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There is growing interest in developing clinical prediction models (CPMs) to aid

local healthcare decision‐making. Frequently, these CPMs are developed in iso-

lation across different populations, with repetitive de novo derivation a common

modelling strategy. However, this fails to utilise all available information and

does not respond to changes in health processes through time and space. Alter-

natively, model updating techniques have previously been proposed that adjust

an existing CPM to suit the new population, but these techniques are restricted

to a single model. Therefore, we aimed to develop a generalised method for

updating and aggregating multiple CPMs. The proposed “hybrid method” re‐

calibrates multiple CPMs using stacked regression while concurrently revising

specific covariates using individual participant data (IPD) under a penalised

likelihood. The performance of the hybrid method was compared with existing

methods in a clinical example of mortality risk prediction after transcatheter

aortic valve implantation, and in 2 simulation studies. The simulation studies

explored the effect of sample size and between‐population‐heterogeneity on

the method, with each representing a situation of having multiple distinct CPMs

and 1 set of IPD. When the sample size of the IPD was small, stacked regression

and the hybrid method had comparable but highest performance across model-

ling methods. Conversely, in large IPD samples, development of a new model

and the hybrid method gave the highest performance. Hence, the proposed strat-

egy can inform the choice between utilising existing CPMs or developing a

model de novo, thereby incorporating IPD, existing research, and prior (clinical)

knowledge into the modelling strategy.
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1 | INTRODUCTION

Clinical prediction models (CPMs) aim to predict the presence (diagnostic) or future occurrence (prognostic) of a state or
event of interest, and are predominately derived in a single dataset by estimating the associations between the outcome
and multiple risk factors (covariates).1,2 Such research has proliferated in medical and statistical literature over the past
decade. For example, the PROGRESS series detailed a framework of prognostic research themes,3-6 while published
guidelines detail CPM development, validation, and impact assessment.2,7,8

Notably, post development, the predictive performance of a CPM needs to be evaluated in data samples from
populations that are similar (internal validation) and distinct (external validation) to that in which the model was
developed.7,9 Here, one is interested in the model's ability to separate cases and controls (discrimination), and the
agreement between the expected and observed outcome rates across the full risk range (calibration). Although validation
studies are rare in practice, they frequently find that the performance of an existing CPM drops when it is applied to
observations distinct to those used to derive the model.5,9 A common strategy to handle this problem is to develop a
new CPM while disregarding existing models.5,10-12 However, this approach fails to learn from existing CPMs that have
been developed for similar outcomes and settings, leads to many CPMs for the same prediction task, and is susceptible to
over‐fitting.12,13

Alternatively, the prior knowledge encapsulated by an existing CPM can be utilised through model updating
techniques, which follow a hierarchical structure to tune an existing CPM to suit the population of interest.1,10,11,14

Previous studies have demonstrated the advantages of updating existing CPMs, particularly when only sparse data are
available.10,11 However, such techniques can only be applied to a single existing CPM, while potentially useful
information from other available CPMs is lost. The advantages of combining information across multiple studies through
meta‐analysis is widely acknowledged,15 with the analogue concept in predictive modelling being model aggregation
methods, such as stacked regression.16-18 Nevertheless, utilising multiple existing CPMs and new data is not fully
understood. For instance, it is not clear how the existing CPMs should be selected for aggregation or how new (emerging)
risk factors should be added into the aggregate model.12 Hence, this study aims to combine model aggregation and model
updating to generalise the latter into the multiple‐model setting and formalise the former with respect to model/predictor
selection.

This paper considers a situation in which there is a new population with associated data where one is interested in
developing a CPM. We will henceforth refer to the data available in the new population as individual participant data
(IPD). The paper assumes that the modeller only has access to this one set of IPD and the parameter estimates from
multiple previously published CPMs; this contrasts to methods that develop a CPM using multiple sets of IPD by
meta‐analysis.19-21 Thus, the aim of the study is 2‐fold: (1) develop a hybrid method to generalise model updating into
the multiple model setting; and (2) study the properties of the method through simulation studies based on synthetic
and real‐world data. We illustrate the techniques in a clinical example of 30‐day mortality risk prediction following
transcatheter aortic valve implantation (TAVI).

The structure of the paper is as follows. Notation and existing methods are introduced in Section 2. In Section 3, we
extend the existing methods into the proposed hybrid method, and Section 4 presents the design and results from a
simulation study based on synthetic data. An application of the modelling methods to the TAVI clinical example is
described in Section 5, while Section 6 gives the design and results from a simulation study based on TAVI data. Finally,
Section 7 discusses the findings of the paper and concludes.
2 | PRELIMINARIES

Throughout, parameters denoted with a hat accent represent those estimated from the IPD, while parameters without
such notation denote those taken as fixed values from previously published research (although these also have an
associated uncertainty). Additionally, for ease of exposition, the interpretation of the vector X (as introduced later) varies
according to context. We assume that the outcome of interest is binary and that there are M existing logistic regression
CPMs, which have been derived for similar outcomes but in distinct populations. The ideas discussed in the paper
generalise naturally to models for time‐to‐event outcomes.

The jth existing logistic regression CPM (j = 1, …, M) aims to estimate the probability of a binary outcome occurring,
πj(X), using a logit‐linear combination of a hypothetical set of covariates, X = x1, …, xP, where P denotes the number of
covariates that are available across all populations (including the IPD). Specifically,
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log
πj Xð Þ

1−πj Xð Þ
� �

¼ β0j þ ∑
P

p¼1
βpj xp;

where βpj denotes the published coefficient for covariate p within the jth existing CPM; a covariate that is not present in a
given CPM simply has coefficient equal to zero. Explicitly, write Sj to be the subset of the P covariates that are included in
the jth existing CPM (ie, the subset of {p = 1,…,P} such that p ∈ Sj if and only if βpj ≠ 0). Here, we also allow covariates to
feature only in the IPD, and not in any of the existing CPMs.

Henceforth, let j = M + 1 represent the population of interest, with Xi,(M + 1) denoting the vector of P covariates for
observation i = 1, …, N in the IPD. Let the pth element of Xi,(M + 1) be denoted by xi,(M + 1),p. Similarly, let Yi,(M + 1) be the
corresponding binary outcome. Thus, we explicitly assume that the IPD records all P covariates. Consequently, the linear
predictor from each existing CPM can be calculated for observations i = 1, …, N in the IPD using the published
coefficients as

log
πj X i; Mþ1ð Þ
� �

1−πj X i; Mþ1ð Þ
� � !

