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Abstract 

The paper is concerned with application of the homogenization theory to bodies containing macro-

inhomogeneities or bodies, parts of which cannot be homogenized (partial homogenization). This 

situation arises, in particular, for problems of joining homogeneous and periodically 

inhomogeneous bodies, or combining inhomogeneous bodies of different periodic structure. The 

peculiarity of the problem is related to a boundary layer, possibly arising on the interface of the 

matched components. Moreover, this boundary layer may be either real or fictitious, with the latter 

occurring due to inaccurate formulation of boundary conditions along the interface, ignoring the 

effect of the micro-stresses. The consideration is carried out within the framework of the steady-

state heat equation. The focus of current investigation is on formulation of the problem for the 

periodicity cell in case of discontinuous homogenized deformations, when these cannot be treated 

as independent of the “fast” variables. The first order correctors are constructed. The issue of 

consistent matching procedure, avoiding emergence of fictitious boundary layers, is discussed. It 

is shown that the temperature of an inhomogeneous fragment on the boundary may be determined 

from the solution of the homogenized problem, whereas the derivatives (temperature gradients) 

require fast correctors of the homogenization theory to be taken into account. The analytical 

consideration is confirmed by results of numerical simulations.  

Keywords: thermal conductivity problem, steady-state heat equation, contact of periodic 

structures, homogenization theory, fast corrector, boundary layer 
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1. Introduction 

 

Homogenization theory is an excellent tool, when the considered system is periodic or quasi-

periodic. Within the framework of the conventional homogenization theory the formulations for 

the periodicity cells and the homogenized problem usually rely on the smoothness of the limiting 

problem solution and its derivatives. In this paper we are dealing with more difficult cases, when 

it is impossible to perform “separation of variables” (e.g. [1]), crucial for classical homogenization, 

because the derivatives of the homogenized solution are not independent of the fast variables. 

Indeed, the periodicity can be violated, a situation typically occurring in the vicinity of the 

boundary of finite domains, due to various defects as cracks or holes or inclusions, or near the 

interface of two bodies of different structure, see Fig 1. The first case corresponds to a body 

containing inhomogeneities on the macro-level, whereas the second case is related to a problem of 

joining the micro- and macrostructure.  

 

 
 

Figure 1. The body Q, containing two parts with different microstructure (top) and their 

periodicity cell P (bottom), consisting of two parts P  and P .  

 

 

Therefore, we arrive at a non-trivial problem of matching homogenized solutions or 

dealing with homogenized solution which contains macro-inhomogeneities.  

Existing homogenization theories allow correct joining of homogenized solutions on the 

macro-level. For example, the statement of the associated problem of heat transfer between the 

two structures shown in Fig. 1 should include continuity conditions for homogenized temperature 

together with the averaged heat flux in the normal direction. At the same time, attempts of 
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matching the same structures on the micro-level, i.e. not applying homogenization, lead to a rather 

non-trivial problem, requiring separate consideration.  

There have been a large number of contributions on the subject, see e.g. [2, 3] and 

references therein for a small representative sample. From a physical point of view, the problem 

is related to coupling between either, non-local and local continuum mechanics [4], or discrete and 

continuum models (atomistic-to-continuum coupling) [5-9], or, possibly, local and global models 

[10]. As a rule, the proposed approach relies on the so-called bridging (overlap) domains (“gluing 

zones”, “handshake region”), see e. g. [11]. As noted in [2], these methods are closely related to 

the overlapping Schwarz methods [12] stemming from the classical alternating Schwarz algorithm. 

The main idea of these methods can be described as follows: part of the system in the vicinity of 

the defect or boundary is considered within the framework of discrete media, whereas the rest is 

assumed to be homogenized.  

Within the overlap domain, the discrete and homogenized solutions should match in some 

sense. For example, the discrete solutions may be interpolated (or continuous solutions could be 

discretized). “In this transition region, approximations are made such as treating finite element 

nodes as atoms, or vice versa, to accommodate the incompatibility between a non-local atomistic 

description and a local finite element description” [9]. Linear interpolation was used in [5] for 

addressing this issue, however, other types of interpolation could also be applied. Gluing of local 

and global solutions may also rely on energy method [2]; another option is the Lagrange multiplier 

method or augmented Lagrangian method [8].  

