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What is already known on this topic?

 ► Validation of prediction models is uncommonly 
performed beyond the first description of a 
model.

 ► Febrile neutropenia can be managed in a 
risk- adapted way, but the best method of risk 
prediction is unclear.

 ► The Predicting Infectious ComplicatioNs In 
Children with Cancer (PICNICC) model produces 
risk estimates of infection in febrile neutropenia 
from clinical information and routine blood 
tests.

What this study adds?

 ► This meta- analytic study showed across seven 
studies with 1159 patients the prediction model 
performed variably but poorly.

 ► Recalibration using three different simple 
approaches did not overcome the poor results.

 ► The original PICNICC model is not reliable 
in predicting risk of infection in children 
presenting with febrile neutropenia and should 
not be used in practice.

AbsTrACT
background Risk- stratified approaches to managing 
cancer therapies and their consequent complications 
rely on accurate predictions to work effectively. The 
risk- stratified management of fever with neutropenia 
is one such very common area of management in 
paediatric practice. Such rules are frequently produced 
and promoted without adequate confirmation of their 
accuracy.
Methods An individual participant data meta- analytic 
validation of the ’Predicting Infectious ComplicatioNs 
In Children with Cancer’ (PICNICC) prediction model 
for microbiologically documented infection in paediatric 
fever with neutropenia was undertaken. Pooled estimates 
were produced using random- effects meta- analysis of 
the area under the curve- receiver operating characteristic 
curve (AUC- ROC), calibration slope and ratios of 
expected versus observed cases (E/O).
results The PICNICC model was poorly predictive of 
microbiologically documented infection (MDI) in these 
validation cohorts. The pooled AUC- ROC was 0.59, 
95% CI 0.41 to 0.78, tau2=0, compared with derivation 
value of 0.72, 95% CI 0.71 to 0.76. There was poor 
discrimination (pooled slope estimate 0.03, 95% CI 
−0.19 to 0.26) and calibration in the large (pooled E/O 
ratio 1.48, 95% CI 0.87 to 2.1). Three different simple 
recalibration approaches failed to improve performance 
meaningfully.
Conclusion This meta- analysis shows the PICNICC 
model should not be used at admission to predict MDI. 
Further work should focus on validating alternative 
prediction models. Validation across multiple cohorts 
from diverse locations is essential before widespread 
clinical adoption of such rules to avoid overtreating or 
undertreating children with fever with neutropenia.

bACkgrOund
The side effects of cancer therapies in childhood 
frequently require unplanned admission to hospital 
with consequent heavy burden on patients, fami-
lies and the health service. The most common side 
effect leading to such an admission is the suspicion 
of severe infection in an immunocompromised 
child, known as fever with neutropenia. This is 
experienced by most patients at least once,1 and is 
associated with a median hospital stay of 5 days.2

The management of fever with neutropenia 
commonly consists of admission to hospital and 
the delivery of intravenous antibiotics to minimise 
adverse outcomes such as death or disability. This 
approach produces low mortality rates2 but over-
treats the 75% of individuals who do not have a 

documented infection.1 The potential for adverse 
consequences includes the emergence of resistant 
microorganisms3 and secondary hospital- acquired 
infections4 which have been associated with 
prolonged antibiotic exposure and hospitalisation. 
Inpatient therapy is also associated with inferior 
health- related quality of life for children with 
cancer3 and outpatient options are often chosen 
where available.4 Personalising an approach to 
fever with neutropenia could be achieved by (1) 
facilitating those who wished to be discharged to 
go home if predicted to be at a low risk of serious 
infection,5 and (2) by using biomarkers of infection/
inflammation to identify those in whom it is appro-
priate to shorten the duration of antibiotic therapy.6

A risk prediction model has been developed by 
the ‘Predicting Infectious ComplicatioNs In Chil-
dren with Cancer’ (PICNICC) collaboration.7 
This international collaboration, which included 
24 groups from 16 countries, derived a new clin-
ical model to predict the risk of infection in febrile 
neutropenic episodes from nine of these data sets. 
This joins four other models which appear to have 
reasonable validity or applicability in this popu-
lation.8 The model was developed using a strong 
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internal validation process, including shrinkage techniques, 
cross- validation (by leave- one- out techniques) and bootstrapping 
to guard against overfitting and inadequate performance in new 
data sets. However, it requires external validation, as previous 
studies have found that initial descriptions of risk prediction 
models may be overly optimistic in new data and can perform 
differently in different settings.9 10