¼ β0j þ ∑
p∈Sj

βpj xi; Mþ1ð Þ;p:

Here, πj(Xi,(M + 1)) represents the estimated event probability, based on existing model j, given the covariates for
observation i within the IPD. To reiterate, the goal is estimating the risk of outcome for a given observation in the
IPD using a model tailored for that population—denote this as π(M + 1)(Xi,(M + 1)).
2.1 | Individual model updating

Model updating methods have a hierarchical structure to tune a single existing CPM to the population of interest,
ranging from logistic re‐calibration to adding new risk factors into the model. We will briefly describe these techniques
in this subsection; further details can be found in the literature.10-12,14 Firstly, model re‐calibration fits a logistic
regression model in the IPD, with the linear predictor from exactly one existing CPM as the only covariate. Specifically,
given one existing CPM, j, logistic re‐calibration is given by modelling

log
π Mþ1ð Þ X i; Mþ1ð Þ

� �
1−π Mþ1ð Þ X i; Mþ1ð Þ

� � !
¼ bα0 þ bα1 log πj X i; Mþ1ð Þ

� �
1−πj X i; Mþ1ð Þ

� � !
;

which can be expanded as

log
π Mþ1ð Þ X i; Mþ1ð Þ

� �
1−π Mþ1ð Þ X i; Mþ1ð Þ

� � !
¼ bα0 þ bα1 β0j þ ∑

p∈Sj
βpj xi; Mþ1ð Þ;p

( )
:

The estimated parameters bα0 and bα1 are called the calibration intercept and slope, respectively; if the existing CPM
was perfectly calibrated within the IPD, then bα0 ¼ 0 and bα1 ¼ 1. Conversely, bα0<0 implies the jth existing CPM system-
atically over‐predicts risk in the IPD (and vice versa), whilebα1<1 implies the coefficients of the jth existing CPM are larger
than required within the IPD. Logistic re‐calibration ensures the existing model is well calibrated within the IPD, but it
will not change the discrimination because the relative positioning of each observation along the predicted risk range is
unaltered.

Hence, to improve the discrimination of a model one can change the relative weightings (prognostic effects) of indi-
vidual covariates. This can be achieved through model revision, which considers adjustments to parameters of individual
covariates after performing logistic re‐calibration. Explicitly, model revision can be expressed as

log
π Mþ1ð Þ X i; Mþ1ð Þ

� �
1−π Mþ1ð Þ X i; Mþ1ð Þ

� � !
¼ bα0 þ bα1 log πj X i; Mþ1ð Þ

� �
1−πj X i; Mþ1ð Þ

� � !
þ ∑

p∈Sj

bδp xi; Mþ1ð Þ;p: (1)

Here, the set of estimated parameters bδp ∀ p∈Sj
n o

are obtained using the IPD and represent the alterations of each

coefficient after model re‐calibration; hence, the pth coefficient following model revision is given by bα1βpj þ bδp. The
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likelihood ratio test can be used to determine which variables need revision.11 Similarly, model extension further
considers new terms to be added into the model. This is achieved similarly to Equation 1, except that the final sum is
over all P covariates, rather than only those in Sj.
2.2 | Model aggregation: stacked regression

Stacked regression weights the linear predictors from theM existing CPMs, calculated for each observation in the IPD, in
a logit‐linear combination.16,18 Hence, stacked regression simultaneously re‐calibrates and combines the existing CPMs
by giving an aggregate model of the form

log
π Mþ1ð Þ X i; Mþ1ð Þ

� �
1−π Mþ1ð Þ X i; Mþ1ð Þ

� � !
¼ bγ0 þ ∑

M

j¼1
bγj log πj X i; Mþ1ð Þ

� �
1−πj X i; Mþ1ð Þ

� � !
: (2)

Only bγ0;bγ1;…;bγM are estimated using the IPD, thereby estimating fewer parameters than alternative model averag-
ing‐based approaches.16 Subsequent predictions can be made by either calculating the linear predictors from each
existing CPM for the new observation and substituting into Equation 2, or by evaluating the stacked regression model

directly where the pth coefficient is given by ∑M
j¼1bγjβpj.

Classically, Equation 2 is estimated under the constraint that bγ1;…;bγM≥0 to aid interpretation.16 However, this is not
strictly required in the context of risk prediction. Within the current paper, we implemented stacked regression both
with and without the positivity constraint, and we found that all results were quantitatively similar across both assump-
tions. Therefore, in the interests of space, we here present only the results without the positivity constraint (the results of
stacked regression with the positivity constraint are available on request).
3 | HYBRID METHOD

While Equation 2 utilises information across multiple CPMs, revisions to covariates within each model, or the addition
of new covariates are not considered. One could apply the aforementioned model updating techniques (Equation 1)
before stacked regression, but this would lead to a 2‐step process and potential overfitting. Additionally, it is unknown
how the existing CPMs should be selected for stacked regression (with this choice potentially leading to biased parameter
estimates), and even a moderate number of existing CPMs could make Equation 2 unstable. Hence, we propose a gen-
eralisation of model updating into the multiple‐model setting to address these issues. Specifically, we propose modelling

log
π Mþ1ð Þ X i; Mþ1ð Þ

� �
1−π Mþ1ð Þ X i; Mþ1ð Þ

� � !
¼ bβ0;Mþ1 þ ∑

M

j¼1
bγj log πj X i; Mþ1ð Þ

� �
1−πj X i; Mþ1ð Þ

� � !
þ ∑

P

p¼1

bβp;Mþ1xi; Mþ1ð Þ;p: (3)

Hence, the new intercept is given by bβ0;Mþ1 þ∑M
j¼1bγjβ0j and the pth coefficient is given by ∑M

j¼1bγjβpj þ bβp;Mþ1.

Correspondingly, one can recover Equation 1 in the special case of M = 1. Importantly, covariates need not feature in
every existing CPM and covariates may feature in the final sum that are not in any of the existing CPMs.

