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Elastodynamics of a half-space coated by a thin
soft layer with a clamped upper face is considered.
The focus is on the analysis of localised waves
that do not exist on a clamped homogeneous half-
space. Non-traditional effective boundary conditions
along the substrate surface incorporating the effect
of the coating are derived using a long-wave
high-frequency procedure. The derived conditions
are implemented within the framework of the
earlier developed specialised formulation for surface
waves, resulting in a perturbation of the shortened
equation of surface motion in the form of an
integral or pseudo-differential operator. Non-uniform
asymptotic formula for the speeds of the sought for
Rayleigh-type waves, failing near zero frequency and
the thickness resonances of a layer with both clamped
faces, follow from the aforementioned perturbed
equation. Asymptotic results are compared with the
numerical solutions of the full dispersion relation
for a clamped coated half-space. A similarity with
Love-type waves proves to be useful for interpreting
numerical data.

1. Introduction
It is well known that the Rayleigh wave on a
homogeneous elastic half-space [31] exists only for a
traction-free surface. However, this is not the case of a
layered half-space, for which the rigorous mathematical
treatment in [8] demonstrates a possibility of localised
waves for a clamped surface as well. In this paper we
illustrate the considerations in [8] by the example of a
coated half-space with a clamped surface, modelling an
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interface between rigid and deformable media. The main focus is on a physical insight into
the peculiarities of the observed localised dynamic phenomena using an asymptotic approach
oriented to a soft coating with a stiffness much lower than that of a substrate. In this case
we should expect that the associated counterparts of the Rayleigh wave could be treated as its
perturbations.

The effect of a thin coating, for which a typical wave length is much greater than its thickness,
may be incorporated through the so-called effective boundary conditions along the surface of
a substrate. In contrast to traditional derivations usually dealing with low-frequency vibrations
(the frequency range of interest is well below the first thickness resonance) of a coating with a
traction-free upper face, e.g. see [10,36–38], we develop an asymptotic procedure also covering
the high-frequency vibrations, similarly to what has been done for a thin interfacial layer in [17],
and earlier for thin walled structures in [14,16,27], see also [4–6,18,25]. As a result, we are able to
tackle higher-order Rayleigh-type waves with a sinusoidal variation across the thickness of the
coating, which is a feature of a soft coating only. Indeed, without such a contrast, the long waves
always propagate over the interior. It is worth noting that the coefficients in the simplest effective
conditions exploited in the paper are frequency-dependent, tending to infinity at the thickness
resonances of an elastic layer with both clamped faces [14]. However, this does not happen with
the associated refined high-frequency conditions, see e.g. [17] for further detail.

The effective boundary conditions can be then used to proceed with a specialised hyperbolic-
elliptic formulation for the studied Rayleigh-type waves, which was originally established in [15]
using the symbolic Lourier approach, see e.g. [16] and references therein, and further developed
in [21] starting from a slow time perturbation of the eigensolution for a homogeneous surface
wave of arbitrary profile, see [7] and also earlier publications [13,35], as well as more recent papers
including [1,22–24,28–30,33]. The general asymptotic methodology of extracting the contributions
of surface, interfacial and edge waves from overall dynamic responses induced by prescribed
loads is exposed in [19], with the effect of anisotropy addressed recently in [26]. For the basic
setup of an elastic half-space subject to surface stresses, the aforementioned formulation involves
a hyperbolic equation that governs propagation of surface disturbances along with pseudo-static
elliptic equations over the interior. A similar methodology is also adapted for the conventional
problem for a coated half-space [10], for which the hyperbolic equation along the surface is
singularly perturbed by a pseudo-differential operator. The formulation has also been developed
for mixed boundary value problems, suggesting a prospective approach for problems of crack
propagation, see [34].

The asymptotic formulae for the corrections to the Rayleigh wave speed due to the effect of
a soft coating readily follow from the pseudo-differential equation along the substrate surface.
They obviously fail near zero frequency, where the localised wave is not yet generated, and in the
vicinities of the thickness resonances in [14], as also may be observed from numerical comparison
with the exact dispersion relation, which is also studied in great detail making use of the analogy
with better understood Love-type waves.

2. Statement of the problem
Consider plane problem in linear elasticity for a half-space (x2 > 0) coated by a layer of thickness
h, with a clamped surface (−h6 x2 6 0), see Figure 1. In what follows, the quantities associated
with the coating and the half-space are denoted with the superscripts “−" and “+", respectively.