This study aimed to externally validate the predictive perfor-
mance (ie, discrimination and calibration of risk predictions) 
and clinical utility of the model developed by the PICNICC 
Collaboration, by collecting and analysing data from multiple 
geographically diverse cohorts of children and young people 
who had developed fever with neutropenia. Estimates of predic-
tive performance are summarised using meta- analysis, and the 
variations between data sets examined to identify differences in 
performance across different units and countries. Our goal was 
to establish whether the model is globally robust, or if it was 
only suitable in particular settings. This is important in clinical 
practice as previous work has suggested that despite broad inter-
national consensus on the therapies used in treating childhood 
cancer, important between- continent variation occurs in the 
accuracy of FN decision rules.8

MeThOds
study design
Individual participant data (IPD) meta- analysis of existing 
cohort studies to externally validate a previously derived predic-
tion model.

Studies were included of cohorts of children and young 
people receiving anticancer treatment who developed fever and 
neutropenia, or who presented clinically septic and afebrile/
hypothermic after such treatment. Each study was required 
to provide sufficient anonymised information to calculate the 
PICNICC prediction model with appropriate outcomes. Studies 
were sought through invitations within the PICNICC network, 
and the permission to share the information sought by the orig-
inating team.11 Outcomes were defined according to interna-
tional consensus recommendations12 13 with microbiologically 
documented infection (MDI) defined as an infection that was 
clinically detectable and microbiologically proven, and bacter-
aemia isolation of a recognised pathogen cultured from one or 
more blood cultures or common commensals cultured from two 
or more blood cultures from separate occasions.

sample size
We aimed to collect IPD that, in total across studies, had at least 
100 events (ie, MDIs) as this is the minimum recommended 
for external validation of a risk prediction model for a binary 
outcome.14

Method of analysis
External validation of the performance of a risk prediction model 
consists of two components: statistical validation of predictive 
performance and clinical utility.15

First, to summarise predictive performance, the discrimination 
and calibration performance of the model’s predictions were 
calculated separately for complete cases in each data set and then 
summarised across studies using random- effects meta- analysis 
with the restricted maximum likelihood estimator and inverse 
variance weighting.16 17 In each study separately the calibration 
and discrimination characteristics were calculated. Calibration, 
the agreement between the model’s predicted risks and the 
observed risks across individuals, was quantified by calculating 

the ratio of expected to observed cases (E/O ratio, ideal value of 
1). Discrimination is the ability of the model’s predicted risks to 
correctly separate those who will and those will not develop the 
episode, examined by the separation of predicted risks on the 
calibration plot and quantified by the area under the receiver 
operating characteristic curve (AUROC, also known as the 
C- statistic), with values closer to 1 showing higher discrimina-
tion. Estimates of variance for each estimate were derived from 
bootstrapping with replacement, using 2000 separate draws.

The performance estimates across all studies were then 
summarised by random- effects meta- analysis, for each of the 
AUROC, calibration slope and E/O ratio separately. A random- 
effects meta- analysis accounts for unexplained between- study 
heterogeneity in predictive performance, which is expected.17 18 
The summary (pooled) results describe the average predictive 
performance, and the between- study heterogeneity is measured 
by ‘tau- squared’ (larger values indicate greater heterogeneity) 
and a 95% prediction interval (PrI), which describes the model’s 
expected performance in a new setting.16