A problem for a 2D fibre-reinforced composite containing a defected fibre has been studied 

in [13]. This fibre was considered within the discrete framework, with the rest of the fibres being 

homogenized. Then, matching was performed through the concept of a bridging domain, leading 

to an approximate analytical solution of a rather technical problem.  

An alternative approach involves formulation of certain artificial boundary conditions on 

the interface between discrete and continuous domains. As mentioned in [14], numerical 

simulations of crystal defects are necessarily restricted to finite computational domains, supplying 

artificial boundary conditions that emulate the effect of embedding the defect in an effectively 

infinite crystalline environment. Hence, the question of accuracy of boundary conditions arises. 

The issue of artificial boundary conditions is thoroughly addressed in [15], studying vibrations of 

one- and two-mass chains with defects. According to the procedure, the part which is outside the 

defect zone is replaced by its continuous analogue, with the defect modeled through certain 

boundary conditions. Since the discrete problem and its continuous model both possess exact 

solutions, the efficiency of artificial boundary conditions may be readily verified. The approach is 

extended further in [16], investigating vibrations of 1+1D composites with defects.  
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The problem of a contact between two periodic micro-inhomogeneous media was first 

considered in [18] within the framework of homogenization theory. The asymptotic approximation 

of solution was obtained using the boundary layer theory in [19, 20]. The existence and uniqueness 

was investigated, along with the structure of asymptotic approximations and limiting problems.  A 

notable contribution to analysis of boundary layers in the vicinity of interfaces between slender 

and continuous bodies was made in [21]. The theoretical results obtained in [21], correlate with 

our numerical analysis for a structure combining a homogeneous body and a coarse lattice, see 

also [22].  

In practice the described method of bridging domain and that of artificial boundary 

conditions deliver reasonable results. However, it should be noted, that there are still open 

questions regarding rigorous approximation of solution in the method of bridging (overlap) 

domains, or justified choice of appropriate artificial boundary conditions. Therefore, development 

of a mathematical theory, allowing accurate and natural matching of solutions in homogenized 

domains with solutions in local or homogeneous domains, is of clear interest. One of the ways to 

achieve this would be incorporation of an additional asymptotic expansion term (boundary layer 

correctors), similarly to boundary layers arising within the framework of classical homogenization 

[17]. The current paper aims at the construction of such a theory, with the consideration below 

carried out for a steady-state problem of heat transfer.  

 The paper is organized as follows. In Sect. 2 we deal with the problem of homogenization, 

with the specific focus on the transition region between a homogeneous and periodically 

inhomogeneous media. In Sect. 3 the problem of correct joining between the discrete (or initially 

continuous) and homogenized parts of the body is investigated. Finally, concluding remarks are 

presented in Sect. 4.  

 

2. Homogenization and local field on the interface of homogeneous and periodically 

inhomogeneous media 

 

Consider a 2D problem of steady-state heat transfer in an inhomogeneous periodic medium, 

occupying the domainQ , with 1   being a typical size of the periodicity cell. The original 

formulation of the problem is given by 

( / ) ( ) ( ) ( ) ( )
Q Q

a u d q d     x x x x x x x ,  (1) 

where ( / )a x are local coefficients of thermal conductivity, ( )u x  is the sought for solution, ( ) x

denotes a trial function, and ( )q x is the heat flow.  
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It should be noted that the local characteristics ( / )a x  of composite materials are usually 

piecewise continuous. In our consideration, even if ( / )a x  are continuous, the homogenized 

characteristics may be piecewise continuous, which corresponds to the “interface” or “diffraction” 

problem, see [23], and also [24]. In fact, the interface problem (1) can be equivalently represented 

by the appropriate equations with constant coefficients (namely, for every component of structure), 

along with conditions of perfect bonding at the interfaces. After [23], it is widely accepted that the 

adequate technique for analysis of such problems is based on the variational (weak) formulation. 

Taking into account that the homogenization method is also based on the weak formulation of the 

problem, we prefer to use the form (1).  

Equation (1) must be supplemented with the boundary conditions at the external boundary 

Q  of the domain Q . At the same time, in this study we are not concerned with the effects of the 

heat sources and boundary conditions, focusing entirely on the behavior of solution in the near-

interface vicinity between the media. Moreover, as will be shown later, even though the boundary 

layer may potentially exist in the vicinity of the joint, it is a phenomenon of different nature, not 

related to homogenization.  