The conventional equations of motion can be taken as, see e.g. [2],

σ±i1,1 + σ±i2,2 = ρ±u±i,tt, (2.1)

where σ±ij are Cauchy stresses (i, j = 1, 2), u±i are displacements, ρ± denote volume mass
densities, and comma indicates differentiation.
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Figure 1. A clamped coated half-space

The constitutive relations in linear isotropic elasticity are adopted in the form

σ±ij = λ±δij(u
±
1,1 + u±2,2) + µ±(u±i,j + u±j,i), (2.2)

where λ± and µ± are Lamé elastic constants, and δij is the Kronecker delta.
The boundary condition modelling a clamped surface can be written as

u−i
∣∣
x2=−h = 0. (2.3)

We also impose the continuity conditions at the interface

u−i
∣∣
x2=0

= u+i
∣∣
x2=0

, σ−i2
∣∣
x2=0

= σ+i2
∣∣
x2=0

(2.4)

and assume spacial decay of displacements, i.e. u+i → 0 as x2→∞. We usually suppose that the
layer is softer than the half-space, employing, therefore, a small contrast parameter given by

µ=
µ−

µ+
. (2.5)

The displacement field can be decomposed according to the Helmholtz theorem [2] as

u±1 =ϕ±,1 − ψ
±
,2, u±2 =ϕ±,2 + ψ±,1, (2.6)

where ϕ± and ψ± are longitudinal and transverse elastic potentials, respectively. Substituting the
last formulae into the equations of motion (2.1), we arrive at the following wave equations

(c±1 )2∆ϕ± − ϕ±,tt = 0, (c±2 )2∆ψ± − ψ±,tt = 0, (2.7)

where

c±1 =

√
λ± + 2µ±

ρ±
, c±2 =

√
µ±

ρ±
(2.8)

are longitudinal and transverse wave speeds, respectively, and ∆=
∂2

∂x21
+

∂2

∂x22
.

The wave potentials satisfying (2.7) are found in the form of travelling harmonic waves as

ϕ− = [A1 cos(α
−kx2) +A2 sin(α

−kx2)]e
ik(x1−ct), ϕ+ =A5e

ik(x1−ct)−α+kx2 ,

ψ− = [A3 cos(β
−kx2) +A4 sin(β

−kx2)]e
ik(x1−ct), ψ+ =A6e

ik(x1−ct)−β+kx2 ,
(2.9)

where k is wave number, c is phase speed, An, n= 1, ..., 6, are arbitrary constants, and the
coefficients α± and β± are given by

α− =

√
c

(c−1 )2
− 1, β− =

√
c

(c−2 )2
− 1, (2.10)

and

α+ =

√
1− c2

(c+1 )2
, β+ =

√
1− c2

(c+2 )2
. (2.11)
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Substituting (2.9) into (2.6) and (2.2), and then satisfying boundary and continuity conditions
(2.3) and (2.4), we obtain a dispersion relation in the form

detA = 0, (2.12)

with the following non-zero components of matrix A

a11 =−ic−α , a12 = is−α , a13 = β−s−β , a14 = β−c−β ,

a21 = α−s−α , a22 = α−c−α , a23 = ic−β , a24 =−is−β ,
a34 =−β−, a36 =−β+, a42 = α−, a45 = α+,

a51 = µη−, a54 = 2iβ−µ, a55 =−η+, a56 = 2iβ+,

a62 = 2iα−µ a63 =−µχ−β , a65 = 2iα+, a66 = χ+β ,

(2.13)

and

a31 =−a35 = a43 =−a46 = i. (2.14)

In above,

s−α = sin(khα−), c−α = cos(khα−), s−β = sin(khβ−),

c−β = cos(khβ−), χ±α = 1∓ (α±)2, χ±β = 1± (β±)2,

η± = 2− χ±α (κ±)2,
(2.15)

where

κ± =
c±1
c±2

=

√
2− 2ν±

1− 2ν±
, (2.16)

with ν± denoting Poisson’s ratios.
It may be easily verified that the dispersion relation (2.12) for a homogeneous half-space, i.e.

when µ− = µ+, λ− = λ+ and ρ− = ρ+, has no solutions due to boundary condition (2.3) along
the clamped surface. Our goal is to demonstrate that the presence of inhomogeneity in the form
of a coating supports a family of solutions, corresponding to Rayleigh-type surface waves, as
follows from the mathematical analysis in [8]. Prior to interpreting these waves as a perturbation
of the classical Rayleigh waves [31] in terms of a small contrast parameter µ, we investigate the
dispersion relation (2.12) numerically.