The predictive performance of the model was also re- eval-
uated after strategies for recalibration of the intercept and/or 
calibration slope. Recalibration is expected as the occurrence 
of complications may differ from the derivation set,18 such that 
the baseline risk or values of the coefficients need to be tailored 
to the local population.19 The choice of recalibration approach 
remains an ongoing matter of investigation,20 and we compared 
four approaches as follows. The first three approaches changed 
the model intercept, but kept the same predictor effects (ie, the 
beta coefficient values) as in the original model. The baseline 
recalibration approach (A) used a weighted average intercept 
from the derivation IPD, assuming the different study- level inter-
cepts in the development data were drawn from a normal distri-
bution. Then alternatives based on study- specific estimates were 
used: (B) basing the estimated intercept on the proportionate 
rate of MDI, and (C) interpolating the intercept from meta- 
regression of the intercept on the proportion of MDI. Lastly, 
approach (D) modified the beta coefficient values of the original 
model by multiplying them by the calibration slope observed 
in the new data and using the same intercept calculated as the 
average across all studies.14 Meta- analysis was used to summarise 
and compare after each recalibration strategy.20

Finally, after undertaking these recalibration approaches, 
exploratory analyses were undertaken to re- evaluate the beta 
coefficient values of the model variables to determine causes of 
inaccurate estimation.

Clinical utility was assessed by calculating the sensitivity 
(Sn) and specificity (Sp) of dichotomising at ≤10% chance of 
serious complications initially, and comparing this with esti-
mates from the derivation data set.16 This calculates how many 
patients would be categorised as ‘low risk’ and what proportion 
of this group developed a serious complication. Sn and Sp were 
summarised across studies using bivariate meta- analysis tech-
nique, with data derived from each of the raw and recalibrated 
approaches.

The article is reported according to the Transparent Reporting 
of a multivariable prediction model for Individual Prognosis 
or Diagnosis (TRIPOD) guidelines, and all analyses were done 
using R V.3.2.0.

resulTs
Included studies
Six study groups provided IPD from seven independent data sets, 
and these were included in the initial validation (see table 1). The 
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Table 1 Properties of the data sets

episodes, n Patients, n
MdI 
episodes, n

MdI 
(%) study design

Leeds 48 27 9 19 Prospective

Liverpool 47 21 7 21 Retrospective

Sheffield 167 47 51 31 Retrospective

Nottingham 121 63 41 26 Retrospective

Belgium 27 16 5 19 Prospective

Melbourne a 101 54 18 18 Retrospective

Melbourne b 648 327 154 24 Retrospective

MDI, microbiologically documented infection

Table 2 Demographic outline of the patients in the data sets

leukaemia 
(%)

lymphoma 
(%)

solid tumours 
(%)

brain tumours 
(%) Median age (min- max)

Outpatients 
(%)

Poststem cell transplant 
(%)

Central line in situ 
(%)

Leeds 11 (41) 3 (11) 10 (37) 3 (11) 67 months (15–219) 41 (85) 2 (7) 48 (100)

Liverpool 9 (43) 2 (9) 10 (48) 0 70 months
(8.5–228)

21 (100) 0 21 (100)

Sheffield 19 (40) 4 (9) 17 (36) 7 (15) 79 months (5–205) 150 (84) 15 (9) 161 (98)

Nottingham 37 (59) 1 (1.5) 19 (30) 6 (9.5) 48 months
(6–118)

155 (100) 4 (6) 141 (91)

Belgium 9 (56) 2 (13) 5 (31) 0 86 months (30–277) 0 1 (4) 24 (89)

Melbourne a 63 (62) 10 (10) 24 (24) 4 (4) 6 years (1–14) 101 (100) 0 62 (96)

Melbourne b 180 (55) 25 (8) 88 (27) 34 (10) 76 months (6.7–241) 648 (100) 15 (4) 310 (95)

invitation to join the PICNICC Collaborative, and the processes 
of acquiring and validating the data, are detailed in other publi-
cations.7 21 Those providing data for the validation submitted 
their information after the derivation had commenced, and so 
were kept aside for this project.

