, regardless of the foundation stiffness. In contrast, a general bi-axial pre-stretch state may favor body wrinkling for moderate foundation stiffness. Wavenumber dependence significantly alters the predicted behavior. Results may be especially relevant to modeling soft biological materials, such as skin or tissues, or stretchable organic thin-films, embedded in a compliant elastic matrix.

1. Introduction

The edge buckling phenomenon is ubiquitous in nature and it can be observed at the boundary of almost all biological thin structures. Examples include, among many, lettuce leaves, flower petals or the gut tube in animals, see the review by Li et al. [1]. There, the driving force behind edge wrinkling is undoubtedly growth. In [2], growth-induced buckling of cell microtubules embedded in a compressed kinesin substrate is shown experimentally and it is modeled as instability of a beam-plate supported by a Winkler elastic foundation. Alongside biological systems, thin-film flexible materials, with special regard to organic films, easily develop stressinduced instability and, with it, a great potential for integrated applications in moving parts and complex geometries. In particular, stretchability (i.e. elasticity under tensile strain) and flexibility have been identified as key material properties required to develop collapsible and portable devices [3], bio-sensors and textile integration [4], energy scavengers [5] and embedded capacitors and batteries. Lipomi et al. [6] experimentally investigated pre-stressed stretchable organic photovoltaic cells laid on an elastic substrate as an application of body buckling to increase integration compliance in portable devices.

From a mechanical standpoint, modeling of edge buckling is related to edge wave propagation, whose consideration dates back to 1960 and is now credited to Konenkov [7], despite a long history of discovery and re-discovery, see the overview by Norris [8] and the more recent contributions [9-13]. However, to move from edge waves to edge wrinkles, we must add the effects of a large enough pre-deformation such that the edge wave speed drops to zero. In this way, a localised static solution might exist in the neighborhood of this pre-deformation.

Alongside some established mathematical tools, such as Gamma convergence and the asymptotic method [14], results which consistently separate flexural and extensional effects can be obtained through a Taylor expansion of the potential energy in powers of the plate thickness h, as in [15-17]. Kaplunov et al. [18] used an asymptotic technique to analyze vibrations of thin elastic pre-stressed incompressible plates in the low-frequency limit $\eta=k h \ll 1$, where k is the wavenumber, for the special case of plane deformation. Pichugin \& Rogerson [19] provided an extension to the 3D case. Tovstik [20] considered the vibrations of a pre-stressed transversely isotropic infinite thin plate that is supported by an elastic foundation with inertial contribution. Remarkably, no consistent attempt at considering edge wrinkles in pre-stressed elastic plates can be traced in the literature, to the best of the authors' knowledge.

In this paper, we derive the equations governing edge wrinkling of a homogeneously pre-stressed plate made of incompressible isotropic hyperelastic material, together with the corresponding boundary conditions, when the plate is bilaterally supported by a Winkler elastic foundation [21,22]. As in [17], we adopt a through-the-thickness expansion for the second variation of the plate energy, with the differences that our material is incompressible and the plate is elastically supported. These assumptions are introduced to better model soft solids and thin-films embedded in an elastic matrix. It is worth emphasizing that consideration of different scalings for the pre-stress σ leads to a diverse mechanical response. In this paper, we assume that the pre-stress is small as it scales as h^{2} and the plate is thin, i.e. $h \ll 1$. Besides, the Winkler foundation is soft and its stiffness κ scales as h^{3}. As a result, a flexural behavior for the supported plate is considered. In contrast, in [18] and [19] attention is set on a large pre-stress, for $\sigma=\mathcal{O}(1)$ independently of h. Consequently, in-plane deformation (membrane regime) takes over. Indeed, we show that the scaling assumed for the pre-stress determines the leading term in the energy expansion, while consistency considerations suggest the proper scaling for the foundation stiffness.

The paper is structured as follows. Section 2 introduces the problem and presents the variational framework. We carry out the through-thickness energy expansion in section 3 and minimize the second variation of the potential energy in section 4 . The plate governing equation as well as the boundary conditions are given in section 5 . We draw a comparison with the classical Kirchhoff-Love theory of pre-stressed plates in section 6. In section 7, we seek solutions in the form

Figure 1. Hyperelastic semi-infinite plate resting on a Winkler foundation. Here the plate has been homogeneously pre-stretched along x_{1} (equilibrium configuration) by the application of a uni-axial stress σ_{11}.
of edge wrinkles and derive the corresponding bifurcation curve. Body wrinkling is considered in section 8 and its occurrence is compared to that of edge wrinkling as a function of the foundation stiffness and wavenumber dependence. Finally, conclusions are drawn in section 9 .

2. Formulation of the problem

Consider a hyperelastic plate B occupying the region B , named equilibrium configuration, of the three-dimensional Euclidean space \mathcal{E} and let $\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right\}$ denote a fixed orthonormal basis set for \mathcal{E} along the axes $\left\{x_{1}, x_{2}, x_{3}\right\}$. The plate is incompressible and it has been homogeneously pre-deformed. The equilibrium configuration takes the form

$$
\begin{equation*}
\mathrm{B}=\omega \times\left[-\frac{1}{2} h, \frac{1}{2} h\right] \tag{2.1}
\end{equation*}
$$

where $h>0$ denotes the plate thickness and the region ω in the plane $x_{3}=0$ is named the plate mid-plane. Here, we assume that e_{3} is a principal axis for the homogeneous pre-deformation, while no such provision is taken for \boldsymbol{e}_{1} and \boldsymbol{e}_{2}. Hence, the plate is pre-deformed by the application of a constant Cauchy stress $\boldsymbol{\sigma}$ such that $\sigma_{13}=\sigma_{23}=0$, whereas the other shear stress components are generally nonzero (see Fig. 1 for the case of a uni-axial stress). For simplicity, we further assume $\sigma_{33}=0$.

Having been homogeneously pre-stretched, the plate undergoes a small incremental motion. Thus, the deformation reads

$$
\begin{equation*}
\chi=\chi^{(0)}+\epsilon \boldsymbol{\chi}^{(1)} \tag{2.2}
\end{equation*}
$$

where $\boldsymbol{\chi}^{(0)}$ is the homogeneous pre-stretch and $\epsilon \boldsymbol{\chi}^{(1)}$ the small incremental deformation, where $|\epsilon| \ll 1$. Let $\boldsymbol{F}=\operatorname{grad} \chi^{(0)}$ be the homogeneous gradient of the pre-deformation.

In this paper, we focus on flexural edge wrinkles arising in a thin plate, where thin is to be understood in the sense that the plate thickness h is small compared to the wrinkle wavelength $\ell=$ $2 \pi k^{-1}$, i.e. $k h \ll 1$. The plate is uniformly and bilaterally supported along e_{3} by an elastic Winkler foundation with stiffness $\kappa>0$. Besides, to fix ideas, we assume that the foundation reaction is directly applied to the plate mid-plane, although this restriction will prove unnecessary. Consequently, the plate top and bottom faces are stress-free, i.e.

$$
\begin{equation*}
\boldsymbol{\sigma} \boldsymbol{e}_{3}=\mathbf{0} \quad \text { at } \quad x_{3}= \pm h / 2 \tag{2.3}
\end{equation*}
$$

The gradient of the incremental displacement (deprived of the small parameter ϵ) is

$$
\begin{equation*}
\boldsymbol{\Gamma}=\operatorname{grad} \chi^{(1)}=\chi_{i, j}^{(1)} \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j} \tag{2.4}
\end{equation*}
$$

Likewise, let the incremental nominal stress [23]

$$
\begin{equation*}
\boldsymbol{\Sigma}=\boldsymbol{\mathcal { A }} \boldsymbol{\Gamma}+p \boldsymbol{\Gamma}-\dot{p} \boldsymbol{I} \tag{2.5}
\end{equation*}
$$

with components

$$
\begin{equation*}
\Sigma_{j i}=\mathcal{A}_{j i l k} \Gamma_{k l}+p \Gamma_{j i}-\dot{p} \delta_{i j} . \tag{2.6}
\end{equation*}
$$

