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Abstract

Exploitation of two-dimensional (2D) van der Waals (vdW) crystals can be hindered by the

deterioration of the crystal surface over time due to oxidation. On the other hand, the existence

of a stable oxide at room temperature can offer prospects for several applications. Here we

report on the chemical reactivity of γ-InSe, a recent addition to the family of 2D vdW crystals. 

We demonstrate that, unlike other 2D materials, InSe nanolayers can be chemically stable

under ambient conditions. However, both thermal- and photo-annealing in air induces the

oxidation of the InSe surface, which converts a few surface layers of InSe into In2O3, thus

forming an InSe/In2O3 heterostructure with distinct and interesting electronic properties. The

oxidation can be activated in selected areas of the flake by laser writing or prevented by capping

the InSe surface with an exfoliated flake of hexagonal boron nitride. We exploit the controlled

oxidation of p-InSe to fabricate p-InSe/n-In2O3 junction diodes with room temperature

electroluminescence and spectral response from the near-infrared to the visible and near-

ultraviolet ranges. These findings reveal the limits and potential of thermal- and photo-

oxidation of InSe in future technologies.
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1. Introduction

Stacking different two-dimensional (2D) van der Waals (vdW) crystals to form

heterostructures is a new route to the fabrication of electronic devices.[1–3] Due to the

numerous materials in the family of 2D vdW crystals, such as graphene, hexagonal boron

nitride (hBN), metal dichalcogenides (MoS2, MoSe2, WS2, etc.), III-VI semiconductors (InSe,

In2Se3, GaSe, GaTe, etc.), and elemental semiconductors (black phosphorus, bP), a large and

diverse variety of heterostructures are possible. This has already led to the successful

fabrication of photodetectors, light emitting diodes, and high mobility field effect

transistors.[1,2,4–13] Among these vdW crystals, γ-InSe, a direct-band gap semiconductor, is 

attracting increasing interest. Strong quantum confinement effects with decreasing layer

thickness and high room temperature electron mobility (> 0.1 m2/Vs) have been achieved in

exfoliated InSe and/or films grown by physical vapour deposition.[14–19] Although the

chemical stability of InSe has been questioned,[20] recent research has shown that 2D InSe can

be chemically inert under ambient conditions.[21] The chemical reactivity of the surface of a

2D material is very important as it can hinder the observation of novel phenomena and also

impose constraints on device fabrication processes. For example, uncontrolled oxidation can

compromise the use of multi-layer heterostructures in future technologies. On the other hand,

as for silicon, the existence of stable oxides at room temperature can offer prospects for novel

applications.[22,23] Thermal annealing of bulk In-Se compounds in air or in an oxygen-rich

environment can produce native oxides.[24–27] The formation and control of such oxides in

2D flakes has not yet been examined and can offer opportunities to fabricate novel 2D hybrid

heterostructures.

Here we demonstrate that unlike several other 2D vdW crystals, such as GaSe and

bP,[28,29] 2D InSe nanolayers can be chemically stable under ambient conditions over a period

of several days. However, both thermal- and photo-annealing in air can induce an oxidation of
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the InSe surface over a short period of time, thus converting a few surface layers of InSe into

In2O3. The propensity of InSe crystals of nanoscale thickness to oxidize in air at temperatures

approaching ~ 100 oC or when illuminated with intense laser light is at first sight

disadvantageous to future device applications; however, it can be turned to advantage by

exploiting the optical transparency and electrically conducting properties of In2O3. Different

thermal- and photo-annealing conditions can be used to control the thickness of the oxide layer

and tune the bandgap of the non-oxidized 2D InSe by means of quantum confinement. The

oxidation can be activated in selected areas of the flake by a focused laser beam or prevented

by capping the InSe surface with a film of hBN. We exploit oxidation to fabricate InSe/In2O3

p-n junctions with functional properties including rectification, electroluminescence, and

photoresponsivity from the near-infrared (NIR) to the visible (VIS) and ultraviolet (UV) ranges

at room temperature. Our findings demonstrate the technological potential of InSe

heterojunctions formed by surface oxidation. Oxidation of 2D InSe crystals could provide a

platform for novel 2D heterostructures and also a route to the shielding of thin layers against

contamination in air.