The populations in the validation studies varied in their 
geographical origin, and demographics of the included patients 
(see table 2, and online supplementary appendix 1 for distribu-
tion of the linear predictors).

summarising the predictive performance of the original 
model
Using the weighted average intercept and coefficients from the 
derivation model showed a lower C- statistic than the derivation 
model (validation pooled C- statistic of 0.59, 95% CI 0.41 to 
0.78, tau2=0, compared with original model C- statistic of 0.72, 
95% CI 0.71 to 0.76). This was related to a systematic overesti-
mation of the risk of MDI: pooled E/O ratio 1.48, 95% CI 0.87 
to 2.1, 95% PrI 0.26 to 2.28, tau2=0.21, with poor calibration 
(pooled slope estimate 0.03, 95% CI −0.19 to 0.26, tau2=0). 
See figure 1 for forest plots of C, E/O and exemplar calibration 
plots. Online supplementary appendix 2 contains individual cali-
bration plots.

Predictive performance after recalibration attempts
Using alternative intercepts, either a proportionate change in 
the baseline MDI rates (strategy b) or by interpolation of the 
meta- regression estimates (strategy c), both on a study- by- study 
basis, led to almost identical values (see online supplementary 
appendix 3).

Altering the calibration slope based on the new data and using 
the intercept derived from the meta- analysis of all the valida-
tion data (strategy d) did not alter the rank order of the linear 
predictor, and so the C- statistic did not change, and each slope 
was set to 1 by design. The risk of MDI remained significantly 

overestimated (pooled E/O ratio 1.44, 95% CI 0.83 to 2.05, 
95% PrI 0.18 to 2.70, tau2=0.31, see figure 2).

summary of clinical utility
Dichotomising the original model predicted values at a threshold 
of 10% (into low and high- risk groups), and performing a bivar-
iate meta- analysis of Sn and Sp led to a pooled Sn of 90% (95% 
CI 72% to 97%) and pooled Sp of 13% (95% CI 5% to 24%), 
as demonstrated on the ROC space plot (figure 3). Recalibration 
approaches altering the intercept interpolated from the deri-
vation data (strategy c) led to no meaningful difference in this 
finding.

Recalibration using the intercept modified by the propor-
tion of MDI (strategy b) led to a deterioration in Sp (pooled 
values: Sn 91%, 95% CI 69.9% to 97.8%; Sp 7%, 95% CI 1.9% 
to 31.4%). The study- specific slope and meta- analysis intercept 
(strategy d) led to an improvement of Sn with a reduction in Sp 
making the rule effectively useless in practice (pooled values: 
Sn 97.5%, 95% CI 94.5% to 99.0%; Sp 2.2%, 95% CI 0.7% to 
6.6%; identified 20/1115 or 2% of all cases as ‘low risk’; see 
figure 4).

exploratory analysis to understand poor performance
To understand the reason for poor predictive performance of 
the original model, we re- estimated the model beta coefficients 
in the validation data. The values are the natural log of the OR 
of the risk of MDI for each variable; a negative number indicates 
a decreased risk of MDI, a positive number an increased risk. 
The SE indicates the uncertainty in the beta coefficient; higher 
numbers indicate greater imprecision. This analysis produced 
estimates that differed considerably from those in the original 
model development, for most of the predictors including for 
tumour type (excluding the rare and extremely uncertain esti-
mates for germ cell tumour, Hodgkin’s lymphoma, Langerhans 
cell histiocytosis, retinoblastoma and ‘other sarcoma’, but also 
rhabdomyosarcoma), temperature, white cell parameters and the 
gestalt estimate of ‘seriously clinically unwell’ (see table 3).

dIsCussIOn
The evaluation of a previously proposed prediction model is 
an essential but often neglected part of understanding how risk 
stratification may be implemented in clinical practice. Where 
radiation therapies are subject to extensive quality assurance and 
control processes, diagnostic tests marketed with stringent preci-
sion, and pharmaceuticals require detailed trials and regulatory 
agreements, structural service changes, such as the use of predic-
tion models, can be thrown into the clinical arena on minimal 
evidence. The use of a meta- analytic approach to evaluating a 
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Figure 1 Meta- analytic analysis of the performance of the original Predicting Infectious ComplicatioNs In Children with Cancer (PICNICC) model. 
The forest plots demonstrate the values obtained from each data set, and their pooled summary value. The calibration plots demonstrate how 
the predicted probability from the PICNICC score matches the observed proportion of MDI; ideal calibration sits along the diagonal from bottom 
left to top right, indicated by the dotted line. AUROC, area under the receiver operating characteristic curve; E/O, expected/observed ratio; MDI, 
microbiologically documented infection.