Following the conventional homogenization technique, the solution is now sought for in the 

form 

                                                           0 1( ) ( , / ).u u u  x x x   (2) 

Function 0( )u x
 
describes the “slow” (the macroscopic) component of the displacements and 

1( / )u x
 
is corrector. We remark that the corrector is of order  , but the gradient of corrector 

1 1 1( ) ( / ) ( / )x x yu u u     y x x
 
is of order unity ( x

 
and

 y  denote gradients in x
 
and y , 

respectively).  Hereafter, we use notation 1 2( , ) /y y  y x  for the “fast” variable.
 

The form of the corrector 1( )u y  
 
is chosen depending on the geometry of the joint bodies 

(see Fig. 1). Naturally, it is assumed as a sum of periodic components, along with the boundary 

layer terms. Due to periodicity of the whole body with respect to coordinate 2y , the periodic 

components of the solution have the same period in 2y , say 1. As for 1y - coordinate, the periodic 

parts of the solution have the periods m

 and m , on the left and right from the joint, respectively. 

The boundary layer-type components decay rapidly away from the joint, in our case, as 1 .y 
 

Thus, as 1y  , the corrector 1( )u y
 
approaches the functions, periodic in 1y  with periods m

 

and m . 
 

The trial function has a similar representation to (2), i.e.  
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0 1( ) ( , )   x x y .  (3) 

On inserting (2) and (3) into (1), one arrives at a problem for 1( )u y  

1 0 1( )( ) 0y x y

P

a u u d    y x ,  (4) 

for more detail see [17]. The formulation (4) is obtained through separation of “slow” and “fast” 

variables, x  and y , respectively, along with the differential relation [1] 

1( , ) ( , ) ( , )x x yf f f    x y x y x y .  

Equation (4) leads to the following problem for the periodicity cell 

0 0
1, 1 2

1 2 ,

0 0
1, 1 2

1 2

( ) ( )
( ) ( ) ( ) 0    in ,

( ) ( )
( ) ( ) ( ) 0   at ,

ij jy i i

iy

ij jy i i j

u u
a u a a P

x x

u u
a u a a n S

x x

  
   

  

  
   

  

x x
y y y

x x
y y y

 

 

 

(5) 

where the quantity 1( )u y  is a periodic function along 2y
 
(with period 1), and tends to a periodic 

function with periods m  along 1y  in the limits 1y  . Hereinafter we denote 
, jy

j

u
u

y





, 

, jx

j

u
u

x





; S is a free surface of the periodicity cell P , see Fig. 1 (allowing to account for pores, 

holes, etc. ), and n is the outer normal to S .  

 

Due to linearity, the problem (5) may be separated into two sub-problems involving the 

terms 0
1

1

( )
( )i

u
a

x





x
y

 

and 0
2

2

( )
( )i

u
a

x





x
y

 

instead of their sum. It is crucial for the conventional 

homogenization procedure that the quantities of the problem (5) depend on the fast variables y , 

whereas the derivatives 0

1

( )u

x





x

 

and 0

2

( )u

x





x

 

depend on the slow variables x . Therefore, in 

analysis of (5) the quantities 0

1

( )u

x





x
and 0

2

( )u

x





x

 

may be treated as constants. Hence, the separation 

into slow and fast variables is performed, leading to 

0
1

( )
( ) ( )i

i

u
u N

x






x
y y ,  

(6) 
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where ( )iN y  are certain functions of the fast variables, see [1] (here and below, summation over 

repeated indices is assumed).  

Now we can observe the difference from the conventional homogenization procedure for 

macro-homogeneous media, when the homogenized material characteristics are continuous and 

the homogenized solutions are smooth. In order for problem (5) to have solution in the form (6), 

the gradient 0 ( )xu x
 
should be independent of the fast variables, so it should be continuous along 

the slow variables. In our case the quantity 0 ( )xu x
 
is discontinuous.  

Then, the gradient 0 ( )xu x  is represented as 

0 0 0( ) ( ) ( ) ( ) ( )x x xu u u      x x x x x ,  (7) 

where ( ) 
x  and ( ) 

x  are indicator functions of the domains – and +, respectively. Due to 

presence of step indicator functions in (7), this gradient cannot be constant over the joint region.  