To ensure existing CPMs are only revised to an extent supported by the IPD, we propose estimating the parameters by
penalised maximum likelihood, where the penalty is equivalent to imposing a prior distribution with heavy tails and a

sharp peak at zero. Let bθ ¼ bγ1;bγ2;…;bγM ;bβ1;Mþ1;…;
bβP;Mþ1

� �
, then parameters were estimated by maximising the

following penalised log‐likelihood across all observations i = 1, …, N in the IPD:

∑
N

i¼1
yi log π Mþ1ð Þ X i; Mþ1ð Þ

� �� �þ 1−yið Þ log 1−π Mþ1ð Þ X i; Mþ1ð Þ
� �� �� 	

−λ ∑
MþP

r¼1
νr bθr


 


: (4)

This is, therefore, a lasso regression22; consequently, some coefficients can be estimated as zero and ifbγj ¼ 0 then the

jth existing CPM will be dropped from the model, thereby allowing selection of existing CPMs. The value of λ is selected
through cross‐validation to minimise the deviance. Additionally, νr are chosen prior to modelling to allow differential
penalisation across parameters and can be used to incorporate prior (clinical) preference for specific covariates or
existing CPMs. In this study, we considered 3 modelling cases (Table 1): (1) set νr = 1 ∀ r = 1, …, M + P, (2) set
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ν1 = … = νM = 0 and νM + 1 = … = νM + P = 1, and (3) set νr ¼ 1bθRIDGEr




 


 for each r = 1, …, M + P where bθRIDGEr is the

estimate for parameter r obtained by ridge regression. Here, modelling case 1 implies that all parameters receive equal

penalty, modelling case 2 implies that only the adjustment parameters bβ1;Mþ1;…;
bβP;Mþ1

� �
are penalised, and modelling

case 3 implies that parameters with strong covariate‐outcome associations are penalised less than parameters with
weaker associations. Modelling case 3 is similar to adaptive lasso, except that the weights are obtained using ridge regres-
sion rather than the standard approach of least squares estimation. Within modelling case 3, one first fits Equation 3
using ridge regression to obtain a set of coefficient estimates; Equation 3 is then re‐fit using the inversed‐absolute value
of each coefficient as νr within Equation 4 (Table 1). We implemented the hybrid method in R version 3.3.1,23 using the
glmnet package.24
4 | SYNTHETIC SIMULATION STUDY

4.1 | Simulation design

Details of the simulation procedure are given in Supporting Information A and follow a similar approach to previous
simulation studies.13 In summary, we generated data for 6 populations, with each including 50 covariates that were
simulated as a mixture of continuous and binary variables. The covariates were generated within 10 clusters of serially
correlated variables to mimic multiple risk factors that measure similar characteristics. Five of the populations (each of
size 5000) represented those previously used to derive a CPM. Thus,M= 5 existing CPMswere derived in distinct and poten-
tially heterogeneous populations, with each including a potentially overlapping subset of the 50 simulated covariates
(resampled within each iteration). The sixth population acted as the IPD onwhich one is interested in deriving a newmodel.
The size of the IPD was varied through 200, 300, 500, 1000, 2000, and 5000 observations and was used to apply model
updating, stacked regression, and the hybrid method. Additionally, a new model was derived in the IPD using backwards
selection with Akaike Information Criterion (AIC) and by ridge regression. For all modelling strategies, the covariates that
were available in the IPD were restricted to be exactly those that were included across the 5 existing CPMs.

Binary responses (mean event rate of 25%) were generated from a population‐specific generating logistic regression
model, the coefficients of which were assumed (without loss of generality) to be those at the “start” of each cluster of
serially correlated variables. Predictor effect heterogeneity between the populations was induced by applying N(0,σ2)
TABLE 1 Details of each modelling case considered in the current study, with each altering how the weights (νr) were pre‐defined when

fitting the hybrid method (Equations 3 and 4)

Modelling
case Process to pre‐define the weights (νr) in Equation 4

1 Set νr = 1 for all parameters in the model—ie,

νr ¼
1 for bγ1;bγ2;…;bγM
1 for bβ1;Mþ1;…;

bβP;Mþ1

(
2 Set νr = 1 for any parameter representing an adjustment to individual covariates, and set νr = 0 for all weights of existing

CPMs—ie,

νr ¼
0 for bγ1;bγ2;…;bγM
1 for bβ1;Mþ1;…;

bβP;Mþ1

(
3 Perform the following steps:

1. Fit Equation 3 using ridge regression

2. Store the estimates of the coefficients—call these bθRIDGE ¼ bγRIDGE1 ;…;bγRIDGEM ;bβRIDGE1;Mþ1 ;…;
bβRIDGEP;Mþ1

� �
3. Fit Equation 3 again using the likelihood in Equation 4, and set each νr to the inversed‐absolute value of the correspondingbθRIDGE—ie,

νr ¼ 1bθRIDGEr
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variation to the coefficients of the population‐specific generating logistic regression model (see Martin et al13 and
Supporting Information A for details). Higher values of σ induce greater differences in covariate‐outcome associations
across the populations; we varied σ through 0, 0.125, 0.25, 0.375, 0.5, and 0.75.

The performance of the 5 existing CPMs, the 5 updated existing CPMs, stacked regression, the hybridmethod, andmodel
re‐development was assessed in a further independent sample (of size 5000) drawn from the same distribution as the
simulated IPD. This represents a validation study using independent samples from the same underlying population as that
for model derivation. Performance was assessed in terms of mean square error in the predicted risks, calibration, and
discrimination. Calibration was quantified with a calibration intercept and slope, with reference values of zero and one,
respectively.25 Discrimination was quantified with the area under the receiver operating characteristic curve (AUC).

All simulation scenarios (ie, each combination of IPD sample size and σ) were repeated over 1000 iterations, with
mean performance estimates and empirical standard errors calculated. The R code is available in the online Supporting
Information.
4.2 | Simulation results

The hybrid method consistently outperformed individual model revision in terms of calibration, discrimination, and
mean square error (Figure 1, Table 2 and Supporting Information A: Table A1). This highlights the advantage of
incorporating evidence from multiple CPMs while concurrently revising individual parameters using the IPD. Thus,
the hybrid method (across the 3 modelling cases) resulted in the lowest mean square error in the predicted risks of all
modelling strategies (Supporting Information A: Table A1).

The calibration slope of the ridge regression model was significantly different from one for IPD of smaller than 500
observations (Figure 1). By contrast, the hybrid methods were well calibrated when the IPD had over 200 observations.
Modelling case 1 of the hybrid method (that penalised all parameters equally) was susceptible to over‐shrinkage of the
parameter estimates, particularly at low IPD sample sizes where the calibration slope was significantly above one.