Here, \mathcal{A} is the fourth-order tensor of the instantaneous elastic moduli, which is endowed with the major symmetry property [24, Eq.(2.10)]

$$
\begin{equation*}
\mathcal{A}_{i j k l}=\mathcal{A}_{k l i j} \tag{2.7}
\end{equation*}
$$

while the scalar p is a Lagrange multiplier due to the internal constraint of incompressibility and \dot{p} is its increment. We recall the connections among the instantaneous elastic moduli [24, Eq.(3.6)],

$$
\begin{equation*}
\mathcal{A}_{j i k l}-\mathcal{A}_{i j k l}=\left(\sigma_{j k}+p \delta_{j k}\right) \delta_{i l}-\left(\sigma_{i k}+p \delta_{i k}\right) \delta_{j l} \tag{2.8}
\end{equation*}
$$

whence, multiplying through by $\Gamma_{l k}$ and summing over repeated indexes, we get

$$
\begin{equation*}
\Sigma_{j i}-\Sigma_{i j}=\sigma_{j k} \Gamma_{i k}-\sigma_{i k} \Gamma_{j k} \tag{2.9}
\end{equation*}
$$

Since the deformation χ is a one-parameter family in ϵ, we can write the potential energy E of the system as a function of ϵ,

$$
\begin{equation*}
E(\epsilon)=\int_{\mathrm{B}} W \mathrm{~d} V-\int_{\partial \mathrm{B}} \boldsymbol{t} \cdot \boldsymbol{\chi} \mathrm{~d} S+E_{W}(\epsilon), \tag{2.10}
\end{equation*}
$$

where $W=W(\boldsymbol{F}+\epsilon \boldsymbol{\Gamma})$ is the elastic energy stored in $\mathrm{B}, \boldsymbol{t}$ denotes the traction applied on $\partial \mathrm{B}$, the boundary of B, and the last integral accounts for the contribution of the foundation. Following [15, 17], when the potential energy $E(\epsilon)$ is expanded as a Taylor series about $\epsilon=0$, the first variation vanishes because the current configuration is an equilibrium one. The second variation of the potential energy is

$$
\begin{equation*}
E^{\prime \prime}(0)=E_{B}^{\prime \prime}(0)+E_{W}^{\prime \prime}(0) \tag{2.11}
\end{equation*}
$$

where the body contribution, $E_{B}^{\prime \prime}(0)$, is developed in Section 4 while the Winkler foundation contribution is simply

$$
\begin{equation*}
E_{W}^{\prime \prime}(0)=\int_{\omega} \kappa w^{2} \mathrm{~d} S \tag{2.12}
\end{equation*}
$$

where $\kappa>0$ is named the Winkler modulus or the foundation stiffness.

3. Through-the-thickness expansions

Unless otherwise stated, the summation convention over twice repeated indexes is adopted, with the understanding that all Greek subscripts take on values in the set $\{1,2\}$, while Roman subscripts range in the set $\{1,2,3\}$. A comma is used to denote partial differentiation with respect to the relevant co-ordinate, i.e. $w_{, 1}=\partial w / \partial x_{1}$. We assume that the incremental fields admit the following through-the-thickness expansions in $x_{3} \in[-h / 2, h / 2]$

$$
\begin{align*}
& \chi^{(1)}=\boldsymbol{v}+w \boldsymbol{e}_{3}+x_{3} \boldsymbol{a}+\frac{1}{2} x_{3}^{2} \boldsymbol{b}+\frac{1}{6} x_{3}^{3} \boldsymbol{c}+\ldots, \tag{3.1a}\\
& \dot{p}=\dot{p}^{(0)}+x_{3} \dot{p}^{(1)}+\frac{1}{2} x_{3}^{2} \dot{p}^{(2)}+\ldots, \tag{3.1b}
\end{align*}
$$

where $\boldsymbol{v}, \boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ and $w, \dot{p}^{(0)}, \dot{p}^{(1)}, \dot{p}^{(2)}$ are functions of x_{1} and x_{2} (see also [25,26]). Note that, at leading order, the displacement of the mid-plane has been decomposed as the in-plane displacement $v_{\alpha} \boldsymbol{e}_{\alpha}$, plus the transverse displacement $w \boldsymbol{e}_{3}$. Consequently, it may be assumed that $v_{3}=0$ without loss of generality.

For the gradient operator, we use the decomposition

$$
\begin{equation*}
\operatorname{grad} \boldsymbol{f}=\boldsymbol{f}_{, i} \otimes \boldsymbol{e}_{i}=\boldsymbol{f}_{, \alpha} \otimes \boldsymbol{e}_{\alpha}+\boldsymbol{f}_{, 3} \otimes \boldsymbol{e}_{3}=\nabla \boldsymbol{f}+\boldsymbol{f}_{, 3} \otimes \boldsymbol{e}_{3} \tag{3.2}
\end{equation*}
$$

where ∇ denotes the 2D nabla operator through which the 2D divergence of a vector, $\nabla \cdot \boldsymbol{f}=$ $f_{\alpha, \alpha}$, of a tensor, $(\nabla \cdot \boldsymbol{\Sigma})_{j}=\Sigma_{\alpha j, \alpha}$, and the 2D gradient of a vector, $\nabla \boldsymbol{f}=f_{i, \beta} \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{\beta}$, may be
defined. Then, from (2.4) we obtain

$$
\begin{equation*}
\boldsymbol{\Gamma}=\boldsymbol{\Gamma}^{(0)}+x_{3} \boldsymbol{\Gamma}^{(1)}+\frac{1}{2} x_{3}^{2} \boldsymbol{\Gamma}^{(2)}+\ldots \tag{3.3}
\end{equation*}
$$

where

$$
\begin{align*}
& \boldsymbol{\Gamma}^{(0)}=\nabla \boldsymbol{v}+w_{, \alpha} \boldsymbol{e}_{3} \otimes \boldsymbol{e}_{\alpha}+\boldsymbol{a} \otimes \boldsymbol{e}_{3}, \tag{3.4a}\\
& \boldsymbol{\Gamma}^{(1)}=\nabla \boldsymbol{a}+\boldsymbol{b} \otimes \boldsymbol{e}_{3}, \tag{3.4b}\\
& \boldsymbol{\Gamma}^{(2)}=\nabla \boldsymbol{b}+\boldsymbol{c} \otimes \boldsymbol{e}_{3}, \tag{3.4c}
\end{align*}
$$

or, in terms of components,

$$
\begin{array}{llll}
\Gamma_{\alpha \beta}^{(0)}=v_{\alpha, \beta}, & \Gamma_{\alpha 3}^{(0)}=a_{\alpha}, & \Gamma_{3 \beta}^{(0)}=w_{, \beta}, & \Gamma_{33}^{(0)}=a_{3}, \\
\Gamma_{\alpha \beta}^{(1)}=a_{\alpha, \beta}, & \Gamma_{\alpha 3}^{(1)}=b_{\alpha}, & \Gamma_{3 \beta}^{(1)}=a_{3, \beta}, & \Gamma_{33}^{(1)}=b_{3}, \tag{3.5b}\\
\Gamma_{\alpha \beta}^{(2)}=b_{\alpha, \beta}, & \Gamma_{\alpha 3}^{(2)}=c_{\alpha}, & \Gamma_{3 \beta}^{(2)}=b_{3, \beta}, & \Gamma_{33}^{(2)}=c_{3} .
\end{array}
$$

Upon substituting (3.3) into (2.5), we obtain

$$
\begin{equation*}
\boldsymbol{\Sigma}=\boldsymbol{\Sigma}^{(0)}+x_{3} \boldsymbol{\Sigma}^{(1)}+\frac{1}{2} x_{3}^{2} \boldsymbol{\Sigma}^{(2)}+\ldots \tag{3.6}
\end{equation*}
$$

where, clearly,

$$
\begin{align*}
\Sigma_{j i}^{(0)} & =\mathcal{A}_{j i l k} \Gamma_{k l}^{(0)}+p \Gamma_{j i}^{(0)}-\dot{p}^{(0)} \delta_{i j} \tag{3.7a}\\
\Sigma_{j i}^{(1)} & =\mathcal{A}_{j i l k} \Gamma_{k l}^{(1)}+p \Gamma_{j i}^{(1)}-\dot{p}^{(1)} \delta_{i j} \tag{3.7b}
\end{align*}
$$

and so forth.
The stress-free boundary conditions at the top and bottom surfaces of the plate, Eqs.(2.3), extend to the incremental stress and give

$$
\begin{equation*}
\Sigma_{3 i}^{(0)} \pm \Sigma_{3 i}^{(1)} \frac{1}{2} h+\Sigma_{3 i}^{(2)} \frac{1}{8} h^{2} \pm \mathcal{O}\left(h^{3}\right)=0 \tag{3.8}
\end{equation*}
$$

at $x_{3}= \pm h / 2$. Then, adding and subtracting together the two conditions, we get, to leading order [17, Eq.(51)],

$$
\begin{align*}
\Sigma_{3 i}^{(0)} & =-\Sigma_{3 i}^{(2)} \frac{1}{8} h^{2} \tag{3.9a}\\
\Sigma_{3 i}^{(1)} & =-\Sigma_{3 i}^{(3)} \frac{1}{48} h^{2} \tag{3.9b}
\end{align*}
$$

We observe that Eq.(3.8) shows that the assumption that the foundation reaction acts directly at the plate mid-plane may be abandoned with no harm provided that, as it will appear later, the foundation is soft and its reaction is $\mathcal{O}\left(h^{3}\right)$.