Let us analyze the problem (5) for the periodicity cell. It should be emphasized that not all 

of the derivatives of the homogenized solution 
0 ( )u x  are discontinuous. Indeed, since the solution 

of the homogenized problem 0 ( )u x
 
is continuous, its values from the left and right of the joint, 

0 ( )u
x

 
and 

0 ( )u
x , respectively, coincide. In other words, the jump over the boundary 

0 0 0[ ( )] ( ) ( )u u u  x x x
 
is zero 

0[ ( )] 0u x .  (8) 

On differentiating (8) with respect to 2x , i.e. along the joint, we deduce that 

0
0

2 2

( )
[ ( )] 0

u
u

x x

 
  

  

x
x ,  

(9) 

implying that the derivative with respect to 2x
 
is continuous. Hence, the representation (7) is not 

required for the derivative 0

2

( )u

x





x
, so it may be treated as a constant, exactly as in case of the 

classical homogenization.  

Now, let us consider the problem for the periodicity cell associated with the derivative 0

1

u

x




 

and discuss the decomposition of the solution into periodic and boundary layer components. First, 

we note that 0

1

u

x




 

is discontinuous. The associated problem for the periodicity cell is given by 
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, 1 0,1 1 0,1 ,

, 1 0,1 1 0,1

( ( ) ( ) ( ) ( ) ( ) ( ) ( )) 0,    in  ,

( ( ) ( ) ( ) ( ) ( ) ( ) ( )) 0,         at ,

ij jy i x i x iy

ij jy i x i x j

a M a u a u P

a M a u a u n S

 

 

   

   

  

  

y y x x y x x

y y x x y x x
 

 

(10) 

where ( )M y  is periodic with period 1 along 2y  and tends to a periodic functions with periods m  

along 1y  in the limits 1y  . Clearly, problem (10) follows from (5), when only one of the 

derivatives of the homogenized solution, namely, 0

1

u

x




 

is not zero, and this derivative is represented 

as (7). 

In the presence of discontinuous terms 
1 0,1 1 0,1( ) ( ) ( ) ( ) ( ) ( )i x i xa u a u    y x x y x x , it is 

convenient to treat the boundary value problem (10) in the weak sense.  

Clearly, solutions of the problems 

, 1 ,

, 1

( ( ) ( , )) 0    in ,

( ( ) ( , )) 0   at ,

ij jy i iy

ij jy i j

a M a P

a M a n S

 

 

y y x

y y x
 

 

(11) 

in the right (
1: 0P y  ) and left (

1: 0P y  ) domains are solutions of the periodicity cell problems 

within the framework of conventional homogenization theory for periodic media located to the left 

and to the right from the interface, see Fig. 1.  

Let us introduce the auxiliary function
 

1 1

0,1 0,1( , ) ( ) ( ) ( ) ( ) ( )x xv u N u N       x y x y x y x .  (12) 

Then, the function M (y,x)  can be decomposed in terms of the periodic component ( , )v y x  and 

boundary layer ( )m y   

( , ) ( ) ( , )M m v y x y y x .  (13) 

Hence, (11) is transformed to the following problem for ( )m y  

, ,

,

( ( ) ) 0     in ,

( ) 0   at ,

ij jy iy

ij jy j

a m P

a m n S





y

y
 

(14) 

where ( )m y  is periodic with period 1 along 2y  and ( ) 0m y  in the limits 1y  .  

It should be noted that the function (12) is discontinuous. Therefore, the following jump 

conditions should be imposed on the joint  1 0P y   

1 1

0,1 0,1[ ] [ (0) ( ) (0) ( )]x xm u N u N    y y ,  (15) 
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1 1

, , 0,1 , 0,1[ ] ( ( ) ( ) (0) ( ) ( ) (0))ij jy j ij jy x ij jy x ja m n a N u a N u n    y y y y ,  (16) 

with 
0,1 (0)xu

 
and 

0,1 (0)xu

 
denoting the values of the functions 

0,1 ( )xu
x

 
and  

0,1 ( )xu
x

 
on the 

interface 
1 0x  . 

The condition (16) has a physical interpretation of a jump of the heat flux 

0,1 0,1[ ] ( ) (0) ( ) (0)n n x n xu u    σ σ y σ y .  (17) 

The average value of the right hand side of (17) along the joint  1 0P y  is equal to zero, which 

leads to fast decay of solution at a distance from the joint (it is scalar analog of the Saint-Venant 

principle for self-equilibrated loads, see e. g. [23, 24]). As noted above, the function ( )m y  is 

“gluing” the solution (12) from the left and right sides of the joint, i.e. acts as a boundary layer 

localized over the transition region.  