Regarding discrimination, individual model revision had higher AUC than stacked regression in situations of large
predictor‐effect heterogeneity (σ > 0.5) and large IPD sample sizes (n > 1000) (Table 2). When the IPD had 200 or 300
observations, and there was low predictor effect heterogeneity across populations (σ < 0.125), stacked regression and
the hybrid methods had similar AUC values, with both being higher than the re‐development methods. In the reverse
situation of large IPD samples, ridge regression and the hybrid method had similar AUC values, with these being
FIGURE 1 Calibration slope of stacked

regression, the hybrid models, and ridge

regression for the synthetic simulation

study across all between‐population

heterogeneity (σ) and individual

participant data (IPD) sample sizes.

Results for the individual model updating

and the re‐development by AIC selection

have been removed from the plot for

clarity [Colour figure can be viewed at

wileyonlinelibrary.com]

http://wileyonlinelibrary.com


TABLE 2 AUC (standard error) results for the synthetic simulation study. Bold items indicate the maximum AUC in each combination of

IPD sample size and value of σ. For clarity, results for IPD sample sizes of 300 and 2000 are given in Supporting Information A: Table A2

Model IPD Sample Size σ = 0.000 σ = 0.125 σ = 0.250 σ = 0.375 σ = 0.500 σ = 0.750

Model revisiona 200 0.677 (0.009) 0.673 (0.009) 0.674 (0.009) 0.680 (0.009) 0.691 (0.008) 0.722 (0.008)

Stacked regression 200 0.712 (0.008) 0.710 (0.008) 0.709 (0.008) 0.708 (0.008) 0.714 (0.008) 0.728 (0.008)

Hybrid case 1 200 0.707 (0.008) 0.707 (0.008) 0.711 (0.008) 0.720 (0.008) 0.735 (0.008) 0.769 (0.007)

Hybrid case 2 200 0.709 (0.008) 0.708 (0.008) 0.713 (0.008) 0.720 (0.008) 0.733 (0.008) 0.766 (0.008)

Hybrid case 3 200 0.697 (0.008) 0.697 (0.008) 0.704 (0.008) 0.712 (0.008) 0.728 (0.008) 0.764 (0.008)

Ridge regression 200 0.681 (0.009) 0.686 (0.009) 0.698 (0.008) 0.709 (0.008) 0.725 (0.008) 0.760 (0.008)

Model revisiona 500 0.684 (0.009) 0.682 (0.009) 0.689 (0.009) 0.698 (0.008) 0.712 (0.008) 0.740 (0.008)

Stacked regression 500 0.721 (0.008) 0.719 (0.008) 0.718 (0.008) 0.721 (0.008) 0.723 (0.008) 0.735 (0.008)

Hybrid case 1 500 0.722 (0.008) 0.723 (0.008) 0.732 (0.008) 0.745 (0.008) 0.757 (0.008) 0.790 (0.007)

Hybrid case 2 500 0.721 (0.008) 0.722 (0.008) 0.730 (0.008) 0.742 (0.008) 0.754 (0.008) 0.788 (0.007)

Hybrid case 3 500 0.719 (0.008) 0.720 (0.008) 0.729 (0.008) 0.742 (0.008) 0.754 (0.008) 0.788 (0.007)

Ridge regression 500 0.708 (0.008) 0.713 (0.008) 0.724 (0.008) 0.738 (0.008) 0.750 (0.008) 0.784 (0.007)

Model revisiona 1000 0.688 (0.009) 0.687 (0.009) 0.694 (0.009) 0.707 (0.008) 0.719 (0.008) 0.748 (0.008)

Stacked regression 1000 0.726 (0.008) 0.722 (0.008) 0.721 (0.008) 0.724 (0.008) 0.724 (0.008) 0.742 (0.008)

Hybrid case 1 1000 0.729 (0.008) 0.729 (0.008) 0.738 (0.008) 0.752 (0.008) 0.764 (0.008) 0.798 (0.007)

Hybrid case 2 1000 0.728 (0.008) 0.728 (0.008) 0.736 (0.008) 0.751 (0.008) 0.763 (0.008) 0.796 (0.007)

Hybrid case 3 1000 0.728 (0.008) 0.728 (0.008) 0.737 (0.008) 0.751 (0.008) 0.763 (0.008) 0.797 (0.007)

Ridge regression 1000 0.722 (0.008) 0.724 (0.008) 0.733 (0.008) 0.748 (0.008) 0.760 (0.008) 0.794 (0.007)

Model revisiona 5000 0.689 (0.009) 0.692 (0.009) 0.701 (0.008) 0.713 (0.008) 0.73 (0.008) 0.755 (0.008)

Stacked regression 5000 0.728 (0.008) 0.725 (0.008) 0.724 (0.008) 0.727 (0.008) 0.732 (0.008) 0.743 (0.008)

Hybrid case 1 5000 0.734 (0.008) 0.736 (0.008) 0.745 (0.008) 0.761 (0.008) 0.776 (0.007) 0.805 (0.007)

Hybrid case 2 5000 0.734 (0.008) 0.736 (0.008) 0.745 (0.008) 0.760 (0.008) 0.776 (0.007) 0.804 (0.007)

Hybrid case 3 5000 0.734 (0.008) 0.736 (0.008) 0.745 (0.008) 0.761 (0.008) 0.776 (0.007) 0.805 (0.007)

Ridge regression 5000 0.733 (0.008) 0.735 (0.008) 0.744 (0.008) 0.759 (0.008) 0.775 (0.007) 0.803 (0.007)

aResults of model revision are from one of the simulated existing CPMs, with results being quantitatively similar across all 5 simulated existing CPMs.
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significantly higher than stacked regression. As the between‐population‐heterogeneity (σ) increased, the absolute differ-
ence between the AUC of the data generating model and the AUC of the stacked regression model increased, but this
was not observed for the hybrid method (Figure 2). This is expected because the hybrid method allows the revision of
individual parameters when prognostic effects in the population of interest are markedly different to the existing CPMs.
5 | APPLICATION TO TAVI RISK PREDICTION

Aortic stenosis is a common heart valve disease in Europe and North America, largely caused by an age‐related degen-
eration and calcification. TAVI is a non‐invasive and efficacious treatment option for patients with aortic stenosis who
are deemed high‐operative risk.26,27 Consequently, assessment of a patient's procedural risk forms an important part of
the decision‐making process for treatment of aortic stenosis. Currently available CPMs for predicting 30‐day mortality
risk post TAVI are scarce, but 4 existing models were considered in this study; namely, the German Aortic Valve
model,28 the FRANCE‐2 model,29 the Italian OBSERVANT model,30 and the American College of Cardiology model.31