Figure 2 Meta- analytic analysis of the performance of the Predicting 
Infectious ComplicatioNs In Children with Cancer (PICNICC) model after 
study- specific slope recalibration. E/O, expected/observed ratio; RE, 
random effects.

prediction model means it can be tested across multiple environ-
ments, enhancing the generalisability of the conclusions which 
can be drawn.

This analysis shows the initial model as derived by from a 
global international collaborative was not reliable at predicting 
which patients who present with episodes of febrile neutropenia 
have an MDI (pooled C- statistic 0.59, 95% CI 0.41 to 0.79, 
compared with 0.72, 95% CI 0.71 to 0.76 from the derivation 
group). No approach to recalibration was effective at resolving 
the poor predictive performance. The cause of this difference 
appeared to be in overestimates of predictive ability from the 
derivation data, when compared with the validation data. These 
also varied importantly between the sources of data, implying 
a lack of consistency to the estimates. Clinically, this means the 
model was only just better in saying which children were going 
to be diagnosed with an MDI than flipping a coin, despite using 
a series of simple statistical approaches to correct the estimates. 
Reducing antibiotic therapy to the PICNICC ‘low risk’ group 
may undertreat, and pre- emptive increases in antibiotic intensity 
or coverage in the ‘high- risk’ group would overtreat.

The strength of this study is in its wide range of different 
locations under analysis, unpublished data sources reducing the 
many challenges in publication bias, collection of data using a 
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Figure 3 Meta- analytic analysis of the discriminatory performance 
of the original model in receiver operating characteristic curve (ROC) 
space. These plots show how sensitivity and specificity are related, with 
each individual data set producing a cross- hair marking and the pooled 
summary as the red dot with its confidence region outlined in bold red 
ellipse, and prediction interval as a dashed ellipse. An ideal test would 
sit in the top left corner of the plot.

Figure 4 Meta- analytic analysis of the discriminatory performance of 
the recalibrated model in receiver operating characteristic curve (ROC) 
space.

consistent definition guide from the PICNICC group, clear 
relevance to routine clinical practice and the ability to explore 
the reasons for miscalibration by re- estimation of the predic-
tion model. It is novel in evaluating a prediction model, as 
compared with a dichotomising ‘rule’-based approach such as 
the MASCC22 (multinational association of supportive care in 

cancer) or SPOG23 (Swiss paediatric oncology group) systems. 
There remain limitations imposed by the subjective interpreta-
tions of the treating physicians, the varied approaches to diag-
nosis and therapy which remain between centres and may hide 
its effectiveness under specific circumstances and the homogeni-
sation of different treatments into a ‘malignancy type’ variable to 
predict the risk of infection.

A key limitation of this validation may be the choice of ‘micro-
biologically documented infection’ as the detected outcome. 
A previous single- centre validation of the PICNICC rule24 
restricted the adverse outcome to bacteraemia, arguably the 
MDI of most concern in the routine presentation of fever with 
neutropenia, and demonstrated their C- statistic was importantly 
higher (0.71 for bacteraemia vs 0.64 for ‘all’ MDI). The data 
collected for this meta- analytic validation did not allow us to 
extract the bacteraemia alone in these sources, and so we cannot 
replicate this analysis. This means the definition of MDI encom-
passes life- threatening Klebsiella sp septicaemia alongside the 
incidental detection of rhinovirus shedding.

This study demonstrates that the PICNICC rule at admission 
does not effectively predict risk of infection or clearly allow 
discrimination between high and low- risk groups of children 
and young people presenting with fever and neutropenia when 
assessed across multiple locations, even after simple recalibra-
tions have been undertaken. The great variation between the 
initial and subsequent estimates for a ‘malignancy type’ predictor 
suggests continuing to use this, despite being a clinical heuristic 
for risk of infection, is probably unhelpful in building a model 
predicting infection. This may be understood as an effect of the 
drift of treatments over time, as the ‘malignancy type’ is likely to 
be a composite of risk of immunosuppression from the disease 
(in some cases) along with the chemotherapy agents, with their 
own different propensity to cause mucosal injury. Individual 
episode- related features connected to the signs of systemic 
inflammatory response at the presentation of each episode and 
estimates of immune suppression or barrier disruption, such as 
the presence of a tunnelled central line, if it is fully implanted or 
not, or degree of observed mucositis may be of greater consistent 
value. These features showed some predictive utility during the 
development of the PICNICC model.21