2. Results and Discussion

Our samples were prepared from bulk Bridgman-grown rhombohedral γ-InSe. The 

primitive unit cell of γ-InSe has a lattice parameter c = 24.961 Å (along the c-axis) and contains

three layers, each consisting of four closely-packed, covalently bonded, atomic sheets in the

sequence Se-In-In-Se,[30] see Figure 1a. Within each a-b plane, atoms form hexagons with

lattice parameter a = b = 4.002 Å. The layers interact by weak van der Waals forces, resulting

in anisotropic electronic properties. The InSe bulk layers are Cd-doped and have p-type

conductivity with hole density p = (8 ± 3)×1013 cm−3 at T = 300 K, as derived from Hall effect

measurements.[31,32] Flakes with areas from 1 to 103 m2 and thickness L from 4 to 100 nm
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were prepared from as-grown crystals by mechanical exfoliation using adhesive tape and

deposited on SiO2/Si substrates.

2.1 Thermal- and photo-oxidation of 2D γ-InSe  

Room temperature (T = 300 K) PL spectra of exfoliated p-InSe flakes with different layer

thickness L are shown in Figure 1b. Each PL spectrum was measured following a 1-hour (1 hr)

thermal annealing step in air at temperatures Ta ranging from 100 C to 175 C. The PL

emission energy of freshly exfoliated flakes exhibits a large blue-shift with decreasing L,

consistent with the quantum confinement of photo-excited carriers by the external surface of

the flakes.[14] For flakes with L > 15 nm, the PL peak energy position is not affected by the

annealing, although the PL intensity decreases significantly at Ta > 150 C (Figure 1b). In

contrast, the PL emission of the thinner flakes exhibit an energy blue-shift, E, with increasing

Ta (Figure 1b-c) and/or with increasing annealing time ta (see Supporting Information S1). For

example, for flakes with L = 5 nm, the PL emission blue-shifts by up to E = 35 meV at Ta =

175 C and ta = 1 hr (Figure 1b). As shown in Figure 2a, a blue-shift of the PL emission energy

can be also induced by a focused laser beam (beam diameter, d ≈ 1 µm) with power Pa > 1

mW. The optical images of the flakes before and after laser exposure reveal a clear change of

contrast around the laser exposed areas of the flake (see circled areas in Figure 2b). This is

accompanied by an increase of the flake thickness, as measured by AFM (Figure 2b). We

attribute the changes in the optical and structural properties of the annealed InSe layers to

oxidation. As discussed below, the oxidation partially converts InSe into In2O3, thus modifying

the confinement of the photo-generated carriers in the non-oxidized InSe layer. For an effective

oxidation of the flakes to occur in air, the layers should be annealed to high temperatures (Ta >

100 oC) and/or relatively high laser power (Pa > 0.5 mW on a 1 m diameter spot). In particular,

at the highest laser powers examined in this work (> 5 mW), oxidation can occur within a few
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seconds and fully quenches the PL emission. This deterioration of the optical properties at high

laser powers is likely to arise from crystal defects in the oxide layer and/or at the interface with

the InSe layer.

To explore these effects in detail, we use X-ray photoelectron spectroscopy (XPS), a

sensitive technique that can probe the elemental and chemical composition of surfaces. High

resolution XPS was performed on freshly exfoliated InSe layers, on InSe layers exposed to air

under ambient conditions for up to 3 days (72 hr), and on InSe layers annealed at Ta = 175 oC

for ta = 1 hr. The high resolution spectra of the In 3d and Se 3d core levels are shown in Figure

3a and b, respectively. A peak model using pseudo-Voigt functions (sum of 80 % -Gaussian

and 20 % -Lorentzian) was fitted to the XPS spectra to distinguish contributions from different

spin-orbit states and to identify the presence of metal oxides. The data and analysis confirm

that detectable quantities of neither indium nor selenium oxides form when InSe is exposed to

atmosphere. The binding energies of In 3d5/2 (EIn = 444.7 ± 0.1 eV) and Se 3d5/2 (ESe = 54.1 ±

0.1 eV) are in good agreement with those in the literature for non-oxidized In-Se

compounds.[33–35] They are not affected by exposure to air for over 72 hours, indicating that

the InSe nanolayers are stable under ambient conditions for several days. Moreover, the PL

emission and Raman peaks of the exfoliated nanolayers persist for months when the flakes are

stored in ambient conditions. We attribute the chemical stability of InSe to its high crystalline

quality and low density of surface defects. Recent work has also shown that most ambient gases

(e.g. H2O, CO, CO2, N2, O2) tend to interact weakly with InSe and that their bonding requires

the presence of In and Se vacancies and/or Stone-Wales defects.[21] However, this behavior

changes when the flakes are exposed to high temperatures. Following the annealing at Ta = 175

oC (ta = 1 hr), the high resolution XPS In 3d spectrum shows two additional peaks at EIn =