A summary of the covariates and corresponding coefficients of each existing TAVI‐CPM are given in Table 3. Notably,
while each model shares similar risk factors, the definitions can vary between models (eg, age bands) and some risk
factors are only included in a subset of the models (eg, gender). However, stacked regression and the hybrid method
allow the existing CPMs to have varying sets of risk factors, unlike alternative model aggregation methods.17



FIGURE 2 Difference between the

generating model AUC and the AUC of

each modelling method for the synthetic

simulation study across all between‐

population heterogeneity (σ) and
individual participant data (IPD) sample

sizes. Results for the individual model

updating and the re‐development by AIC

selection have been removed from the plot

for clarity [Colour figure can be viewed at

wileyonlinelibrary.com]

8 MARTIN ET AL.
The UK TAVI registry was used as the IPD, which included all 6339 patients who underwent TAVI between 2009 and
2014 across the 32 TAVI centres in England and Wales.32 Model updating, stacked regression, and the hybrid method
were applied to the existing TAVI‐CPMs in the UK TAVI registry and a new model was derived by AIC backwards selec-
tion and by ridge regression. Exactly those covariates that were included in the existing TAVI‐CPMs were considered
when applying each of the modelling techniques; a sensitivity analysis was undertaken that removed this restriction.
Specifically, frailty is thought to be predictive of mortality after TAVI.33 Two measures of frailty were available in the
UK TAVI registry, which were not included in any existing TAVI‐CPM; namely, the KATZ index of activities of daily
living score34 and the Canadian Study of Health and Aging frailty scale.35 Therefore, the sensitivity analysis allowed
these frailty measures to be considered within the modelling techniques.

Predictive performance of all models was assessed in terms of calibration and discrimination, with all models
validated using bootstrapping with 100 replications to correct for in‐sample optimism.1,36 All missing data within the
UK TAVI registry were imputed using multiple imputation, with 10 imputed datasets generated.37 The endpoint of
30‐day mortality was included in the imputation models of missing covariates.38 Note that the purpose here was not
to provide a validation of the TAVI‐CPMs in the UK TAVI registry, neither was it to develop a new CPM for UK TAVI
patients; rather, the aim was to illustrate and compare the proposed method in a real‐world clinical example.
5.1 | TAVI application results

The mean 30‐day mortality rate observed in the UK TAVI registry was 5.14%. While the original TAVI‐CPMs were
miscalibrated and had low discriminationwhen applied in theUK registry,model re‐calibration resulted inwell‐calibrated
models both before and after bootstrap correction (Table 4). The increase in AUC betweenmodel re‐calibration andmodel
revision wasmarginal because few of the parameters were adjusted after re‐calibration. Additionally, the discrimination of
the stacked regression model was similar to that of the individual TAVI‐CPMs because the majority of the weighting was
applied to the German Aortic Valve model, the FRANCE‐2 model and the American College of Cardiology model, thus
resulting in similar coefficient values across the revised and stacked regression models (Supporting Information B:
Table B1). The discrimination of the hybrid method was indistinguishable across modelling cases 1, 2, and 3, with each
having higher AUCs than those obtained by individual model revision (Table 4). The hybrid and re‐development
approaches shared similar predictive performance and coefficient estimates were similar across stacked regression, hybrid,
and re‐development (Table B1).

http://wileyonlinelibrary.com


TABLE 3 Coefficients from each of the previously published TAVI models

Covariate German AV FRANCE‐2 OBSERVANT ACC Coefficient Differencea

Age 66–70 0.461 ‐ ‐ ‐ 0.461

Age 71–75 0.909 ‐ ‐ ‐ 0.909

Age 76–80 1.292 ‐ ‐ ‐ 1.292

Age 81–85 1.782 ‐ ‐ ‐ 1.782

Age > 85 2.351 ‐ ‐ ‐ 2.351

Age ≥ 90 ‐ 0.420 ‐ ‐ 0.420

Age per 5 years ‐ ‐ ‐ 0.122 0.122

Female 0.357 ‐ ‐ ‐ 0.357

BMI <22 kg/m2 0.359 ‐ ‐ ‐ 0.359

BMI <18.5 kg/m2
‐ 0.820 ‐ ‐ 0.820

BMI 18.5–29.9 kg/m2
‐ 0.410 ‐ ‐ 0.410

BMI >35 kg/m2 0.393 ‐ ‐ ‐ 0.393

NYHA class IV 0.532 0.580 0.600 0.223 0.377

MI within 3 weeks 0.825 ‐ ‐ ‐ 0.825

Critical pre‐op 0.662 0.870 0.750 ‐ 0.870

Pulmonary hypertension 0.398 0.370 0.600 ‐ 0.600

No sinus rhythm 0.343 ‐ ‐ ‐ 0.343

LVEF 30–50% 0.283 ‐ ‐ ‐ 0.283

LVEF <30% 0.570 ‐ ‐ ‐ 0.570

LVEF <40% ‐ ‐ 0.450 ‐ 0.450

Prior cardiac surgery 0.307 ‐ ‐ ‐ 0.307

Arterial vessel disease 0.359 ‐ ‐ ‐ 0.359

COPD 0.318 0.500 ‐ 0.511 0.511

Dialysis 1.164 1.060 ‐ 1.179 1.179

Emergency 1.057 ‐ ‐ ‐ 1.057

Non‐TF access ‐ ‐ ‐ 0.673 0.673

TA access ‐ 0.700 ‐ ‐ 0.700

Other access ‐ 0.780 ‐ ‐ 0.780

eGFR <45 mL/min ‐ ‐ 0.900 ‐ 0.900

eGFR per 5 units ‐ ‐ ‐ −0.069 0.069

Diabetes ‐ ‐ 0.600 ‐ 0.600

Prior BAV ‐ ‐ 0.450 ‐ 0.450

Acuity category 2b ‐ ‐ ‐ 0.451 0.451

Acuity category 3b ‐ ‐ ‐ 0.993 0.993

Acuity category 4b ‐ ‐ ‐ 1.207 1.207

aThe difference in coefficient value for each covariate across the 4 TAVI‐CPMs (ie, the maximum coefficient value minus the minimum coefficient value for each

variable).
bDefined as a composite of procedure urgency, pre‐procedure shock, inotropes, mechanical assist device, or cardiac arrest.31

Abbreviations: ACC, American College of Cardiology model; BAV, balloon aortic valvuloplasty; BMI, body mass index; COPD, chronic obstructive pulmonary disease;

eGFR, estimated glomerular filtration rate; German AV, German Aortic Valve model; LVEF, left ventricular ejection fraction; MI, myocardial infarction; TF,

transfemoral; TA, transapical.
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TABLE 4 Performance measures before (apparent) and after bootstrap corrected optimism when modelling in the whole TAVI dataset.