3. Numerical analysis of the dispersion relation
In this section we present numerical results for the dispersion relation (2.12). They are interpreted
starting from a similarity with Love-type waves discussed in the Appendix A. Below we analyse
the effect of the relative stiffness µ, defined by (2.5), setting

ν− = 0.3, ν+ = 0.25, and ρ=
ρ−

ρ+
= 0.6. (3.1)

As Love-type waves, see explicit formulae (A.7), the localised waves of interest seemingly exist
under the condition

µ−

µ+
= µ< ρ=

ρ−

ρ+
, or c−2 < c+2 . (3.2)

This is in agreement with Figure 2, in which ρ= 0.6, and µ= 0.3 and µ= 0.5, and blue solid lines
depict dispersion curves (2.12), yellow and green dashed lines represent the shear wave speeds



5

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..................................................................

(a) µ= 0.3 (b) µ= 0.5
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Figure 2. Dispersion curves for Rayleigh-type waves and associated functions F (Ω+).
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Figure 3. Short-wave behaviour of Rayleigh-type waves at µ= 0.1.

of the substrate c= c+2 and the coating c= c−2 , respectively, and also

Ω+ =
ωh

c+2
, K = kh, (3.3)



6

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..................................................................

and

F (Ω+) = detA|c=c+2 . (3.4)

This function is the result of the substitution of c= c+2 into the dispersion relation (2.12). Similarly
to the explicit formula (A.7), the transcendental equation F (Ω+) = 0 determines the cut-off
frequencies marked as red dots numbered from 1 to 5 in Figure 2.

Short-wave approximations of (2.12) at K� 1 are identical to those for the Love-type waves,
see (A.8). Numerical comparison at µ= 0.1 is shown in Figure 3, where blue solid and green
dashed lines correspond to (2.12) and (A.8), respectively.
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Figure 4. Dispersion curves for Rayleigh-type waves for high-contrast setup (µ= 0.001).

If contrast in stiffness of the layer and the half-space is substantial, the Rayleigh wave
limit gives a reasonably accurate approximation, except for the vicinities of certain thickness
resonances, as well as near-zero frequency, see Figure 4, in which µ= 0.001. In this Figure, blue
curves correspond to the dispersion relation (2.12), the origins of the modes, denoted as red
dots, are located on the dashed grey line Ω+ =K, associated with the shear wave speed of the
substrate c= c+2 , a pink dashed line represents the Rayleigh wave limit c= cR, and yellow and
green dashed lines are for stretch and shear thickness resonance frequencies, respectively. The
latter are expressed as

Ω+
st =

√
µ

ρ
κ−πn, Ω+

sh =

√
µ

ρ
πn, n= 1, 2, 3, ... . (3.5)

These are the eigenvalues of the 1D problem along the cross section of the layer with clamped
faces, given by

h2u−1,22 +

(
Ω+
√
ρ

µ

)2

u−1 = 0, h2u−2,22 +

(
Ω+

κ−

√
ρ

µ

)2

u−2 = 0, (3.6)



7

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..................................................................

subject to
u−i
∣∣
x2=−h = u−i

∣∣
x2=0

= 0. (3.7)

It is seen from Figure 2 that as the contrast grows (from µ= 0.5 to µ= 0.3), the density of the
cut-off frequencies seemingly increases. Moreover, high contrast (µ� 1) necessitates the lowest
cut-off frequency becoming small, as seen on a zoomed part of Figure 4 showing the behavior of
the first mode in the near-zero vicinity. This phenomenon has been recently noted in studies of
low-frequency dynamics in high-contrast elastic composites, see e.g. [20]. We also observe that
the dispersion curves in Figure 4 look similar to those for seismic metasurfaces, see e.g. [9,11].

The fact that the Rayleigh wave is very pronounced in case of a high contrast, i.e. it provides a
good approximation for a broad range of frequencies, inspires approaching the original problem
in plane elasticity in Section 2 within the framework of the hyperbolic-elliptic model for the near-
surface wave field [19], see Appendix B. However, before implementing this model, we try to
reduce the role of the coating to effective boundary conditions along the interface x2 = 0 as has
been done, for example, in [10] dealing with a layered half-space subject to normal stress applied
along the surface.