In order to illustrate the proposed methodology above let us consider a numerical example 

of joining a homogeneous body and a lattice, see Fig. 2.  

 

 

Figure 2. A system containing a homogeneous body and a lattice.  

 

It is convenient to separate the periodicity cells as shown in Fig. 3. Below we assume that 

the contact occurs precisely on the boundaries of the periodicity cells (this restriction is not crucial 

for the method and is only taken in order to simplify the calculations).  

 

 

Figure 3. The periodicity cell for a joint body, including the periodicity cells of the left and right 

components.  
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Figure 4. Solution of the problem for the periodicity cell for the lattice. 

 

The solution of the problem for the right component Y  of the elementary cell has been 

simulated in ANSYS, see Fig. 4. It may be observed that the normal flux and temperature are 

virtually constant along the boundary of the cell Y  , having n

 σ (1. 061, 0). In the present case, 

due to symmetry of the elementary cell (with respect to the 90° rotation around the origin), the 

homogenized material is isotropic, with the homogenized coefficients of thermal conductivity 

equal to 0. 20012.  

On the boundary of the elementary cell Y 
 we have 

n

 σ (1, 0) and constant temperature. 

Therefore,  

1 1

0,1 0,1

1 1

, , 0,1 , 0,1

[ ( )] [ ( ) ( ) ( )] 0,

[ ( ) ] ( ( ) ( ) ( ) ( ) ( ) ( )) .

x x

ij jy j ij jy x ij jy x j

m u N u N

a m n a N u a N u n

   

   

  

 

y x y y

y y y x y y x
 

The problem for the boundary layer component ( )m y  takes the form 

, ,

,

,

,

( ( ) ) 0    in ,

( ) 0       at ,

1      at ,

[ ] 4   at .

ij jy iy

ij jy j

jy j

jy j

a m P

a m n S

m n T

m n S









y

y

 

Numerical simulation of this problem has been performed in ANSYS, using the option 

“Heat gener(ation). Online”. The quantity | ( ) |m y  is displayed on Figs. 5 and 6. One can see 

from Figs. 5 and 6 that the boundary layers are rapidly decaying.  
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Figure 5. The quantity | ( ) |m y  on the joint.  

 

 

 

 

Figure 6. The quantity | ( ) |m y  (enlarged).  

 

Let us now discuss the homogenization procedure for the flux, taking into account the jump 

in the derivative of the homogenized solution. First, we formulate the problem for the periodicity 

cell in terms of the flux. We stress again that the derivative 0

1

u

x




 

is discontinuous. The problem 

(10) for the periodicity cell depends on the two functions, namely 0,1 ( )xu
x

 
and 0,1 ( )xu

x . Say, if the 
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homogenized material is orthotropic, then (0)

0,1 1

11

1
( )xu q

A

 


x , where (0)

1q   and
ijA

 
are the 

homogenized thermal fluxes and the homogenized coefficients of thermal conductivity in the left 

and right zones, respectively.  

At the boundary between the left and right zones, the balance condition (0) (0)

1 1q q 
  
(here 

(0)

1q   and (0)

1q   are the flux values from the left and from the right of the interface, respectively) 

should be satisfied, meaning that the homogenized flux has no jump on the joint. Let us denote 

this value by (0)

1q , then 

(0)

0,1 1

11

1
( ) ( )xu q

A




x x .  

On substituting these expressions into (10), we obtain  

(0) (0)1 1
, 1 1 ,

11 11

(0) (0)1 1
, 1 1

11 11

( ) ( )
( ( ) ( ) ( ) ( ) ( )) 0       in ,

( ) ( )
( ( ) ( ) ( ) ( ) ( )) 0       at ,

i i
ij jy iy

i i
ij jy j

a a
a M q q P

A A

a a
a M q q n S

A A

 

 

 

 

 

 

  

  

y y
y x x x x

y y
y x x x x

 

 

 

(18) 

where, once again, ( )M y  is periodic with period 1 along 2y , tending to a periodic function with 

periods m  along 1y  in the limits 1y  .  