Note that no correction is needed when validating the original models because no new parameters are estimated. A calibration intercept and

slope of zero and one, respectively, would indicate a well‐calibrated model

Calibration Intercept (95% CI) Calibration Slope (95% CI) AUC (95% CI)

Model Apparent Bootstrap Apparent Bootstrap Apparent Bootstrap

Original CPMs

German AV −0.41 (−0.53, −0.30) N/A 0.48 (0.35, 0.61) N/A 0.60 (0.57, 0.64) N/A

FRANCE‐2 −0.65 (−0.76, −0.54) N/A 0.71 (0.53, 0.88) N/A 0.63 (0.60, 0.66) N/A

OBSERVANT −0.36 (−0.47, −0.24) N/A 0.35 (0.21, 0.50) N/A 0.56 (0.53, 0.59) N/A

ACC −0.01 (−0.12, 0.10) N/A 0.69 (0.53, 0.85) N/A 0.64 (0.61, 0.67) N/A

Model recalibration

German AV 0.00 (−0.11, 0.11) 0.00 (−0.11, 0.11) 1.00 (0.73, 1.27) 1.02 (0.75, 1.29) 0.60 (0.57, 0.64) 0.60 (0.57, 0.64)

FRANCE‐2 0.00 (−0.11, 0.11) 0.00 (−0.11, 0.11) 1.00 (0.76, 1.24) 1.02 (0.78, 1.26) 0.63 (0.60, 0.66) 0.63 (0.60, 0.66)

OBSERVANT 0.00 (−0.11, 0.11) 0.00 (−0.11, 0.11) 1.00 (0.60, 1.40) 1.07 (0.66, 1.47) 0.56 (0.53, 0.59) 0.56 (0.53, 0.60)

ACC 0.00 (−0.11, 0.11) 0.00 (−0.11, 0.11) 1.00 (0.77, 1.23) 1.02 (0.79, 1.25) 0.64 (0.61, 0.67) 0.64 (0.61, 0.67)

Model revision

German AV 0.00 (−0.11, 0.11) 0.00 (−0.11, 0.11) 1.00 (0.78, 1.22) 0.87 (0.65, 1.10) 0.63 (0.59, 0.66) 0.61 (0.58, 0.64)

FRANCE‐2 0.00 (−0.11, 0.11) 0.00 (−0.11, 0.11) 1.00 (0.79, 1.21) 0.94 (0.72, 1.15) 0.64 (0.61, 0.67) 0.63 (0.60, 0.66)

OBSERVANT 0.00 (−0.11, 0.11) 0.00 (−0.11, 0.11) 1.00 (0.69, 1.31) 0.93 (0.62, 1.24) 0.59 (0.55, 0.62) 0.58 (0.54, 0.61)

ACC 0.00 (−0.11, 0.11) 0.00 (−0.11, 0.11) 1.00 (0.79, 1.21) 0.95 (0.73, 1.16) 0.64 (0.61, 0.67) 0.64 (0.60, 0.67)

Stacked regression 0.00 (−0.11, 0.11) 0.00 (−0.11, 0.11) 1.00 (0.79, 1.21) 0.98 (0.77, 1.19) 0.64 (0.61, 0.68) 0.64 (0.61, 0.67)

Hybrid method

Case 1 0.00 (−0.11, 0.11) 0.00 (−0.11, 0.11) 1.24 (0.96, 1.53) 1.08 (0.80, 1.36) 0.67 (0.64, 0.71) 0.64 (0.61, 0.68)

Case 2 0.00 (−0.11, 0.11) 0.00 (−0.11, 0.11) 1.09 (0.89, 1.28) 0.93 (0.74, 1.13) 0.67 (0.63, 0.70) 0.64 (0.61, 0.67)

Case 3 0.00 (−0.11, 0.11) 0.00 (−0.11, 0.11) 1.13 (0.93, 1.32) 0.96 (0.77, 1.15) 0.67 (0.64, 0.71) 0.65 (0.61, 0.68)

CPM re‐development

AIC 0.00 (−0.11, 0.11) 0.00 (−0.11, 0.11) 1.00 (0.84, 1.16) 0.81 (0.64, 0.97) 0.68 (0.65, 0.71) 0.65 (0.62, 0.68)

Ridge regression 0.00 (−0.11, 0.11) 0.00 (−0.11, 0.11) 1.29 (1.08, 1.51) 1.13 (0.91, 1.34) 0.68 (0.65, 0.71) 0.66 (0.63, 0.69)

Abbreviations: ACC, American College of Cardiology model; German AV, German Aortic Valve model.
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Interestingly, the mean difference in the coefficients across the 4 TAVI‐CPMs given in Table 3 was 0.692, with a
lower and upper quantile of 0.385 and 0.885, respectively. Such differences can be compared with those generated across
values of σ from the synthetic simulation study in Section 4. Specifically, when σ = 0.25 the mean difference in coeffi-
cients generated across populations was 0.63 and that for σ = 0.375 was 0.95. Hence, one can quantitatively compare
the results from the synthetic simulation with those using the real‐world data.