The incremental incompressibility condition, $\operatorname{div} \boldsymbol{\chi}^{(1)}=0$, applied to the expansion (3.1a), gives

$$
\begin{equation*}
\nabla \cdot \boldsymbol{v}+x_{3} \nabla \cdot \boldsymbol{a}+\frac{1}{2} x_{3}^{2} \nabla \cdot \boldsymbol{b}+a_{3}+x_{3} b_{3}+\frac{1}{2} x_{3}^{2} c_{3}+\cdots=0 \tag{3.10}
\end{equation*}
$$

and because the above expression needs to vanish for any value of x_{3}, the coefficients of this polynomial in x_{3} vanish independently, i.e.

$$
\begin{equation*}
\nabla \cdot \boldsymbol{v}+a_{3}=0, \quad \nabla \cdot \boldsymbol{a}+b_{3}=0, \quad \nabla \cdot \boldsymbol{b}+c_{3}=0 \ldots \tag{3.11}
\end{equation*}
$$

We only consider flexural deformations, so we may set $v_{\alpha}=0$. It then follows, from the first of Eqs.(3.11), that

$$
\begin{equation*}
a_{3}=0 . \tag{3.12}
\end{equation*}
$$

Now, taking $i=\alpha$ in (3.9a) and making use of Eqs.(3.5a,3.7a), we obtain

$$
\begin{equation*}
\Sigma_{3 \alpha}^{(0)}=\mathcal{A}_{3 \alpha 3 \beta} a_{\beta}+\left(\mathcal{A}_{3 \alpha \beta 3}+p \delta_{\alpha \beta}\right) w_{, \beta}=\mathcal{O}\left(h^{2}\right) \tag{3.13}
\end{equation*}
$$

from which we deduce, with the help of Eqs. $(2.7,2.8)$ and $\sigma_{33}=0$, that

$$
\begin{equation*}
a_{\alpha}=-w_{, \alpha}+\mathcal{O}\left(h^{2}\right) \tag{3.14}
\end{equation*}
$$

To leading order, this result amounts to the well-known assumption in the Kirchhoff-Love plate theory of zero shear deformation along the cross-section, the latter remaining orthogonal to the mid-plane. Taking $i=3$ in (3.9a) yields $\dot{p}^{(0)}=\mathcal{O}\left(h^{2}\right)$ and it follows from Eqs.(3.5a,3.7a,3.14) that

$$
\begin{equation*}
\Sigma_{\alpha \beta}^{(0)}=\mathcal{O}\left(h^{2}\right) \tag{3.15}
\end{equation*}
$$

Together, the second equation of (3.11) and Eq.(3.14) give

$$
\begin{equation*}
b_{3}=-a_{\alpha, \alpha}=w_{, \alpha \alpha}+\mathcal{O}\left(h^{2}\right) . \tag{3.16}
\end{equation*}
$$

In a similar manner, taking $i=\alpha$ in Eq.(3.9b) and using (3.5b,3.7b,3.12), we obtain

$$
\begin{equation*}
b_{\alpha}=\mathcal{O}\left(h^{2}\right) \tag{3.17}
\end{equation*}
$$

which, up to $\mathcal{O}\left(h^{2}\right)$ terms in (3.1a), amounts to the Kirchhoff-Love hypothesis that cross-sections remain plane during bending. Using the last of Eqs.(3.11) with (3.17), we find $c_{3}=\mathcal{O}\left(h^{2}\right)$. Besides, taking $i=3$ gives the leading term in the incremental pressure

$$
\begin{equation*}
\dot{p}^{(1)}=\mathcal{A}_{33 \beta \alpha} a_{\alpha, \beta}+\left(p+\mathcal{A}_{3333}\right) b_{3}+\mathcal{O}\left(h^{2}\right) . \tag{3.18}
\end{equation*}
$$

Therefore, we have, up to $\mathcal{O}(h)$ terms,

$$
\begin{equation*}
a_{3}=0, \quad b_{\alpha}=0, \quad c_{3}=0, \quad \dot{p}^{(0)}=0 \tag{3.19}
\end{equation*}
$$

and the kinematics of the plate (3.1a) simplifies to

$$
\begin{equation*}
\boldsymbol{\chi}^{(1)}=w \boldsymbol{e}_{3}-x_{3} w_{, \alpha} \boldsymbol{e}_{\alpha}+\frac{1}{2} x_{3}^{2}\left(\nabla^{2} w\right) \boldsymbol{e}_{3}+\frac{1}{6} x_{3}^{3} c+\ldots \tag{3.20}
\end{equation*}
$$

It is emphasized that, in the foregoing derivations, \boldsymbol{c} rests undetermined.
A comparison of the results with the literature shows that the plate kinematics (3.20) encompasses Eqs. $(3.17,23,29,30)$ of Kaplunov et al. [18]. For instance, the linear-through-the-thickness- ζ expression for the axial displacement $U^{[2]}=\ell\left(u_{1}^{(0)}+\eta^{2} u_{1}^{(2)}\right)$, given by their Eqs.(3.17) and (3.23) $)_{1}$, using Eq.(3.31) and (3.33) corresponds to the 1D version of the second term in (3.20) here, given that $V^{[2]}=\ell\left(U_{2}^{(0,0)}+\eta^{2} U_{2}^{(0,2)}+\ldots\right)$ corresponds to w. Likewise, Eq.(3.23) $)_{2}$ brings in the quadratic term in the transverse displacement u_{2}, corresponding to the third term in (3.20), which is proportional to the curvature. Finally, Eq.(3.23) 3_{3} gives the last of Eqs.(3.19) for the leading term in the pressure increment. Conversely, the governing equation for pre-stressed plates (7.4) cannot be directly obtained from the static limit of (3.56) of [18], in light of the fact that the latter equation is obtained under the assumption of pre-stress $\sigma_{11}=\mathcal{O}(1)$, plate thickness $2 h$ and in the absence of the foundation. However, once such assumptions are modified, correspondence can be achieved. We observe that in the works of Dai \& Song [27] and Wang et al. [28] a theory for, respectively, compressible and incompressible thin plates is developed through an expansion of the plate kinematics about the lower surface $x_{3}=-h / 2$, which is then fed into the governing equations.

4. Variational formulation

We begin with the following general expression for the second variation of the total potential energy of a hyperelastic body B :

$$
\begin{equation*}
E_{B}^{\prime \prime}(0)=\int_{\mathrm{B}} \boldsymbol{\Sigma} \cdot \boldsymbol{\Gamma} \mathrm{~d} v \tag{4.1}
\end{equation*}
$$

The integration domain B may be the configuration of any pre-stressed body and, in the following, it is identified with the set (2.1). Hereinafter, a general material and a general state of pre-stress $\sigma_{\alpha \beta}$ are considered. Besides, in order to restrict the formulation to bending, we assume that the pre-stress scales as h^{2}, i.e. $\sigma_{\alpha \beta}=\mathcal{O}\left(h^{2}\right)$. The essence of the approach is to reduce the right-hand side of (4.1) consistently to order h^{3}, and then obtain the reduced boundary value problem by energy minimization [17]. Consequently, in the following derivation, terms of order higher than h^{3} are neglected.