Since (0)

1 ( )q x  has no jump, we can treat the homogenized thermal flux (0)

1 ( )q x
 
in (18) as a 

parameter and carry out the usual multiple scale procedure of conventional homogenization theory. 

As a result, the solution of (18) can be presented in the form 

(0)

1( ) ( )M q y x ,  (19) 

where 

1 1
, ,

11 11

1 1
,

11 11

( ) ( )
( ( ) ( ) ( )) 0    in ,

( ) ( )
( ( ) ( ) ( )) 0    at ,

i i
ij jy iy

i i
ij jy j

a a
a P

A A

a a
a n S

A A

  

  

 

 

 

 

  

  

y y
y x x

y y
y x x

 

 

(20) 

with ( ) y  being periodic with period 1 along 2y  and tending to a periodic function with periods 

m  along 1y  in the limits 1y  .  

Let us now describe the procedure for correctors. The solution of (10) may be expressed as 

a sum of solutions corresponding to the terms 0
1

1

( )
( )i

u
a

x





x
y  and 0

2

2

( )
( )i

u
a

x





x
y . The solutions 
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associated with these terms are (0)

1( ) ( )q y x  and (2) 0

2

( )
( )

u
N

x





x
y , respectively. Here (2) ( )N y  is the 

solution of the problem for elementary cell, as introduced in the classical homogenization theory, 

see [1]. Thus, the corrector has the form 

(0) (2) 0
1 1

2

( )
( / , ) [ ( / ) ( ) ( / ) ]

u
u q N

x
     


 



x
x x x x x .  

(21) 

It should be noted that though the contribution of the corrector to temperature function is 

of order  , the gradient of corrector 1( )u y  is of order unity. Thus, the leading order contribution 

of the corrector is 

(0) (2) 0
1 1

2

( )
[ ( / , )] ( / ) ( ) ( / )x y y

u
u q N

x
    


   



x
x x x x x .  

(22) 

We remark that the related problems of framed structures, including mathematical aspects of their 

homogenisation, have been considered, for example, in [25, 26].  

 

3. Correct joining of discrete (or originally continuous) and homogenized components 

 

The solution on the boundary may be written in terms of the homogenized values, whereas for the 

derivatives the effect of fast correctors should be taken into account. The solution u (temperature) 

for a real material is close to the homogenized solution 0( )u x . However, the derivatives and the 

associated temperature gradient and heat flux differ significantly from the derivatives and flux of 

the homogenized problem. The first and most evident distinction from the classical 

homogenization is that the derivatives u
 
and the associated local fluxes in real material are 

considerably inhomogeneous on the micro-level, since they depend on the fast variable y . At the 

same time, the gradients 0u
 
and fluxes, arising from the homogenized problem, are independent 

of the fast variable (except for the case described in section 2). The above stated may be written 

formally as 

0

0

0 0

( ),

( , , ( )),

( , , ( )) ( ) ( , , ( )),

u u

u R u

q T u a R u









 

  

x

x y x

x y x y x y x

 

 

(23) 

 

where 0( , , ( ))T ux y x
 
and 0( , , ( ))P ux y x

 
are operators, providing a correspondence between the 

homogenized solution 0( )u x or its gradient, and a function of the fast variable.  
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The form of these operators depends on the particular class of the considered problems and is 

known for classical problems of mathematical physics. For example, for problem of heat transfer 

in periodic media we have 

( ) 0
0

( )
( , , ( )) ( )k

y

k

u
R u N

x






x
x y x y ,  

see [1].  

As follows from the results of the conventional homogenization theory, correct 

approximation of solution of the original problem necessitates taking into consideration both 

homogenized components and fast correctors. In fact, the latter are crucial for correct joining of 

the bodies of different nature, as seen from a numerical experiment presented below.  

Clearly, all physical bodies are inhomogeneous, if the consideration is performed on 

sufficiently small scale, with physical and mechanical properties varying during transition from 

level to level (e. g. metals considered on the levels of grains and molecules have different 

structure). From this point of view, all of the material characteristics (e.g. coefficient of heat 

transfer) are homogenized parameters. Thus, it follows that the material parameters of an 

inhomogeneous body depend on the level of investigation. Indeed, if the consideration is focused 

on macroscopic characteristics, then the classical material characteristics should be used. On the 

other hand, investigation of micro-structural behavior, e.g. joining the micro- and macrostructure 

fragments requires not only knowledge of the classical material parameters, but also of the 

operators 0( , , ( ))R ux y x
 
and 0( , , ( ))T ux y x , which are the material characteristics of the macro-

material governed by its microstructure.  