The sensitivity analysis that considered the addition of new covariates into the modelling demonstrated that both
KATZ and Canadian Study of Health and Aging frailty scores were added during individual model extension, the hybrid
method, and re‐development (Supporting Information B: Table B2). Moreover, the addition of such frailty measures
resulted in an increase in the AUC from those given in the main analysis (Table 5). Because stacked regression does
not consider new parameters, the sensitivity analysis results for this method are identical to the main analysis, which
demonstrates an advantage of the proposed hybrid method.
6 | EMPIRICAL SIMULATION STUDY

A simulation based on the TAVI dataset was undertaken where samples of 200, 500, and 1000 observations were
randomly extracted (without replacement) from the UK TAVI registry. Such “development cohorts” aimed to represent
the situation of developing a CPM to help inform local healthcare decisions where limited data will be available. In each



TABLE 5 Performance measures before (apparent) and after bootstrap corrected optimism when modelling in the whole TAVI dataset in

the sensitivity analysis that considered the addition of frailty (KATZ and Canadian Study of Health and Aging) into the models

Calibration Intercept (95% CI) Calibration Slope (95% CI) AUC (95% CI)

Model Apparent Bootstrap Apparent Bootstrap Apparent Bootstrap

Model extension

German AV 0.00 (−0.11, 0.11) 0.00 (−0.11, 0.11) 1.00 (0.81, 1.19) 0.88 (0.69, 1.08) 0.65 (0.61, 0.70) 0.64 (0.59, 0.68)

FRANCE‐2 0.00 (−0.11, 0.11) 0.00 (−0.11, 0.11) 1.00 (0.82, 1.18) 0.93 (0.75, 1.12) 0.67 (0.63, 0.71) 0.66 (0.62, 0.70)

OBSERVANT 0.00 (−0.11, 0.11) 0.00 (−0.11, 0.11) 1.00 (0.77, 1.23) 0.93 (0.70, 1.16) 0.64 (0.59, 0.68) 0.63 (0.58, 0.68)

ACC 0.00 (−0.11, 0.11) 0.00 (−0.11, 0.11) 1.00 (0.82, 1.18) 0.94 (0.76, 1.13) 0.67 (0.63, 0.71) 0.66 (0.62, 0.70)

Stacked regression 0.00 (−0.11, 0.11) 0.00 (−0.11, 0.11) 1.00 (0.79, 1.21) 0.98 (0.77, 1.19) 0.64 (0.61, 0.68) 0.64 (0.61, 0.67)

Hybrid method

Case 1 0.00 (−0.11, 0.11) 0.00 (−0.11, 0.11) 1.23 (0.96, 1.49) 1.07 (0.80, 1.34) 0.69 (0.65, 0.73) 0.66 (0.62, 0.70)

Case 2 0.00 (−0.11, 0.11) 0.00 (−0.11, 0.11) 1.12 (0.94, 1.30) 0.97 (0.79, 1.15) 0.69 (0.65, 0.72) 0.66 (0.62, 0.70)

Case 3 0.00 (−0.11, 0.11) 0.00 (−0.11, 0.11) 1.10 (0.92, 1.27) 0.94 (0.77, 1.12) 0.69 (0.66, 0.73) 0.67 (0.63, 0.70)

CPM re‐development

AIC 0.00 (−0.11, 0.11) 0.00 (−0.11, 0.11) 1.00 (0.85, 1.15) 0.82 (0.67, 0.98) 0.70 (0.66, 0.73) 0.66 (0.63, 0.70)

Ridge regression 0.00 (−0.11, 0.11) 0.00 (−0.11, 0.11) 1.27 (1.07, 1.47) 1.11 (0.91, 1.30) 0.70 (0.66, 0.73) 0.67 (0.64, 0.71)

Abbreviations: ACC, American College of Cardiology model; German AV, German Aortic Valve model.
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development cohort, model updating, stacked regression, and the hybrid method were applied to the 4 TAVI‐CPMs; new
CPMs were derived using AIC backwards selection and ridge regression. Those patients who were not sampled into a
development cohort were used to validate the models; hence, the size of the validation sample was 6139, 5839, and
5339 for development sample sizes of 200, 500, and 1000, respectively.

The observed 30‐day mortality rate in the TAVI registry (5.14%) was insufficient to accurately re‐develop a logistic
regression model in IPD of sizes 200, 500, and 1000.36 Therefore, we used the observed covariate data from the UK TAVI
registry to generate binary events with an overall event rate of 25%. Binary endpoints were simulated for each patient in
the TAVI registry (i = 1, …, 6339) by assuming that P(Yi = 1) = qi with
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for covariate p (Table 3). Additionally, we generated 4 binary covariates, exi;c, with corresponding coefficientseβ∼Uniform 1:4; 1:6ð Þ and success probability ranging from 30% to 40%, each representing unmeasured covariates, which
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effects between the TAVI‐CPMs and the IPD). For each of the development cohort sizes (200, 500, or 1000), the simula-
tion was repeated 100 times in each of the 10‐multiple imputed TAVI datasets, resulting in 1000 total replications. The
simulations were implemented using R, and the code is available in the online Supporting Information.

The results of the empirical simulation are depicted in Figure 3. The calibration slope of the AIC re‐developed model
was significantly below one for all development cohort sizes, which indicates overfitting; the calibration slope for ridge
regression was significantly higher than one due to slight over‐shrinkage, particularly at the smaller sample sizes.
Stacked regression and the hybrid method were well calibrated for development sizes of 500 and 1000. For development
cohorts of size 200 and 500 observations, the AUC of all methods were comparable, with the hybrid method under
modelling cases 1 and 2 having numerically highest discrimination. For development cohorts sample sizes of 1000



FIGURE 3 Calibration slope and AUC values for stacked regression, the hybrid method (modelling cases 1, 2, and 3), and re‐development

from the TAVI simulation across all individual participant data (IPD) sample sizes [Colour figure can be viewed at wileyonlinelibrary.com]
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observations, the AUC of the hybrid method was significantly higher than stacked regression and individual model
revision (model revision results not shown for clarity).
7 | DISCUSSION

This study has presented a novel method to generalise model updating techniques to situations where multiple existing
models, each with potentially varying sets of covariates, are available. The predictive performance of the hybrid method
was contrasted with that of current approaches. This study confirms previous work in finding that it can be advantageous
to incorporate existing models when deriving a new CPM, particularly given relatively small samples sizes.11,13,16,17,39

The methods that utilised multiple existing CPMs (stacked regression or hybrid) outperformed individual model revision
in the majority of circumstances. Although the differences in predictive performance of each method were subtle, one
would expect this because the likelihood of the hybrid method converges to stacked regression or re‐development in
small or large IPD samples, respectively. Thus, the hybrid method proposed here can assist in optimising the choice
between model aggregation and model re‐development.13 By generalising the model updating techniques into the
multiple‐model setting, one can directly incorporate previous research and models into the modelling strategy.