4. Effective boundary conditions
Consider an inhomogeneous Dirichlet problem for an infinite thin layer (−h≤ x2 ≤ 0), subject to
the boundary conditions

u−i
∣∣
x2=−h = 0, u−i

∣∣
x2=0

= vi, (4.1)

where vi(x1, x2) are prescribed displacements.
First, introduce the dimensionless coordinates and frequency by

ξ1 =
x1
l
, ξ2 =

x2 + h

h
, and Ω− =

ωh

c−2
, (4.2)

where l is a typical wave length, which is assumed to be much greater than the thickness h, i.e.

ε=
h

l
� 1. (4.3)

Let us adapt a long-wave asymptotic procedure, see e.g. [16], setting

u−i = hu∗−i , σ−ii = µ−σ∗−ii , σ−12 = µ−σ∗−12 , vi = hv∗i , (4.4)

where the quantities with an asterisk are of order unity.
In this case, we make an important assumption

Ω− . 1, (4.5)

which includes the so-called high-frequency long-wave approximations, e.g. see [16]. Before, the
effective boundary conditions were usually known for the small frequencies (Ω−� 1), enabling
analysis of the low-frequency Rayleigh-type waves only. In this paper, assuming Ω− ∼ 1, we are
able to tackle high-frequency surface waves as well.

In view of the formulae above in this section, the equations (2.1) and (2.2) become

εσ∗−i1,1 + σ∗−i2,2 + (Ω−)2u∗−i = 0,

σ∗−11 = ε(κ−)2u∗−1,1 +
(
(κ−)2 − 2

)
u∗−2,2,

σ∗−22 = ε
(
(κ−)2 − 2

)
u∗−1,1 + (κ−)2u∗−2,2,

σ∗−12 = u∗−1,2 + εu∗−2,1,

(4.6)

subject to boundary conditions (4.1) rewritten as

u∗−i
∣∣
ξ2=0

= 0, u∗−i
∣∣
ξ2=1

= v∗i , (4.7)
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with v∗i = vi/h. We expand the scaled displacements and stresses in asymptotic series as u∗−i
σ∗−ii
σ∗−12

=


u
−(0)
i

σ
−(0)
ii

σ
−(0)
12

+ ε


u
−(1)
i

σ
−(1)
ii

σ
−(1)
12

+ ... . (4.8)

At leading order, we have

σ
−(0)
i2,2 + (Ω−)2u

−(0)
i = 0,

σ
−(0)
11 =

(
(κ−)2 − 2

)
u
−(0)
2,2 ,

σ
−(0)
22 = (κ−)2u

−(0)
2,2 ,

σ
−(0)
12 = u

−(0)
1,2 ,

(4.9)

subject to

u
−(0)
i

∣∣
ξ2=0

= 0, u
−(0)
i

∣∣
ξ2=1

= v∗i . (4.10)

Then, we obtain from (4.9)3

σ
−(0)
22 = (κ−)2

∂u
−(0)
2

∂ξ2
. (4.11)

Substituting (4.11) into (4.9)1, we deduce a second order ordinary differential equation

∂2u
−(0)
2

∂ξ22
+

(
Ω−

κ−

)2

u
−(0)
2 = 0. (4.12)

from which, satisfying the boundary conditions (4.10)

u
−(0)
2 =

v∗2

sin

(
Ω−

κ−

) sin

(
Ω−

κ−
ξ2

)
. (4.13)

Following the same procedure for u−(0)1 , we get

u
−(0)
1 =

v∗1
sin(Ω−)

sin(Ω−ξ2), (4.14)

and, finally,

σ
−(0)
22 =

κ−Ω−v∗2

sin

(
Ω−

κ−

) cos

(
Ω−

κ−
ξ2

)
, σ

−(0)
12 =

Ω−v∗1
sin(Ω−)

cos(Ω−ξ2). (4.15)

It is underlined that the thickness variation for stresses (4.15) is not polynomial, but sinusoidal,
which is characteristic of high-frequency long-wave approximations.