445.4 eV and 452.8 eV (Figure 3a). These values correspond to the binding energy of In 3d

reported in the literature for In2O3.[33,36] Similarly, In 4d spectra shows two additional peaks
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at EIn = 18.3 eV and 19.2 eV, which correspond to In2O3 (Supporting Information S2).[37] We

note that the XPS spectra show no evidence of selenium oxide (Figure 3b). This suggests that

Se tends to desorb from the surface, leaving behind nucleation sites for O-absorption. The

oxidation process is also evident from additional complementary studies. As shown in Figure

3c, elemental energy dispersive X-ray (EDX) maps of thermally annealed (Ta = 175 oC and ta

= 1 hr) InSe reveal a homogenous in-plane distribution of In, Se and O. Furthermore,

Transmission Electron Microscopy (TEM) studies of the heterostructures reveal the formation

of the oxide layer and its crystal structure (Supplementary Information S4 and section 2.3).

2.2 Quantum confinement in InSe/In2O3 heterostructures

The formation of In2O3 at the expense of InSe changes the quantum confinement of the

photogenerated carriers. To model the electronic properties of the InSe/In2O3 heterostructures,

we examined the PL and AFM data for several flakes annealed in air under different conditions.

As shown in Figure 4a, the room temperature PL peak energy, E2D, of the freshly exfoliated p-

InSe flakes is well described by a simple infinite square quantum well potential model, i.e.

ଶ஽ܧ ௚ܧ�= − ௕ܧ ,௖∥ߤଶܮଶℏଶ/2ߨ�+ where ௚ܧ = 1.2635 eV and ௕ܧ = 0.015 eV are the band gap

energy and exciton binding energy for bulk InSe,[38] ௖∥ߤ = 0.054 ݉ ௘ is the electron-hole

reduced mass for motion along the c-axis,[14] and ݉ ௘ is the electron mass in vacuum. The

E2D(L) dependence for p-type InSe is similar to that reported previously for n-type InSe.[14,15]

Following annealing, the thickness of the InSe layer is reduced and the air/InSe interface is

replaced by In2O3/InSe, which we model as a half-infinite quantum well using the band

alignment between In2O3 and InSe from ref. [39] (dashed line in Figure 4a). The conduction

band (CB) minimum of In2O3 lies above that of InSe by Ec = 0.29 eV, whereas the valence

band (VB) edge of In2O3 lies below the VB of InSe by Ev = 2.05 eV (Figure 4b). Thus the

oxide layer provides a lower potential barrier for electrons compared to that for non-oxidized
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InSe. By comparing the measured PL peak energy before and after annealing with the modeled

curves, we can estimate the thickness, L*< L, of the non-oxidized InSe.

Figure 5a shows the dependence of L* on L for two different annealing conditions. It

can be seen that L* is reduced by about half the initial thickness L over a wide range of L from

4 nm to 14 nm (see also Supporting Information S3). From our estimate of L* and the thickness

La of the flake measured by AFM after annealing (Figure 5b), we estimate the thickness Lo of

the oxide layer, i.e. Lo = La – L* (Figure 5c). For example, for the freshly exfoliated and annealed

flake shown in Figure 5d, following annealing the thickness of the flake increases from L ~ 8

nm to La ~ 12 nm. The latter comprises the contribution of the non-oxidized InSe (L*~ 4 nm)

and In2O3 (La ~ 8 nm) layers. Thus the oxide layer grows both down into the InSe flake and up

out of it, with ~ 50% of the oxide thickness lying below the original surface and ~ 50% above

it. Correspondingly, carriers experience a different confinement in the InSe/In2O3

heterostructure compared to the freshly exfoliated InSe, leading to an increase of the effective

band gap energy by about 10 meV.

The energy shift of the PL emission depends on the annealing conditions and it is larger

for thin flakes due to the stronger sensitivity of their band gap energy to the layer thickness

(Figure 4a). In general, the oxidation is accompanied by an increase of the surface roughness.

Furthermore, crystalline defects that are present in the oxide and/or at the interface with InSe,

can quench the PL signal. This effect is more pronounced as the electronic wave function

spreads out into the In2O3 potential barrier, e.g. for thin layers and for annealing at high Ta

and/or Pa.