The use of a prediction model has theoretical advantages, 
allowing a greater degree of discussion with patients and fami-
lies in sharing a decision to undertake ambulatory management, 
compared with the bald categorisation as an episode as ‘low’ 
or ‘high’ risk. Conversely, it may introduce practical barriers 
to effective implementation, with the requirement for more 
extensive consultation and the challenge of how patients, fami-
lies and healthcare workers manage the uncertainty introduced 
by a predicted risk being discussed. While the PICNICC model 
appears unhelpful, it remains to be evaluated if alternative 
prediction models, such as the method proposed by Esbenshade 
et al for non- neutropenic fever,25 prove robust in re- evaluation. 
Caution should be exercised by those wishing to build new 
prediction models however, as many models are built poorly, for 
no good purpose, and never validated,26 and following guidance 
such as the TRIPOD statement will help.27

The unique PICNICC Collaboration has enabled such exten-
sive evaluations to take place and redirect efforts into evalua-
tion of other systems of immediate stratification, or alternative 
approaches for the rational management of fever with neutro-
penia in children, such as biomarker- guided reduction in antibi-
otic duration or ‘day two’ risk stratification.

Addressing the issues of validating a risk prediction model, 
when coupled with further studies investigating the utility of 
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Table 3 Differences in beta coefficients (log ORs) of predictors included in the development model, when calculated in the derivation data set and 
then in the validation data set

Item

derivation cohort Validation cohort

beta estimate se of estimate beta estimate se of estimate episodes, n

Acute myeloid leukaemia 0.65 0.26 0.31 0.36 52

Ewing’s sarcoma −0.64 0.66 −1.08 0.42 71

Germ cell tumour −0.07 0.88 −13.14 72.64 5

Hepatoblastoma 0.48 0.57 1.04 0.66 12

High- grade brain tumour −0.34 0.46 0.32 0.3 80

Hodgkin’s lymphoma −0.41 0.7 −1.07 1.07 13

High- risk neuroblastoma 0.92 0.66 −0.35 0.34 78

Langerhans cell histiocytosis −14.1 1025.44 1.01 1.27 3

Low- grade brain tumour −14.16 677.94 0.24 0.47 26

Neuroblastoma 0.47 0.49 −16.44 83.28 2

Non- Hodgkin’s lymphoma −0.47 0.32 −0.14 0.33 69

Osteosarcoma −1.19 0.57 0.18 0.33 57

Other tumour 0.8 0.77 −0.93 0.78 17

Retinoblastoma 0.55 0.86 1.05 0.93 5

Rhabdomyosarcoma −0.24 0.32 −0.18 0.35 67

Sarcoma 0.19 0.82 18.92 115.14 2

Wilms tumour −0.49 0.66 0.59 0.41 37

Temperature (per °C from 37) 0.57 0.14 0.18 0.14 1152

Clinical impression of ‘Severely unwell’ 0.79 0.19 1.29 0.27 1152

Haemoglobin (per g/dL) 0.18 0.05 0 0.06 1152

Natural log (total white cell count) −0.3 0.1 −0.16 0.09 1152

Natural log (absolute monocyte count) −0.21 0.06 0.01 0.06 1152

biomarkers and exploring how predictive information could be 
used by children, young people and their families in making deci-
sions about the treatment of fever with neutropenia will allow us 
to personalise our treatment more effectively, and develop prag-
matic trials to improve management of fever with neutropenia. 
This meta- analysis shows it would be inappropriate to use the 
PICNICC model at admission as the basis of a clinical trial, but 
further work should focus on integrating these and other avail-
able data sets to develop and then validate alternative prediction 
models and decision rules.

Twitter Bob Phillips @drbobphillips and Jessica Elizabeth Morgan @drjessmorgan
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