With the help of the results established in the previous Sections, we can proceed to simplify the second variation (4.1). First, by substituting (3.3) and (3.6) into (4.1) and integrating along the thickness of the plate, we obtain, up to $\mathcal{O}\left(h^{3}\right)$ terms,

$$
\begin{align*}
E_{B}^{\prime \prime}(0) & =\int_{\omega}\left\{h \Sigma_{j i}^{(0)} \Gamma_{i j}^{(0)}+\frac{h^{3}}{12}\left(\frac{1}{2} \Sigma_{j i}^{(0)} \Gamma_{i j}^{(2)}+\Sigma_{j i}^{(1)} \Gamma_{i j}^{(1)}+\frac{1}{2} \Sigma_{j i}^{(2)} \Gamma_{i j}^{(0)}\right)\right\} \mathrm{d} S \\
& =\int_{\omega}\left\{h \Sigma_{j i}^{(0)} \Gamma_{i j}^{(0)}+\frac{h^{3}}{12}\left(\Sigma_{j i}^{(0)} \Gamma_{i j}^{(2)}+\Sigma_{j i}^{(1)} \Gamma_{i j}^{(1)}\right)\right\} \mathrm{d} S \\
& =\int_{\omega}\left\{h \Sigma_{j i}^{(0)} \Gamma_{i j}^{(0)}+\frac{h^{3}}{12}\left(\Sigma_{\alpha 3}^{(0)} b_{3, \alpha}+\Sigma_{\beta \alpha}^{(1)} a_{\alpha, \beta}\right)\right\} \mathrm{d} S, \tag{4.2}
\end{align*}
$$

where, in obtaining the last expression, use has been made of the results $(3.5 a, 3.5 b, 3.19)$ and of the boundary condition (3.9a). Indeed, the latter indicates that the term $\Sigma_{3 \alpha}^{(0)} c_{\alpha}+\Sigma_{33}^{(0)} c_{3}=\mathcal{O}\left(h^{2}\right)$ brings a higher order contribution which may be omitted in the round brackets. For the first term in (4.2), using Eqs.(3.5a,3.12,3.14,3.19), we get

$$
\begin{equation*}
\Sigma_{j i}^{(0)} \Gamma_{i j}^{(0)}=\Sigma_{\alpha 3}^{(0)} w_{, \alpha}+\Sigma_{3 \alpha}^{(0)} a_{\alpha}=\left(\Sigma_{\alpha 3}^{(0)}-\Sigma_{3 \alpha}^{(0)}\right) w_{, \alpha}+\mathcal{O}\left(h^{4}\right)=\sigma_{\alpha \beta} w_{, \alpha} w_{, \beta}+\mathcal{O}\left(h^{4}\right) \tag{4.3}
\end{equation*}
$$

and the last expression is deduced with the aid of (2.9). It is observed that $h \Sigma_{j i}^{(0)} \Gamma_{i j}^{(0)}=\mathcal{O}\left(h^{3}\right)$. For the second term in (4.2), we have

$$
\begin{equation*}
\int_{\omega} \Sigma_{\alpha 3}^{(0)} b_{3, \alpha} \mathrm{~d} S=\int_{\omega}\left\{\left(\Sigma_{\alpha 3}^{(0)} b_{3}\right)_{, \alpha}-\Sigma_{\alpha 3, \alpha}^{(0)} b_{3}\right\} \mathrm{d} S=\int_{\partial \omega} \Sigma_{\alpha 3}^{(0)} b_{3} n_{\alpha} \mathrm{d} s-\int_{\omega}\left(\nabla \cdot \Sigma^{(0)}\right)_{3} b_{3} \mathrm{~d} S, \tag{4.4}
\end{equation*}
$$

where n_{α} is the unit vector normal to the mid-plane boundary $\partial \omega$. On account of the incremental equilibrium equation in the absence of incremental body forces, i.e. $\operatorname{div} \boldsymbol{\Sigma}=\mathbf{o}$, and with (3.9b), it is $\Sigma_{\alpha i, \alpha}^{(0)}=-\Sigma_{3 i}^{(1)}=\mathcal{O}\left(h^{2}\right)$, whence, in the absence of incremental surface traction,

$$
\begin{equation*}
\int_{\omega} \Sigma_{\alpha 3}^{(0)} b_{3, \alpha} \mathrm{~d} S=\mathcal{O}\left(h^{2}\right) \tag{4.5}
\end{equation*}
$$

Thus, with Eq.(3.14), the second variation (4.2) becomes, to leading order,

$$
\begin{equation*}
E_{B}^{\prime \prime}(0)=\int_{\omega}\left\{h \sigma_{\alpha \beta} w_{, \alpha} w_{, \beta}-\frac{h^{3}}{12} \Sigma_{\beta \alpha}^{(1)} w_{, \alpha \beta}\right\} \mathrm{d} S \tag{4.6}
\end{equation*}
$$

Note that both terms in this expression are $\mathcal{O}\left(h^{3}\right)$ since we have assumed that $\sigma_{\alpha \beta}=\mathcal{O}\left(h^{2}\right)$. In fact, it is this very assumption that makes our expansion self-consistent.

Finally, we have, with the help of Eqs. $(3.5 b, 3.18)$ and up to $\mathcal{O}(1)$,

$$
\begin{align*}
\Sigma_{\beta \alpha}^{(1)} & =\mathcal{A}_{\beta \alpha l k} \Gamma_{k l}^{(1)}+p \Gamma_{\beta \alpha}^{(1)}-\dot{p}^{(1)} \delta_{\alpha \beta} \\
& =\mathcal{A}_{\beta \alpha \gamma \delta} a_{\delta, \gamma}+\mathcal{A}_{\beta \alpha 33} b_{3}+p a_{\beta, \alpha}-\dot{p}^{(1)} \delta_{\alpha \beta} \\
& =\left(\mathcal{A}_{\beta \alpha \gamma \delta}-\mathcal{A}_{33 \gamma \delta} \delta_{\alpha \beta}\right) a_{\delta, \gamma}+\left(\mathcal{A}_{\beta \alpha 33}-p \delta_{\alpha \beta}-\mathcal{A}_{3333} \delta_{\alpha \beta}\right) b_{3}+p a_{\beta, \alpha} \\
& =-\left(\mathcal{A}_{\beta \alpha \gamma \delta}-\mathcal{A}_{33 \gamma \delta} \delta_{\alpha \beta}\right) w_{, \delta \gamma}+\left(\mathcal{A}_{\beta \alpha 33}-p \delta_{\alpha \beta}-\mathcal{A}_{3333} \delta_{\alpha \beta}\right) w, \gamma \gamma-p w_{, \alpha \beta} \tag{4.7}
\end{align*}
$$

where we used (3.14) and (3.16) in the last equality. Therefore, the second variation of the potential energy can be written as

$$
\begin{equation*}
E_{B}^{\prime \prime}(0)=\int_{\omega}\left\{h \sigma_{\alpha \beta} w_{, \alpha} w_{, \beta}+\hat{\mathcal{D}}_{\alpha \beta \delta \gamma} w_{, \delta \gamma} w_{, \alpha \beta}\right\} \mathrm{d} S \tag{4.8}
\end{equation*}
$$

whose first and second terms are quadratic forms in ∇w and $\nabla \nabla w$, and where

$$
\begin{equation*}
\hat{\mathcal{D}}_{\alpha \beta \delta \gamma}=\frac{h^{3}}{12}\left\{\mathcal{A}_{\beta \alpha \gamma \delta}-\mathcal{A}_{33 \gamma \delta} \delta_{\beta \alpha}-\mathcal{A}_{33 \beta \alpha} \delta_{\gamma \delta}+\left(\mathcal{A}_{3333}+p\right) \delta_{\alpha \beta} \delta_{\delta \gamma}+p \delta_{\beta \gamma} \delta_{\alpha \delta}\right\} \tag{4.9}
\end{equation*}
$$

The fourth rank tensor $\hat{\mathcal{D}}$ exhibits the major symmetry, yet it may be equally well replaced by its minor-symmetric part \mathcal{D}, which has 6 independent component out of 16 . Furthermore, expanding the instantaneous moduli in powers of the thickness h about the undeformed state $\lambda_{i}=1$ only the
leading order term may be consistently retained, i.e. \mathcal{D} is a constant tensor. Indeed, we have [29, Eq.(3.16)]

$$
\begin{equation*}
\mathcal{A}_{\beta \alpha \gamma \delta}=\mu \delta_{\beta \gamma} \delta_{\alpha \delta}+\mathcal{O}(h) \tag{4.10}
\end{equation*}
$$

and $p=\mu$, whence Eq.(4.9) gives

$$
\begin{equation*}
\mathcal{D}_{\alpha \beta \delta \gamma}=\frac{1}{4} \mathrm{D}\left\{\delta_{\beta \gamma} \delta_{\alpha \delta}+\delta_{\beta \delta} \delta_{\alpha \gamma}+2 \delta_{\alpha \beta} \delta_{\delta \gamma}\right\}, \tag{4.11}
\end{equation*}
$$

where we have introduced the classical plate flexural rigidity [30]

$$
\begin{equation*}
\mathrm{D}=\frac{E h^{3}}{12\left(1-\nu^{2}\right)}, \quad \nu=\frac{1}{2} \tag{4.12}
\end{equation*}
$$

in light of the connection $\mu=E /(2(1+\nu))$ between the shear modulus, μ, and Young's modulus, E. In this context, the only nonzero elements of \mathcal{D} are

$$
\begin{equation*}
\mathcal{D}_{1111}=\mathcal{D}_{2222}=2 \mathcal{D}_{1122}=2 \mathcal{D}_{2211}=4 \mathcal{D}_{1212}=4 \mathcal{D}_{2112}=4 \mathcal{D}_{1221}=4 \mathcal{D}_{2121}=\mathrm{D} \tag{4.13}
\end{equation*}
$$