Previous work in the area of combining IPD with model aggregation has relied on the stringent assumption that all
existing CPMs share a common set of risk factors.17 While model updating and stacked regression techniques relax this
assumption, each has their own inherent restrictions. For instance, model updating has previously been limited to
adapting one existing CPM, and in the stacked regression literature it has not previously been discussed how new
covariates can be added into the resultant meta‐model.12,16 For this reason, the hybrid method presented here allows
individual parameters to be revised during model aggregation, but only to the extent supported by the IPD. Revisions
to any aggregated parameters will be small (large) if the existing CPMs perform well (poorly) in the IPD, but the use
of L1 penalisation to estimate the unknown parameters means that relatively strong evidence will be required for any
such revisions. Additionally, unlike stacked regression, the hybrid method provides a pragmatic way of considering
the addition of new covariates into the model aggregation (eg, frailty variables in the TAVI example: Supporting
Information B).

By allowing differential penalisation across the existing models (Equation 4), one can directly incorporate prior
knowledge into the modelling strategy. For instance, an existing CPM could be penalised less if several external
validation studies have shown said CPM to generalise well, or if expert knowledge leads us to believe, a priori, that a
CPM should suit the population of interest. Alternatively, the degree of penalisation could be based on the size of data
used to initially derive the existing CPMs. Further work is needed regarding the translation between prior knowledge

http://wileyonlinelibrary.com
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and a quantifiable weighting of the penalisation (ie, how to pre‐define νr). For instance, one could alter our modelling
case 2 so that all existing models are penalised by the same constant, which is potentially different to the penalty applied
across all adjustment parameters, with such weights selected through cross‐validation. However, such cross‐validation
approaches to define νr will be computationally demanding. Modelling case 2, where only the adjustment terms were
penalised, will likely be sufficient in most practical scenarios given the comparable performance across the 3 modelling
cases considered in this study. We recommend that modelling case 2 would be particularly advantageous in situations of
sparse IPD, where one would like to shrink new coefficient estimates towards the existing CPMs to avoid overfitting.11

CPM aggregation is a relatively new concept, and so there remain areas for further research. For instance, datasets
across populations frequently collect or record different variables, potentially meaning a variable included in an existing
CPM is not available in the new IPD; this would restrict the ability to calculate the linear predictor of the existing model.
The effect of systematically missing covariates on model aggregation is currently unknown, with the current analysis
assuming the IPD records all variables. Previous work has indicated that multiple imputation with fixed and random
effects is advantageous for imputing systematically missing covariates in multiple IPD meta‐analysis, but it is unclear
how this would translate into model aggregation where only 1 IPD is available.40,41 One would at least require informa-
tion on the covariance structure of the previous data that the existing models were derived on. Practically, a common
approach in the case of clinically recorded risk factors is to treat missing covariate data as null risk, but the bias induced
on the calculated linear predictors and the corresponding effect on model aggregation is unknown. Secondly, all model
aggregation techniques are susceptible to collinearity issues because each existing model aims to predict the same out-
come, and each includes a very similar subset of covariates. Classically, the weights in stacked regression are restricted
to be non‐negative to aid interpretation and avoid negative coefficients caused by including multiple collinear linear pre-
dictors16; however, the full impact of collinearity on this methodology is unknown.12 To this end, alternative model
aggregation approaches that use principal component analysis or partial least squares might be beneficial.13 Specula-
tively, the use of penalisation within the hybrid method could mitigate the effects of modelling across a potentially large
number of collinear existing CPMs; we recommend a detailed investigation into the effects of collinearity on model
aggregation, and the potential of the hybrid method to overcome its effects. Finally, one could exploit and incorporate
the stability of coefficients of individual covariates between existing models into model aggregation. For instance, covar-
iates that have stable coefficient estimates across existing models/populations should arguably provide more information
into the aggregate model than highly heterogeneous estimates. We recommend further work in each of the above areas.

While the strength of this work is in the evaluation of the proposed method in a real‐world clinical example and
systematic simulation studies, there remain some important limitations. Firstly, the effects of publication bias or failing
to select all existing CPMs were not analysed here. While the former would lead to an overestimation of aggregate
regression coefficients, the latter could potentially inflate the variance because the aggregation would be based on an
incomplete list of existing CPMs. Because the hybrid method is estimated using lasso regression (Equation 4), it could
be used to select from a potentially substantial number of existing CPMs identified by a systematic review of the
literature. Secondly, we only applied the hybrid method to one clinical example, and so the results will need confirma-
tion in other situations to assess generalisability. Finally, this study considered the validation of all models in data sam-
ples derived from populations similar to those used for model development (ie, “true” internal validation). Although,
external validation is required to assess the generalisability of a model across many populations, we aimed to focus on
the situation of developing a CPM for a defined/local population. Arguably, by combining multiple CPMs—or, prefera-
bly, by directly utilising multiple IPD19-21

—one would obtain a model that can be generalised across populations.
The main implication of this work is the potential to incorporate existing CPMs, new IPD, and prior clinical

knowledge into the modelling strategy. Generally, this aims to avoid disregarding existing CPMs after transferring them
to a new population of interest.12,13 It is worth emphasising that adoption of the proposed hybrid method might lead to a
situation where multiple CPMs are each developed based on a collection of previously published models (which may
themselves have been derived using the hybrid method). Therefore, the existing CPMs used within the hybrid method
should have each been derived appropriately (in terms of adequate sample size13 and statistical methodology1); this
would be equally applicable to other model aggregation methods.16,17 However, unlike stacked regression, the proposed
hybrid method can revise the prognostic effects of individual covariates, and, therefore, might be more robust against
poorly specified existing CPMs. Moreover, one should acknowledge that introducing a CPM within clinical practice
could be regarded as an intervention, which will inevitably alter the underlying risk processes—a so‐called “prediction
paradox.” Thus, one frequently observes CPMs drifting out of calibration through time.42 It is conceivable that the hybrid
method could be used iteratively (based on previous versions of itself) to continuously adapt the model to the local
population. Further work is required to explore this idea.
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In conclusion, this study presents a novel method of incorporating IPD, existing CPMs and clinical prior knowledge
into model aggregation and model updating techniques. Through utilising multiple existing CPMs, the hybrid method
consistently outperformed updating any model individually and consistently gave highest predictive performance across
IPD sample sizes. Importantly, the method allows the existing models to have heterogeneous risk factor sets, and
facilitates selection from a (potentially large) pool of existing CPMs. Thus, by penalising new parameters, the proposed
modelling strategy can help choose between utilising existing CPMs and developing a model de novo.
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