We also investigated the effect of capping the InSe flakes with a layer of hexagonal

boron nitride (hBN). As shown in Figure 6, the oxidation of the InSe surface can be prevented

by capping the flakes with a thin (~ 10 nm) hBN film: following thermal annealing, an energy

shift of the PL emission is visible only on those areas of the InSe flakes that are not capped
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with hBN. Moreover, the PL intensity of the uncapped InSe decreases by a factor of 8. On the

other hand, the PL intensity of the capped InSe decreases by only a factor of 2. We note that

although hBN is strongly resistant to oxidation up to high temperatures (~ 800 C), [40]

following thermal- or photo-annealing the regions of InSe encapsulated by hBN show a

reduction in PL intensity; this is likely caused by the formation of crystal defects at the

InSe/hBN interface. Thus although hBN prevents the oxidation of InSe, it does not stop the

degradation of the optical properties of InSe.

These results show that we can exploit the thermal- and photo-induced oxidation of InSe

flakes in air to form InSe/In2O3 heterostructures (Figure 1 and 2). By choosing appropriate

annealing conditions, we can vary the thickness of the oxide and hence tune the bandgap of the

non-oxidized InSe layer by means of quantum confinement (Figure 4-5). The oxidation can be

performed on selected areas of the InSe flakes by partially capping with a film of hBN or by a

focused laser beam, which provides a tool to modify the band gap energy in the layer plane

with micrometer spatial resolution (Figure 2).

2.3 Oxidation of p-type InSe for functional devices

The existence of a stable oxide on InSe and the selective oxidation of InSe offer the

prospect for several technological applications. For the stable cubic (bixbyite) phase of In2O3,

the primitive unit cell has a lattice parameter a = 10.077 Å (see Figure 1a).[41] In2O3 has n-

type conductivity due to the excess of In-atoms and oxygen vacancies, both of which act as

donors. It is also transparent over a wide spectral range with a band gap energy Eg = 3.6 eV at

T = 300 K.[39] These properties, in combination with those of p-type InSe, can be used to

design and fabricate different types of heterostructures, including rectifying p-n junctions and

light emitting diodes. To fabricate the p-n junctions, bulk flakes of p-InSe with area of ~ 5×5

mm2 and thickness of ~ 1 mm were annealed in air at Ta = 450 oC for ta = 96 hours. These
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annealing conditions were chosen to form a thick conducting oxide layer. Following annealing,

indium ohmic contacts were formed on the top In2O3 and bottom InSe layers.

Figure 7a-b illustrates cross-sectional transmission electron microscopic (TEM) and

EDX images of a p-InSe/n-In2O3 junction. The TEM image and the EDX elemental maps reveal

an In2O3 layer of thickness Lo ≈ 75 nm. The interface of In2O3 with InSe is not atomically abrupt

and comprises an intermediate layer containing an excess of Se-atoms, but no oxygen (i.e. In

~ 43 % and Se ~ 57 %). The high resolution TEM (HRTEM) and convergent beam electron

diffraction (CBED) images of the In2O3 layer (Figure 7c) reveal that In2O3 is crystalline. We

estimate interplanar spacings of 0.3 nm, 0.51 nm and 0.71 nm, which correspond to the (222),

(002) and (110) crystal planes of cubic-In2O3. Additional HRTEM and CBED images for the

Se-rich regions and InSe layers are shown in the the Supporting Information S4.

The room temperature current-voltage characteristics, I-V, of the junction diodes show

rectification, see Figure 7d. The inset of Figure 7d shows the room temperature photocurrent

spectrum of the junction diode at zero bias (V = 0 V) and reveals a broad-band spectral

sensitivity from the NIR to the VIS and UV ranges. The absorption edge is at a photon energy

(hv ~ 1.25 eV) corresponding to the calculated excitonic absorption in bulk γ-InSe at T = 300

K. We attribute the cut-off at hv ~ 3 eV to the photon absorption in the oxide: the high energy

incident photons are mostly absorbed near the surface where the recombination time is short

and photocarriers recombine before being collected at the junction interface. For white light

excitation of power 100 mW/cm2, the junctions produce an open-circuit voltage Voc ~ 0.6 V

and a short-circuit current density Jsc ~ 30 mA/cm2 at room temperature, corresponding to a

conversion efficiency of 6 %. The p-n junction also operates as light-emitting diode at room

temperature. Figure 7e shows typical room temperature electroluminescence (EL) emission

spectra. The EL emission is peaked close to the band gap energy of γ-InSe and redshifts with 
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increasing current due to lattice heating. These results demonstrate the potential of the bipolar

character of these heterostructures for technological applications.