5. Plate governing equation

Let us define the moments (per unit length) by

$$
\begin{equation*}
M_{\alpha \beta}=-\mathcal{D}_{\alpha \beta \delta \gamma} w_{, \delta \gamma} . \tag{5.1}
\end{equation*}
$$

In particular, the bending moments are

$$
\begin{equation*}
M_{11}=-\mathrm{D}\left(w_{, 11}+\frac{1}{2} w_{, 22}\right), \quad M_{22}=-\mathrm{D}\left(w, 22+\frac{1}{2} w, 11\right), \tag{5.2}
\end{equation*}
$$

while the twisting moments are

$$
\begin{equation*}
M_{12}=M_{21}=-\frac{1}{2} \mathrm{D} w_{, 12} \tag{5.3}
\end{equation*}
$$

Likewise, let us define the shearing force (per unit length)

$$
\begin{equation*}
q_{\alpha}=h \sigma_{\alpha \beta} w_{, \beta}+M_{\beta \alpha, \beta} \tag{5.4}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
E_{B}^{\prime \prime}(0)=\int_{\omega} q_{\alpha} w{ }_{, \alpha} \mathrm{d} S-\int_{\partial \omega} M_{\alpha \beta} w_{, \alpha} n_{\beta} \mathrm{d} s \tag{5.5}
\end{equation*}
$$

Taking the first variation of (5.5) with respect to w, we obtain

$$
\begin{equation*}
\frac{1}{2} \delta E_{B}^{\prime \prime}(0)=-\int_{\omega} q_{\alpha, \alpha} \delta w \mathrm{~d} S+\int_{\partial \omega}\left(q_{\alpha} \delta w-M_{\beta \alpha} \delta w_{, \beta}\right) n_{\alpha} \mathrm{d} s \tag{5.6}
\end{equation*}
$$

The last term in the boundary integral is better expressed in terms of the normal and the tangential (with respect to the boundary) derivatives, making use of the formula [31, §36.4]

$$
\begin{equation*}
\delta w_{, \beta}=\tau_{\beta} \frac{\partial \delta w}{\partial \tau}+n_{\beta} \frac{\partial \delta w}{\partial n} . \tag{5.7}
\end{equation*}
$$

Setting to zero the first variation inside ω gives the plate governing equation

$$
\begin{equation*}
\nabla \cdot \boldsymbol{q}=0 \quad \text { in } \omega \tag{5.8}
\end{equation*}
$$

which reads

$$
\begin{equation*}
\mathrm{D} \nabla^{2} w-h \sigma_{11} w_{, 11}-2 h \sigma_{12} w_{, 12}-h \sigma_{22} w_{, 22}=0 \tag{5.9}
\end{equation*}
$$

and it amounts to enforcing out-of-plane equilibrium of a plate element. Here, $\nabla^{2} w=w, 1111+$ $2 w_{, 1122}+w_{, 2222}$ is the biharmonic operator applied to w. In the same fashion, setting to zero the first variation of the boundary integral yields the natural boundary conditions

$$
\begin{equation*}
V_{n} \delta w=0, \quad M_{n} \delta \frac{\partial w}{\partial n}=0, \quad \text { on } \partial \omega, \tag{5.10}
\end{equation*}
$$

where $V_{n}=q_{\alpha} n_{\alpha}+\frac{\partial}{\partial \tau}\left(\tau_{\beta} M_{\beta \alpha} n_{\alpha}\right)$ is the well known Kirchhoff equivalent shearing force and $M_{n}=n_{\beta} M_{\beta \alpha} n_{\alpha}$ is the bending moment, both acting on a surface with unit normal n_{α}. Setting
$\boldsymbol{n}=\cos \theta \boldsymbol{e}_{1}+\sin \theta \boldsymbol{e}_{2}$, they read

$$
\begin{equation*}
V_{n}=q_{n}-M_{n \tau, 1} \sin \theta+M_{n \tau, 2} \cos \theta \tag{5.11}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{n}=\frac{1}{2}\left(M_{11}+M_{22}\right)+\frac{1}{2}\left(M_{11}-M_{22}\right) \cos 2 \theta+M_{12} \sin 2 \theta \tag{5.12}
\end{equation*}
$$

where we have let $q_{n}=q_{1} \cos \theta+q_{2} \sin \theta$ and

$$
\begin{equation*}
M_{n \tau}=\frac{1}{2}\left(M_{22}-M_{11}\right) \sin 2 \theta+M_{12} \cos 2 \theta . \tag{5.13}
\end{equation*}
$$

6. Stress distribution and comparison with the classical theory

Eqs. $(3.15,4.7,4.9$) give the normal stress distribution (no sum over α in this section)

$$
\begin{equation*}
\Sigma_{\alpha \alpha}=x_{3} \Sigma_{\alpha \alpha}^{(1)}+\mathcal{O}\left(h^{2}\right)=-\frac{12}{h^{3}} x_{3} \mathcal{D}_{\alpha \alpha \beta \gamma} w_{, \beta \gamma}+\mathcal{O}\left(h^{2}\right) \tag{6.1}
\end{equation*}
$$

that is, using (4.13) and to leading order,

$$
\begin{equation*}
\Sigma_{11}=-\frac{12}{h^{3}} x_{3} \mathrm{D}\left(w_{, 11}+2 w_{, 22}\right), \quad \Sigma_{22}=-\frac{12}{h^{3}} x_{3} \mathrm{D}\left(w_{, 22}+2 w_{, 11}\right) \tag{6.2}
\end{equation*}
$$

It is a straightforward matter to show that, up to $\mathcal{O}\left(h^{3}\right)$, the bending moments (5.2) are obtained integrating along the plate thickness the normal stress couples, i.e.

$$
\begin{equation*}
M_{\alpha \alpha}=\int_{-h / 2}^{h / 2} x_{3} \Sigma_{\alpha \alpha} \mathrm{d} x_{3} \tag{6.3}
\end{equation*}
$$

Similarly, for the in-plane shear stress, we have, to leading order,

$$
\begin{equation*}
\Sigma_{\alpha \beta}=x_{3} \Sigma_{\alpha \beta}^{(1)}=-\frac{12}{h^{3}} x_{3} \mathcal{D}_{\alpha \beta \gamma \delta} w_{, \delta \gamma} \tag{6.4}
\end{equation*}
$$

which is symmetric owing to the minor symmetry of $\mathcal{D}_{\alpha \beta \gamma \delta}$ and it reads

$$
\begin{equation*}
\Sigma_{12}=\Sigma_{21}=-\frac{6}{h^{3}} x_{3} \mathrm{D} w_{, 12} \tag{6.5}
\end{equation*}
$$

By integrating along the thickness and up to $\mathcal{O}\left(h^{3}\right)$, it gives the twisting moment (5.3)

$$
\begin{equation*}
M_{\alpha \beta}=\int_{-h / 2}^{h / 2} x_{3} \Sigma_{\alpha \beta} \mathrm{d} x_{3} \tag{6.6}
\end{equation*}
$$