Due to continuity conditions (2.4)2, in which vi = u+i , the last expressions (4.15) taken at the
lower face of the layer ξ2 = 1 (x2 = 0) lead to the sought for effective boundary conditions. In the
dimensional variables they take the form (x2 = 0)

σ+22 = κ−ω
√
ρ−µ−u+2 cot

(
ωh

c−2 κ
−

)
, σ+12 = ω

√
ρ−µ−u+1 cot

(
ωh

c−2

)
. (4.16)

As might be expected, the derived conditions fail at

sin

(
ωh

c−2 κ
−

)
= 0 or sin

(
ωh

c−2

)
= 0, (4.17)

corresponding to thickness resonances (3.5). The asymptotic technique oriented to the vicinities
of thickness resonances is presented in a number of publications, e.g. [16,32].
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We also remark that in the low-frequency limit ω→ 0 the effective boundary conditions (4.16),
are simplified to a more traditional form

σ+22 =

(
κ−
)2
µ−

h
u+2 , σ+13 =

µ−

h
u+1 , (4.18)

not containing a frequency parameter.

5. Non-uniform asymptotics
Let us start from the hyperbolic equation (B.8) for the Rayleigh wave, in which, according to (4.16),

Q1 =
κ−µ−

h
Ω− cot

(
Ω−

κ−

)
u+2
∣∣
x2=0

, Q2 =
µ−

h
Ω− cot

(
Ω−
)
u+1
∣∣
x2=0

, (5.1)

where, as above, we assume Ω− . 1. Within the framework of the explicit asymptotic model
oriented to contribution of the Rayleigh wave only, exposed in Appendix B, see also [19] and
references therein, the displacements in (5.1) may be expressed through the Lamé potential ϕ+ as

u+1 =
1− β2R

2
ϕ+
,1, u+2 =−1− β2R

1 + β2R
ϕ+
,2 = αR

1− β2R
1 + β2R

H(ϕ,1), (5.2)

whereH stands for the Hilbert transform

H(f(x)) = 1

π
p.v.

∞∫
−∞

f(ξ)

x− ξ dξ, (5.3)

see e.g. [12], and αR and βR are given by (B.5).
Then, the time-harmonic form of (B.8) becomes (factor of e−iωt is separated)

ϕ+
,11 +

1

c2R

(
Ω−c−2
h

)2

ϕ+ +
µ

h
Ω−γH(ϕ+

,1) = 0, (5.4)

where

γ =

βR(β
2
R − 1)

[(
1 + β2R

)2
cot
(
Ω−
)
+ 4α2

Rκ
− cot

(
Ω−

κ−

)]
8
[
β2R + α2

R(1− 2β2R) + αRβR(β
4
R − 1)

] . (5.5)

Thus, the earlier established equation for the Rayleigh wave on a homogeneous elastic half-
space is now perturbed by an integral (or pseudo-differential) operator multiplied by the small
parameter (2.5).

Let us investigate the dispersion relation corresponding to (5.4), at µ� 1. Setting, ϕ+ = eikx1

(k≥ 0), we have
ζ2

ζ2R
+
√
µργζ − 1 = 0, (5.6)

with ζ = c/c+2 and ζR = cR/c
+
2 , where, as before, c= ω/k is the phase speed. This immediately

gives O(
√
µ) correction to the Rayleigh wave speed ζ = ζR, thus

ζ = ζR −
1

2

√
µργζ2R + ... . (5.7)

This asymptotic formula is not uniformly valid, since γ→∞ at thickness resonances (3.5), and
also at Ω−→ 0, when

γ =
βR(β

2
R − 1)

(
1 + 2β2R + β4R + 4α2

R

(
κ−
)2)

8Ω−
[
β2R + α2

R(1− 2β2R) + αRβR(β
4
R − 1)

] . (5.8)

In this case, the low-frequency Rayleigh-type wave has a non-zero cut-off frequency, which is in
agreement with numerical data in Figures 2 and 4. It is also obvious that the equation (5.7) with γ
given by (5.8) would follow from the low-frequency effective boundary conditions (4.18).
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In contrast to the consideration above, the low-frequency Rayleigh-type wave for a coated half-
space with traction-free surface has no cut-off frequency. Indeed, it is governed by a singularly
perturbed wave equation, see [10]

�Rϕ
+ − bhH(ϕ+

,111) = 0, (5.9)

where

�R =
∂2

∂x21
− 1

c2R

∂2

∂t2
, (5.10)

is the d’Alembert operator, and the material constant b is defined by formula (4.23) in [10].
The associated dispersion relation is -

ζ2

ζ2R
+

√
µ
√
ρ

bΩ−

ζ
− 1 = 0, (5.11)

supporting the surface wave with ζ = ζR at Ω− = 0.