For many classical linear problems the operators 0( , , ( ))R ux y x
 
and 0( , , ( ))T ux y x

 
take the 

form 

0 0

0 0

( , , ( )) ( ) : ( ),

( , , ( )) ( ) : ( ),

R u r u

T u p u

 

 

x y x y x

x y x y x
 

with colon denoting tensor convolution.  

The operators ( )r y  and ( )p y  are sometimes referred to as concentration tensors, since 

they describe the microscopic flux/gradient field within a macroscopic material fragment subjected 

to the homogeneous macroscopic field of unit gradient. Therefore, the concentration tensors of the 

microscopic flux/gradient should be taken into consideration as material characteristics for 

analysis on the micro-level.  

Let us clarify the discussion above. Indeed, various models of microstructure are adopted 

by researchers when joining molecular structures with homogeneous bodies. All of these models 

are inhomogeneous, including even the recent non-local models [27]. When joining the material 
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described by such a model with the homogeneous media, not only the knowledge of homogenized 

characteristics is required, but also that of micro-inhomogeneous, or even micro-non-local 

response of the homogeneous material caused by macroscopic loading.  

Consider now the laminated material containing isotropic layers of the same width with 

dimensionless heat transfer coefficients of 1 and 10. Let us imagine the material separated into 

two parts, and the left half replaced by the homogenized (orthotropic) material, with the 

dimensionless heat transfer coefficientsin the Ox - and Oy -axis directions being equal to 5.5 and 

1.82, respectively. The elementary cell is shown on Fig. 7 (bottom). Now let us join the original 

(laminated) and the homogenized parts.  

The conditions on the interface between the layered and homogeneous materials are  

[ ( )] 0m y ,       (24) 

, , 0, , 0,[ ( ) ] ( ( ) ( ) ( ) ( ) ( ) ( ))k k

ij jy j ij jy kx ij jy kx ja m n a N u a N u n    y y y x y y x .   (25) 

 

In case of a homogeneous material, the derivatives from the left of the solution for the 

elementary cell are given by 
, ( )k

jy jkN  y , where jk
 
is the Kronecker delta. Since the averaged 

constants of the right and left parts are the same, and from the global point of view both halves 

form a homogeneous body, the solution 
0 ( )u x

 
of the averaged problem should be continuous 

together with the derivatives. Then, on the interface we have 
0,1 0,1x xu u  . As a result, equation (25) 

may be rewritten in the form 

, , 0,[ ( ) ] ( ( ) ( ) ) ( ) .k

ij jy j ij jy ik kx ja m n a N A u n y y y x   (26) 

Note that the right hand side of (26) is not zero, which means emergence of a boundary layer.  

On the other hand, if the layered material is joined with the corresponding homogenized 

material (i.e. fictitiously homogeneous), then the actual flux in the homogenized material will be 

1

, 0,1( ) ( ) ( )ij jy xa N u 
y y x , rather than 

0,1 ( )ij xA u x . So, instead of (26), condition (25) should be used. In 

this case the microstructure of the left and right parts are identical, so are the solutions for 

elementary cells: ( ) ( )N N y y . Hence, the right hand side of (25) is zero and the boundary 

layer does not appear.  

A natural question occurs, namely, since all real materials are inhomogeneous, does it 

mean, that the boundary layer emerges in every contact of different materials? This study gives a 

positive answer. However, we note that the width of this boundary layer is of order of typical size 

of inhomogeneity, so during the contact of two homogeneous crystal bodies the width of the 

boundary layer is of order of a typical crystal size.  
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The results of computations of the boundary layer, arising in the problem for an elementary 

cell (14) are displayed in Fig. 7 (top). It is clear that the boundary layer emerges, if the material on 

the left is a real homogeneous material. It is also obvious, that if a part of laminated material is 

first homogenized and then joined with the remaining part of the laminated material, then there 

should be no boundary layers arising, i.e. if a boundary layer is observed, it can only be a defect 

of the methodology. The consistent matching of the homogenized and the corresponding laminated 

materials should then be performed according to the methodology described above. The procedure 

explained above in Sect. 3 leads to coupling with no boundary layer.  