Eqs.(3.9) allow us to write the out-of-plane stress $\Sigma_{3 \alpha}$ consistently at $\mathcal{O}\left(h^{2}\right)$

$$
\begin{equation*}
\Sigma_{3 \alpha}=\frac{1}{2}\left(x_{3}^{2}-\frac{h^{2}}{4}\right) \Sigma_{3 \alpha}^{(2)} \tag{6.7}
\end{equation*}
$$

which amounts to the classical ad-hoc assumptions that the out-of-plane stress is of higher order than the in-plane stress and its distribution along the thickness is parabolic (cf. [30]). From Eqs. $(3.5 c, 2.8)$ and to leading order,

$$
\begin{equation*}
\Sigma_{3 \alpha}^{(2)}=\mathcal{A}_{3 \alpha \beta 3}\left(c_{\beta}+w_{, \gamma \gamma \beta}\right)+p\left(c_{\alpha}+w_{, \gamma \gamma \alpha}\right) \tag{6.8}
\end{equation*}
$$

which, in light of (4.10), reduces to

$$
\begin{equation*}
\Sigma_{3 \alpha}^{(2)}=\mu\left(c_{\alpha}+w_{, \gamma \gamma \alpha}\right) \tag{6.9}
\end{equation*}
$$

The so-far-undetermined vector c_{α} may be obtained, to leading order, through the incremental equilibrium equation $\operatorname{div} \boldsymbol{\Sigma}=$ o, i.e.

$$
\begin{equation*}
\Sigma_{3 \alpha}^{(2)}=-\Sigma_{\beta \alpha, \beta}^{(1)} \tag{6.10}
\end{equation*}
$$

whence its components are

$$
\begin{equation*}
c_{1}=3\left(w_{, 111}+3 w_{, 122}\right), \quad c_{2}=3\left(w_{, 222}+3 w_{, 112}\right) \tag{6.11}
\end{equation*}
$$

Figure 2. Buckling wrinkles with wavenumber k localised near the edge of a compressed thin plate with thickness h.

Thus, through Eqs.(5.4,6.4,6.6,6.10), the shearing force may be related to the out-of-plane stress distribution and the pre-stress as

$$
\begin{align*}
q_{\alpha} & =h \sigma_{\alpha \beta} w_{, \beta}+\int_{-h / 2}^{h / 2} x_{3} \Sigma_{\beta \alpha, \beta} \mathrm{d} x_{3}=h \sigma_{\alpha \beta} w_{, \beta}+\int_{-h / 2}^{h / 2} x_{3}^{2} \Sigma_{\beta \alpha, \beta}^{(1)} \mathrm{d} x_{3} \\
& =h \sigma_{\alpha \beta} w_{, \beta}-\int_{-h / 2}^{h / 2} x_{3}^{2} \Sigma_{3 \alpha}^{(2)} \mathrm{d} x_{3}=h \sigma_{\alpha \beta} w_{, \beta}-\frac{h^{3}}{12} \Sigma_{3 \alpha}^{(2)}, \tag{6.12}
\end{align*}
$$

which gives the classical formula $[30, \S 21]$, corrected to account for the pre-stress, namely

$$
\begin{equation*}
\Sigma_{3 \alpha \max }=\frac{3}{2 h}\left(q_{\alpha}-h \sigma_{\alpha \beta} w_{, \beta}\right)=\mathcal{O}\left(h^{2}\right) \tag{6.13}
\end{equation*}
$$

Besides, integrating Eq.(6.7) along the thickness and comparing with the last of Eqs.(6.12), we may write

$$
\begin{equation*}
q_{\alpha}=h \sigma_{\alpha \beta} w_{, \beta}+\int_{-h / 2}^{h / 2} \Sigma_{3 \alpha} \mathrm{~d} x_{3} \tag{6.14}
\end{equation*}
$$

which corresponds to the classical definitions of Q_{x} and Q_{y}, respectively, in Eqs. $(106,107)$ of [30], corrected to incorporate the pre-stress. The bending moments (5.2) as well as the twisting moment (5.3) correspond to the classical definitions $(101,102)$ of Timoshenko \& Woinowsky-Krieger [30, §21]. The Kirchhoff shearing force (5.11) amounts to the corresponding definition (g) of [30], provided that we take $M_{12}=M_{y x}=-M_{x y}$. The governing equation (5.9) coincides with the classical equation for combined bending and compression (or tension) of thin plates, first derived by Saint Venant [32]. Finally we observe that Eq.(3.20), up to $\mathcal{O}(h)$-terms, parallels the classical plate kinematics, the remaining terms being a higher order correction.

7. Edge wrinkling solution

Let us consider the hyperelastic plate B to occupy the semi-infinite region (Fig.1)

$$
\begin{equation*}
\mathrm{B}=\left\{\left|x_{1}\right|<\infty, 0 \leq x_{2}<\infty,\left|x_{3}\right| \leq h / 2\right\} . \tag{7.1}
\end{equation*}
$$

From now on, we assume that the e_{i} are directed along the principal axes of the underlying homogeneous deformation, in which case the deformation gradient has a diagonal representation, namely

$$
\begin{equation*}
\boldsymbol{F}=\operatorname{grad} \boldsymbol{\chi}^{(0)}=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) \tag{7.2}
\end{equation*}
$$

In particular, given that the plate edge corresponds to the plane $x_{2}=0$, we have $\theta=\pi / 2$ and the boundary conditions (5.11) and (5.12) now specialize to

$$
\begin{equation*}
2 M_{21,1}+M_{22,2}=0, \quad \text { and } \quad M_{22}=0, \tag{7.3}
\end{equation*}
$$

respectively. The governing equation Eq.(5.9) is now supplemented by the Winkler term (2.12)

$$
\begin{equation*}
\mathrm{D} \nabla^{4} w-h \sigma_{11} w_{, 11}-h \sigma_{22} w_{, 22}+\kappa w=0 \tag{7.4}
\end{equation*}
$$

It is emphasized that, for the expression (2.11) of the second variation $E^{\prime \prime}(0)$ to be consistent, we need to assume that $\kappa_{1}=\kappa / h^{3}$ is of order $\mathcal{O}(1)$. This assumption is analogous to the scaling requirement for a thin coated half-plane, see [33]. Similarly, the boundary conditions (7.3) may be written as

$$
\begin{equation*}
w_{, 11}+2 w_{, 22}=0, \quad 3 w_{, 112}+2 w_{, 222}=0 \tag{7.5}
\end{equation*}
$$

We look for a wrinkling solution to Eq.(7.4), which varies sinusoidally along the edge and decays away from it as $x_{2} \rightarrow \infty$, in the form $[9,13]$

$$
\begin{equation*}
w\left(x_{1}, x_{2}\right)=\Re\left\{\left[A_{1} \exp \left(-\gamma_{1} k x_{2}\right)+A_{2} \exp \left(-\gamma_{2} k x_{2}\right)\right] \exp \left(\imath k x_{1}\right)\right\} \tag{7.6}
\end{equation*}
$$

where A_{1}, A_{2} are yet-undetermined amplitude constants, γ_{1}, γ_{2} the attenuation coefficients, such that $\Re\left(\gamma_{\alpha}\right)>0$, and $k>0$ is the wavenumber, see Fig. 2 for an illustration. Substitution into the plate equation (7.4) shows that γ_{1} and γ_{2} are the roots of the bi-quadratic equation

$$
\begin{equation*}
\gamma^{4}-2 \gamma^{2}+1+\frac{\sigma+\hat{\kappa}}{d_{0}}=0 \tag{7.7}
\end{equation*}
$$

where the following $\mathcal{O}(1)$ quantities (with physical dimension of stress) have been introduced: $d_{0}=\mathrm{D} / h^{3}=\mu / 2, \sigma=\left(\sigma_{11}+\sigma_{22}\right) /(k h)^{2}$ and $\hat{\kappa}=\kappa_{1} / k^{4}=\kappa h /(k h)^{4}$.