6. Comparison with the exact solution
This section contains numerical study of the derived asymptotic approximation for the wave
speed (5.7). The variation of the scaled phase velocity ζ = c/c+2 on the dimensionless frequency
Ω+ is presented for both exact dispersion relation (2.12) and the approximation (5.7), for the
material parameters (3.1), see Figures 5 a), b) illustrating the near-zero vicinity of the first mode
and the high-frequency domain for µ= 0.001. In these Figures, red dashed lines represent the
asymptotic approximation (5.7), and blue solid curves correspond to the exact dispersion relation
(2.12).

It is observed from Figure 5 a) that, as expected, in the vicinity of Ω+ = 0 approximation (5.7)
is reasonably close to the exact solution in a narrow region only, associated with the first non-zero
cut-off frequency. On the contrary, Figure 5 b) shows that for Ω+ ∼ 1 the approximation (5.7) is
valid over a remarkably broad range of frequencies, except for the cut-off frequencies, where the
effective boundary conditions (4.16) fail.

(a) low-frequency (b) high-frequency

Figure 5. Rayleigh-type modes (2.12) and its approximation (5.7) for high contrast µ= 0.001 over a) low-frequency

region; b) high-frequency domain
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7. Conclusion
The non-traditional effective boundary conditions (4.16) are derived using a long-wave high-
frequency asymptotic procedure, e.g. see [16]. They incorporate the effect of a soft thin coating
clamped along the surface, resulting in a regular operator perturbation of the equation governing
the Rayleigh wave (5.4). It is interesting that the analogous conditions for a coating with a free
surface in [10] lead to a singular perturbation, see also [19].

The non-uniform asymptotic formulae for the family of Rayleigh-type waves (5.7), deduced
from the equation (5.4), fail in the vicinities of the thickness resonances (3.5) and zero frequency.
In this case, in contrast to a coating with a traction-free surface, the lowest wave has a cut-off
frequency, which is in line with the non-existence of surface waves on a clamped homogeneous
half-space.

Of course, the aforementioned formulae (5.7) could be readily obtained from the original
equations in linear elasticity (2.7) subject to the established effective conditions (4.16). However,
the approach implemented above, originating from the approximate formulation for the
Rayleigh-type wave (5.4) brings in a number of advantages. In particular, it allows various
generalisations, including, in particular, taking into account external loading, 3D effects and
transient phenomena, as it has been done for a homogeneous half-space, see [19].

It is also worth mentioning the useful findings in Section 3, including evaluation of zeros of
the function F , facilitating interpretation of the numerical data calculated from the full dispersion
relation (2.12). In this case, the similarity with more explicit results for Love-type waves, see
Appendix A, is intensively exploited.

Finally, we note the phenomenon of the lowest cut-off frequency tending to zero in case
of especially high contrast (µ� 1), which is in line with vibrations of high-contrast elastic
composites, see [20].

Appendix A. Love-type waves on a layered half-space with a
clamped surface
Consider an anti-plane problem for a half-space (x2 ≥ 0) coated by a layer (−h≤ x2 ≤ 0), i.e.
assume u±1 = u±2 = 0 and u±3 = u±3 (x1, x2, t). This scalar problem of elasticity allows some
qualitative insight into the dynamic response of a layered half-space with a clamped surface,
having obvious parallels with the plane problem, see Section 3. The equations of anti-plane
motion are given by

u±3,11 + u±3,22 =
1

(c±2 )2
u±3,tt, (A.1)

together with the constitutive relations

σ±13 = µ±u±3,1, σ±23 = µ±u±3,2. (A.2)

The boundary condition modelling a clamped surface x2 =−h is taken as

u−2 = 0. (A.3)

The continuity conditions at the interface are given by

u−3
∣∣
x2=0

= u+3
∣∣
x2=0

, σ−23
∣∣
x2=0

= σ+23
∣∣
x2=0

. (A.4)

The displacements satisfying (A.1) and the decay conditions are taken in the form

u−3 =
(
A1 cos(β

−kx2) +A2 sin(β
−kx2)

)
eik(x1−ct), u+3 =A3e

ik(x1−ct)−β+kx2 , (A.5)

where An, n= 1, 2, 3 are arbitrary constants, and β− and β+ are defined in (2.10) and (2.11),
respectively. The associated dispersion relation may then be derived, giving

tan(khβ−) +
µβ−

β+
= 0. (A.6)
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Numerical illustrations of the dispersion relation (A.6), showing the scaled frequency Ω+ vs.
the dimensionless wave number K, see (3.3), are presented in Figure 6 for several values of the
relative stiffness µ= 0.1, µ= 0.3, and µ= 0.5, with the material parameters (3.1). Here, the blue
solid lines represent exact dispersion curves, yellow and green dashed lines correspond to the
shear wave speeds of the substrate c= c+2 and the coating c= c−2 , respectively.