 

 

Figure 7. Boundary layer on the interface of a layered material and the homogenized one.  

 

We finalize the consideration in this paper with an example of a boundary layer arising in 

the vicinity of the interface of two structures, which possess the same homogenized characteristics 

but have different microstructures. Consider a body, assembled of fragments with homothetic 

similar microstructure 0 0{  : }P P  x x , which may be constructed as follows. First, we consider 

a periodic structure with periodicity cell 0P . After that, we construct a body with the right part 

1 0x   having periodic structure with the periodicity cell 2 0P P  and left part 1 0x 
 
having 

periodic structure with the periodicity cell 1 0P P  , see Fig. 8 (top). For the case displayed in 

Fig. 8, 0P
 
is the structure with periodically distributed circular holes of unit radius.  
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Figure 8. Joining of two bodies with homothetic similar microstructures and its periodicity cell 

(top). Gradient of solution 1( )N y and 2( )N y of the periodicity cell problem (bottom).  

 

The bodies with homothetic similar microstructures have equal homogenized 

characteristics. In other words, from macroscopic point of view, the left and right parts form a 

homogeneous body. Solution 
0 ( )u x  of the macroscopic problem of heat transfer for this body is 

smooth (without jumps in the derivatives). At the same time, if 1 2  , the microstructures of the 

left and right components are different, though solutions of the periodicity cell problems are the 

same in view of the homothetic similarity of the microstructure.  

Let us denote this solution by ( )kN y . In this notation, the right-hand side of (25) becomes 

, 1 , 2 0,( )( ( / ) ( / )) ( )k k

ij jy jy kx ja N N u n y x x x . This function is not equal to zero, implying boundary 

layers appearing in the vicinity of 1 0x  , compensating for this jump of correctors.  

Fig. 8 (bottom) displays gradients of solution of the periodicity cell problem, 1( )N y
 
and 

2( )N y , with the arrows indicating the direction of the overall (macroscopic) field. The 

perturbation of the periodic field in the contact zone is clearly seen. It should be emphasized once 

again, that the material displayed in Fig. 8 is homogeneous when considered from the macroscopic 

point of view.  

 

4. Conclusion 

 

Application of homogenization theory to macro-inhomogeneous bodies or structures containing 

fragments which cannot be homogenized has some peculiarities. A natural theory describing this 
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process is interesting from both theoretical and practical points of view, with the consideration in 

this paper carried out for the heat equation. The major focus of this study is on the boundary layer 

arising over the transition region localized in the vicinity of the joint. The challenge of the studied 

problem is, whether this boundary layer emerges naturally due to underlying physics, or it is a 

spurious one, appearing due to flaws in the methodology.  

In particular, it is demonstrated that the procedure of joining of two homogenized bodies 

should take into consideration the rapidly varying correctors, which guarantees absence of 

fictitious boundary layers. It is suggested that for micro-structural problems the set of classical 

material characteristics should be complemented by the operators describing the microscopic 

response of the macroscopic body to macroscopic deformations.   

The formulation of the problem for the periodicity cell is presented for the case when the 

homogenized flux fields possess discontinuities (when these cannot be treated as independent of 

the fast variables). The construction of the first order correctors is also described. The theoretical 

formulation is confirmed by numerical simulations.  

The problems considered in detail include boundary layers emerging on the interface 

(contact zone) in case of bodies with different averaged characteristics, as well as bodies with the 

same averaged characteristics, but different microstructure. In addition, a physically correct 

formulation of the condition on the interface between the fragment of the original material and the 

corresponding homogenized material, which does not lead to fictitious boundary layers, is 

presented.  

The developed formal scheme, aiming at a physical insight into the nature of boundary 

layers, does not involve a more rigorous mathematical justification, including, for example, 

evaluation of the asymptotic remainder, which should be a subject of special consideration. At the 

same time, it may be shown that the exact solution for a particular case of the uniform flux fields 

within the homogenized components confirms all of the findings in this paper.     

The obtained results extend further the ideas presented in [28, 29], and may find their 

applications in engineering practice [30, 31]. Using these results, it is possible to determine 

whether the boundary layer arises on the interface of materials of different structure. Estimates for 

width and intensity of the boundary layer could also be obtained.   
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