Enforcing the boundary conditions (7.5) gives a homogeneous linear algebraic system of two equations in the two unknowns A_{1}, A_{2}

$$
\begin{aligned}
\left(1-2 \gamma_{1}^{2}\right) A_{1}+\left(1-2 \gamma_{2}^{2}\right) A_{2} & =0 \\
{\left[3-2 \gamma_{1}^{2}\right] \gamma_{1} A_{1}+\left[3-2 \gamma_{2}^{2}\right] \gamma_{2} A_{2} } & =0,
\end{aligned}
$$

which admits nontrivial solutions provided that the determinant of the coefficient matrix is zero. Hence we arrive at the bifurcation condition,

$$
\begin{equation*}
\left(\gamma_{1}-\gamma_{2}\right)\left[4 \gamma_{2} \gamma_{1}+3-2\left(\gamma_{1}^{2}+\gamma_{2}^{2}\right)+4 \gamma_{1}^{2} \gamma_{2}^{2}\right]=0 \tag{7.9}
\end{equation*}
$$

The bifurcation condition (7.9) is satisfied whenever $\gamma_{1}=\gamma_{2}$ or when the term in square brackets vanishes. It can be shown that the former case is spurious, whereas the latter yields

$$
\begin{equation*}
\sqrt{1+\frac{\sigma+\hat{\kappa}}{d_{0}}}+\frac{\sigma+\hat{\kappa}}{d_{0}}+\frac{3}{4}=0 \tag{7.10}
\end{equation*}
$$

and the plus sign has been chosen for the square root in light of the requirement $\Re\left(\gamma_{\alpha}\right)>0$. Eq.(7.10) expresses the bifurcation criterion for the appearance of wrinkles on the edge of a semiinfinite plate compressed by a lateral stress. It can be rationalized by squaring and then solved to yield

$$
\begin{equation*}
\sigma_{11}+\sigma_{22}=-(k h)^{2}\left[\frac{1}{4} d_{0}(1+2 \sqrt{2})+\hat{\kappa}\right] \tag{7.11}
\end{equation*}
$$

which shows that, as it was assumed, $\sigma_{11}+\sigma_{22}=\mathcal{O}\left(h^{2}\right)$. Besides, in the absence of the supporting foundation (i.e. $\kappa_{1}=0$), Eq.(7.11) is trivially satisfied by $k h=0$, which amounts to a zero prestress condition and, consequently, to a critical buckling stretch of $\lambda=1$. In other words, without the substrate, the plate would buckle as soon as it is laterally compressed.

Substituting the expansion $\lambda_{\alpha}=1+(k h)^{2} \lambda_{\alpha}^{(2)}$ and retaining terms up to h^{2}, we find the bifurcation condition

$$
\begin{equation*}
\frac{1}{2}\left(\lambda_{1}+\lambda_{2}\right)=1-\frac{(k h)^{2}}{96}\left(1+2 \sqrt{2}+\frac{8}{\left(\ell_{s} k\right)^{4}}\right) \tag{7.12}
\end{equation*}
$$

in terms of the characteristic length $\ell_{s}=\sqrt[4]{\mu / \kappa_{1}}=\sqrt[4]{3 \mathrm{D} / \kappa}$, expressing the relative flexural rigidity of the plate compared to the stiffness of the foundation. It is observed that $\ell_{s}=\mathcal{O}(1)$. In the case

$(\mathrm{kh})^{2}$
Figure 3. Bifurcation curves for the appearance of edge wrinkles with scaled wavenumber $k h$ on a thin plate made of incompressible elastic material with flexural rigidity D, resting on a Winkler foundation with elastic modulus $\kappa=3 \ell_{s}^{-4} \mathrm{D}$. The curves are for uni-axial pre-stress and foundation relative compliance $h / \ell_{s}=0$ (dotted), $1 / 3$ (solid) and $1 / 2$ (dashed). In the first case (no Winkler foundation), the plate buckles as soon as it is compressed laterally.

Figure 4. Bifurcation curves for the appearance of edge wrinkles on a thin plate resting on a local foundation whose elastic modulus $\kappa=\left(h / \ell_{s}\right)^{4} \mu k$ is proportional to the wavenumber k. The curves are for uni-axial pre-stress and foundation relative compliance $h / \ell_{s}=0$ (dotted), $1 / 3$ (solid) and $1 / 2$ (dashed).
of uni-axial pre-stress, $\lambda_{2}=1 / \sqrt{\lambda_{1}}$ and Eq.(7.12) becomes

$$
\begin{equation*}
\lambda_{1}=1-\frac{(k h)^{2}}{6}\left(\frac{1}{4}+\frac{\sqrt{2}}{2}+\frac{2}{\left(\ell_{s} k\right)^{4}}\right) \tag{7.13}
\end{equation*}
$$

In Fig.3, the bifurcation curves (7.13) are plotted considering three values of the foundation relative compliance h / ℓ_{s}. Typically, curves go through a maximum which determines the effective critical stretch of contraction as well as the edge wrinkles wavenumber. A similar pattern is shown

Figure 5. Edge (solid) vs. body (dashed) bifurcation curves for a thin incompressible elastic plate resting on a Winkler foundation with relative compliance $h / \ell_{s}=0,1 / 3,1 / 2$ in a state of bi-axial pre-stretch $\left(\lambda_{1}<1, \lambda_{2}=\right.$ 1.05). Body wrinkling takes place in compression and parallel to the edge (i.e. $n_{2}=0$); it occurs prior to edge wrinkling for $h / \ell_{s}=0$ and $1 / 3$ and after it for $h / \ell_{s}=1 / 2$.
in Fig. 4 where the foundation stiffness is taken to be proportional to the wavenumber k, which is the situation of a linear elastic half-space foundation considered in [20,34]. In contrast, when the foundation stiffness scales as the wavenumber squared, bifurcation curves become straight lines and edge wrinkling starts at zero wavenumber. This is indeed the nonlinear correction considered by Brau et al. [34] and it may be argued that appearance of edge wrinkles at zero wavenumber is a good test for such an assumption. Furthermore, any dependence of the foundation stiffness on powers of the wavenumber greater than 2 leads to bifurcation at $\lambda_{1}=1$ and zero wavenumber.

8. Body vs. edge wrinkling

The body wrinkling solution takes the form

$$
\begin{equation*}
w\left(x_{1}, x_{2}\right)=\Re\left\{\exp \left[\imath k\left(n_{1} x_{1}+n_{2} x_{2}\right)\right]\right\}, \quad n_{1}^{2}+n_{2}^{2}=1 \tag{8.1}
\end{equation*}
$$

which, when plugged into Eq.(7.4) and expanded for $\lambda_{\alpha}=1+(k h)^{2} \lambda_{\alpha}^{(2)}$, gives the wrinkling condition

$$
\begin{equation*}
\left(3-2 \lambda_{1}-\lambda_{2}\right) n_{1}^{2}+\left(3-\lambda_{1}-2 \lambda_{2}\right) n_{2}^{2}=\frac{1}{4}(k h)^{2}\left[1+2 \frac{1}{\left(\ell_{s} k\right)^{4}}\right] \tag{8.2}
\end{equation*}
$$

This equation may be plotted for different values of n_{2}, thus giving the bifurcation curves for bulk wrinkling. In the special case of uni-axial pre-stress along x_{1} (i.e. $n_{2}=0, n_{1}=1$), Eq.(8.2) simplifies to

$$
\begin{equation*}
\lambda_{1}=1-\frac{(k h)^{2}}{6}\left[1+\frac{2}{\left(\ell_{s} k\right)^{4}}\right] \tag{8.3}
\end{equation*}
$$

Comparing this equation with (7.13), it is concluded that, under uni-axial pre-stress, body wrinkling takes place in compression with $n_{2}=0$ at a critical stretch λ_{1}^{*} body which is a little smaller than the corresponding threshold for edge wrinkling λ_{1}^{*} edge $>\lambda_{1}^{*}$ body, i.e. edge wrinkling is preferred to body wrinkling. This result holds regardless of the foundation stiffness and it is not affected by the foundation responding to the wrinkles' wavenumber. However, in the general

Figure 6. Edge (solid) vs. body (dashed) bifurcation curves for a thin incompressible elastic plate resting on a local foundation with stiffness $\kappa=\left(h / \ell_{s}\right)^{4} \mu k$ proportional to the wavenumber k and relative compliance $h / \ell_{s}=$ $0,1 / 3,1 / 2$, in a state of bi-axial pre-stretch $\left(\lambda_{1}<1, \lambda_{2}=1.05\right)$. Body wrinkling takes place in compression and always prior to edge wrinkling.
bi-axial pre-stressed case, this is not always the case. Indeed, for $n_{2}=0$, Eq.(8.2) gives

$$
\begin{equation*}
\lambda_{1}=\frac{3-\lambda_{2}}{2}-\frac{(k h)^{2}}{8}\left[1+\frac{2}{\left(\ell_{s} k\right)^{4}}\right] \tag{8.4}
\end{equation*}
$$

which may be greater than the edge wrinkling bifurcation curve for $\lambda_{2}>1$. Fig. 5 shows that body buckling may be preferred to edge buckling in a bi-axially pre-stretched scenario, where transverse extension $\lambda_{2}=1.05$ favors body wrinkle formation in compression, i.e. $\lambda_{1}<1$, up to moderate values of foundation compliance. Similarly, Fig. 6 compares body and edge wrinkling for a thin plate supported by a Winkler foundation whose stiffness is proportional to the wavenumber k : in this situation, body wrinkling is preferred to edge wrinkling up to large values of foundation compliance.