(a) µ= 0.1 (b) µ= 0.3
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(c) µ= 0.5
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Figure 6. Dispersion curves for Love-type waves for several types of contrast (a) µ= 0.1; (b) µ= 0.3; (c) µ= 0.5

Predictably, it is observed from Figure 6 that as the contrast becomes less noticeable (µ is
getting closer to unity), the angle between the dashed lines depicting shear wave fronts of the
layer and the half-space becomes narrower, with the solution of the dispersion relation (A.6) lying
within this angle. This confirms a well-known fact that the Love waves exist provided that the
shear wave speed of the half-space exceeds that of the layer, i.e. c−2 < c+2 , or µ< ρ, with the same
phenomena noted in the associated plane problem, see (3.2). Similarly to Rayleigh waves, in case
of a homogeneous half-space (µ= 1), dispersion relation (A.6) does not allow a localised solution.
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The initial points of the dispersion modes (the cut-off frequencies) are located on the line c= c+2
or Ω+ =K (denoted with red dots), see Figure 6. Therefore, as β+→ 0, it follows from (A.6) that
tan(khβ−)→∞, hence, the expressions for the cut-off frequencies are given explicitly by

Ω+
0 =K0 =

π(2n− 1)

2

√
ρ

µ
− 1

, n= 1, 2, 3, ... . (A.7)

It is also worth noting that the value of the lowest cut-off frequency decreases with increase in
contrast (as µ→ 0), see points 1, 2, and 3 in Figure 6, which also follows (A.7).

On the other hand, in the limit K� 1, the phase velocity tends to the shear wave speed of the
layer, i.e., c→ c−2 , therefore, β−→ 0. Hence, from (A.6), tan(khβ−)→ 0, implying

Ω+ ∼

√
µ(π2n2 +K2)

ρ
, n= 1, 2, 3, ..., K� 1. (A.8)

Thus, the consideration for Love-type waves in a coated half-space with a clamped surface
clarifies the localised wave phenomena, giving explicit formulae for the cut-off frequencies and
providing parallels with a less trivial plane-strain case, see Section 3.

Appendix B. Explicit asymptotic model for the Rayleigh wave
Consider plane-strain problem (2.7) for a homogeneous elastic half-space x2 ≥ 0 subject to the
prescribed surface stresses

σ+22
∣∣
x2=0

=Q1(x1, t), σ+12
∣∣
x2=0

=Q2(x1, t). (B.1)

In this case, the contribution of the Rayleigh wave expressed in terms of the Lamé potentials can
be presented as a superposition

ϕ+ =ϕ+
1 + ϕ+

2 , ψ+ =ψ+
1 + ψ+

2 (B.2)

where, as shown in [19], see also references therein,

�Rϕ
+
1

∣∣
x2=0

=
1 + β2R
2µ+B

Q1, �Rψ
+
2

∣∣
x2=0

=−1 + β2R
2µ+B

Q2, (B.3)

where �R is the d’Alembert operator defined by (5.10),

B =
αR
βR

(1− β2R) +
βR
αR

(1− α2
R)− 1 + β4R, (B.4)

with

αR =

√
1− c2R

(c+1 )2
, βR =

√
1− c2R

(c+2 )2
. (B.5)

The wave equations (B.3) may be transformed to a single one, using the identities

ψ+ =
2αR

1 + β2R
H(ϕ+), ϕ+ =− 2βR

1 + β2R
H(ψ+), (B.6)

see [7] and [19] for further detail, whereH denotes the Hilbert transform. In particular, the second
equation in (B.3) can be reduced to

�Rϕ
+
2

∣∣
x2=0

=
βR
µ+B

H(Q2). (B.7)

Finally, adding the first equation in (B.3) and (B.7), we arrive at

�Rϕ
+ =

1

2µ+B

[(
1 + β2R

)
Q1 + 2βRH(Q2)

]
, (B.8)

where, once again, �R is the d’Alembertian, see (5.10).
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