9. Conclusions

In this paper, a consistent model for flexural edge wrinkling of bi-axially pre-stressed thin incompressible elastic plates, supported by a local elastic foundation, is developed and solved. The governing equations and boundary conditions are derived from minimizing a reduced form for the second variation of the potential energy, which is obtained by expanding the 3D kinematics through the plate thickness. Small deviations from the homogeneously pre-stressed state are investigated. Consistency of the expansion demands that, to obtain purely flexural deformations, the pre-stress scales as the plate thickness squared. Besides, it demands that the foundation stiffness scales as the plate thickness cubed. Within such assumptions, the classical KirchhoffLove theory of pre-stressed elastic plates is obtained. Furthermore, the ad-hoc assumptions on the stress distribution are also retrieved, while parabolic and cubic terms are introduced to correct the classical linear (along the thickness) plate kinematics. Edge wrinkling is described by means of bifurcation curves and it is compared with body wrinkling. It is found that edge wrinkling always occurs prior to body wrinkling in a uni-axially pre-stressed situation, regardless of the foundation stiffness. The bifurcation landscape is more involved in a bi-axial condition and body wrinkling may precede edge wrinkling for moderate foundation stiffness. The situation where the foundation reaction depends on the wavenumber k is also discussed. In particular, it is observed
that dependence on k^{2} determines buckling at zero wavenumber while dependence on $k^{\beta}, \beta>2$ produces buckling at $\lambda=1$. Such results may be employed to infer the mechanical behavior of the supporting matrix in flexible embedded systems, with special regard to biological tissues or organic thin-films.

Ethics statement

This work did not involve any active collection of human data.

Data accessibility

This work does not have any experimental data.

Competing interest

We have no competing interests.

Authors' contributions

MD and AN developed the model and the incremental approach; YF carried out the variational reduction. All authors gave final approval for publication.

Acknowledgements

No special acknowledgment.

Funding statement

MD gratefully acknowledges partial funding from the Università degli Studi di Modena e Reggio Emilia. AN is grateful to the National Group of Mathematical Physics (GNFM-INdAM) for partial support through the "Progetto Giovani Ricercatori 2015" scheme, prot. U2015/000125.

References

1. Li B, Cao YP, Feng XQ, Gao H.

Mechanics of morphological instabilities and surface wrinkling in soft materials: a review. Soft Matter. 2012;8(21):5728-5745.
2. Kabir AMR, Inoue D, Afrin T, Mayama H, Sada K, Kakugo A.

Buckling of Microtubules on a 2D Elastic Medium.
Scientific reports. 2015;5.
3. Sun Y, Rogers JA.

Inorganic semiconductors for flexible electronics.
Advanced Materials. 2007;19(15):1897-1916.
4. Someya T, Sekitani T, Iba S, Kato Y, Kawaguchi H, Sakurai T.

A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications.
Proceedings of the National Academy of Sciences of the United States of America. 2004;101(27):9966-9970.
5. Kudaibergenov A, Nobili A, Prikazchikova L.

On low-frequency vibrations of a composite string with contrast properties for energy scavenging fabric devices.
Journal of Mechanics of Materials and Structures. 2016;11(3):231-243.
6. Lipomi DJ, Tee BCK, Vosgueritchian M, Bao Z.

Stretchable organic solar cells.
Advanced Materials. 2011;23(15):1771-1775.
7. Konenkov YK.

A Rayleigh-type flexural wave.
Sov Phys Acoust. 1960;6:122-123.
8. Norris AN, Krylov VV, Abrahams ID.

Flexural edge waves and Comments on "A new bending wave solution for the classical plate equation" [J. Acoust. Soc. Am. 104, 2220-2222 (1998)].

The Journal of the Acoustical Society of America. 2000;107(3):1781-1784.
9. Norris AN.

Flexural edge waves.
Journal of Sound and Vibration. 1994;171(4):571-573.
10. Fu Y, Brookes DW.

Edge waves in asymmetrically laminated plates.
Journal of the Mechanics and Physics of Solids. 2006;54(1):1-21.
11. Lawrie J, Kaplunov J.

Edge waves and resonance on elastic structures: An overview.
Mathematics and Mechanics of Solids. 2012;17(1):4-16.
12. Kaplunov J, Prikazchikov DA, Rogerson GA, Lashab MI.

The edge wave on an elastically supported Kirchhoff plate.
The Journal of the Acoustical Society of America. 2014;136(4):1487-1490.
13. Kaplunov J, Nobili A.

The edge waves on a Kirchhoff plate bilaterally supported by a two-parameter elastic foundation.
Journal of Vibration and Control. 2015;p. 1077546315606838.
14. Ciarlet PG.

An introduction to differential geometry with applications to elasticity.
Journal of Elasticity. 2005;78(1-3):1-215.
15. Van der Heijden AMA.

WT Koiter's elastic stability of solids and structures.
Cambridge University Press Cambridge; 2009.
16. Steigmann DJ.

Two-dimensional models for the combined bending and stretching of plates and shells based on three-dimensional linear elasticity.
International Journal of Engineering Science. 2008;46(7):654-676.
17. Steigmann D, Ogden RW.

Classical plate buckling theory as the small-thickness limit of three-dimensional incremental elasticity.
Zeitschrift für Angewandte Mathematik und Mechanik. 2012;p. 1-14.
18. Kaplunov JD, Nolde EV, Rogerson GA.

A low-frequency model for dynamic motion in pre-stressed incompressible elastic structures. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 2000;456(2003):2589-2610.
19. Pichugin AV, Rogerson GA.

An asymptotic membrane-like theory for long-wave motion in a pre-stressed elastic plate. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. vol. 458. The Royal Society; 2002. p. 1447-1468.
20. Tovstik PY.

The vibrations and stability of a prestressed plate on an elastic foundation.
Journal of Applied Mathematics and Mechanics. 2009;73(1):77-87.
21. Nobili A.

Superposition principle for the tensionless contact of a beam resting on a Winkler or a Pasternak foundation.
Journal of Engineering Mechanics. 2012;139(10):1470-1478.
22. Nobili A, Radi E, Lanzoni L.

A cracked infinite Kirchhoff plate supported by a two-parameter elastic foundation.
Journal of the European Ceramic Society. 2014;34(11):2737-2744.
23. Ogden RW.

Non-linear elastic deformations.
Courier Corporation; 1997.
24. Chadwick P.

The application of the Stroh formalism to prestressed elastic media.
Mathematics and Mechanics of Solids. 1997;2(4):379-403.
25. Friedrichs KO, Dressler RF.

A boundary-layer theory for elastic plates.
Communications on Pure and Applied Mathematics. 1961;14(1):1-33.
26. Reiss EL, Locke S.

On the theory of plane stress.
Quart Appl Math. 1961;19.
27. Dai HH, Song Z.

On a consistent finite-strain plate theory based on three-dimensional energy principle. In: Proc. R. Soc. A. vol. 470. The Royal Society; 2014. p. 20140494.
28. Wang J, Song Z, Dai HH.

On a consistent finite-strain plate theory for incompressible hyperelastic materials. International Journal of Solids and Structures. 2016;78:101-109.
29. Dowaikh MA, Ogden RW.

On surface waves and deformations in a pre-stressed incompressible elastic solid.
IMA Journal of Applied Mathematics. 1990;44(3):261-284.
30. Timoshenko S, Woinowsky-Krieger S.

Theory of plates and shells. vol. 2.
McGraw-hill New York; 1959.
31. Gelfand IM, Fomin SV.

Calculus of variations.
Dover publications, inc.; 2000.
32. Clebsch RFA.

Théorie de l'élasticité des corps solides, Traduite par MM. Barré de Saint-Venant et Flamant, avec des Notes étendues de M. Barré de Saint-Venant.
Dunod, Paris. 1883;.
33. Cai Z, Fu Y.

Exact and asymptotic stability analyses of a coated elastic half-space.
International journal of solids and structures. 2000;37(22):3101-3119.
34. Brau F, Vandeparre H, Sabbah A, Poulard C, Boudaoud A, Damman P. Multiple-length-scale elastic instability mimics parametric resonance of nonlinear oscillators. Nature Physics. 2011;7(1):56-60.