3. Conclusion

Our data and analysis demonstrate that InSe nanolayers can be chemically stable under

ambient conditions for several days. The high chemical stability of InSe differs from the

behavior reported for numerous two-dimensional van der Waals crystals, including other metal

chalcogenide layered compounds. Furthermore, thermal- and photo-annealing in air can be

used to induce the oxidation of the InSe surface, resulting in a reduction of the InSe layer

thickness. Correspondingly, carriers experience a different quantum confinement in the

InSe/In2O3 heterostructure from the case of simple InSe nanolayers. This leads to a change of

the band gap energy relative to that of freshly exfoliated InSe. However, crystalline defects that

are present in the oxide and/or at the interface with InSe, can quench the optical signals. The

measured reduction of the PL intensity is an unwanted side effect of the oxidation, which

nevertheless does not prevent the fabrication of working devices. The oxidation can be

activated in selected areas of the flake by a focused laser beam or prevented by capping the

InSe surface with hexagonal boron nitride. To test the potential of oxidation for applications,

we have fabricated p-InSe/n-In2O3 junctions with functional properties including rectification,

electroluminescence emission, and broad band photoresponsivity at room temperature. These

findings reveal the limits and potential of thermal- and photo-oxidation of InSe nanolayers, and

are relevant to exploitation of InSe in future technologies.

4. Methods

The bulk InSe crystals were grown by the Bridgman method at the Institute for Problems

of Materials Science, The National Academy of Sciences of Ukraine, Chernivtsi Branch,
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Ukraine. The as-grown InSe crystals were studied by X-ray diffraction (XRD) using a DRON-

3 X-ray diffractometer with a monochromatic Cu-Kα radiation of wavelength λ = 1.5418 Å.

The XRD data revealed that the InSe crystal had γ-phase structure. For the XPS studies InSe 

flakes (areas from 1 to 103 m2) were exfoliated on 7x7 mm2 SiO2/Si substrates. The XPS

measurements were performed using a Kratos AXIS ULTRA with a monochromatic Al Kα X-

ray source (hν = 1486.6 eV) operated at 10 mA emission current and 12 kV anode potential (P

= 120 W), and the data processing was performed using CASAXPS version 2.3.17PR1.1

software with Kratos sensitivity factors (RSFs) to determine atomic % values from the peak

areas. The electron collection spot size is ~ 700 x 300 µm2. All XPS binding energies were

calibrated with respect to the C 1s peak at a binding energy of 284.8 eV. For the transmission

electron microscopy (TEM), convergent beam electron diffraction (CBED), and energy-

dispersive X-ray (EDX) studies, a cross-sectional sample of the junction was prepared by Ga

ion beam thinning, with a protective Pt layer deposited on the region of interest to prevent

damage of the structure during ion beam milling and lift-out in an FEI Quanta 3D FIB-SEM

equipped with an Omniprobe micromanipulator system. TEM analysis was performed in a

JEOL JEM-2100Plus equipped with an Oxford Instruments XMax 100TLE EDX detector and

a JEOL JEM 2100F equipped with an Oxford Instruments XMax 80 EDX detector.

The experimental set-up for μPL and μEL measurements comprised a He-Ne laser (λ =

633 nm) and a frequency-doubled Nd:YVO4 laser ( = 532 nm), an XY linear positioning stage,

an optical confocal microscope system, a spectrometer with 150 and 1200 groves/mm gratings,

equipped with a charge-coupled device and a liquid-nitrogen cooled (InGa)As array

photodetector. The laser beam was focused to a diameter d ≈ 1 μm using a 100× objective and 

the μPL spectra were measured at low power (P ~ 0.1 mW) to avoid lattice heating. For the

photoconductivity studies, light from a quartz halogen lamp, dispersed through a MDR-23

diffraction grating monochromator, and modulated with a mechanical chopper, was focused
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onto the junction. The photocurrent signal was measured using a standard lock-in amplification

technique. Images of the InSe layer topography were acquired by AFM in tapping mode under

ambient conditions.
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Figures

Figure 1. (a) Crystal structure of rhombohedral γ–InSe along the b-c plane and along the a-b

plane (right), and of cubic (bixbyite) In2O3 (left). (b) Room temperature PL spectra of

exfoliated p-InSe layers with different layer thicknesses L (P = 0.1 mW and  = 633 nm).

Spectra were measured following 1-hour thermal annealing steps at increasing temperatures

Ta. (c) Ta-dependence and L-dependence of the energy blue-shift E of the PL emission. The

continuous lines are guides to the eye.
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Figure 2 (a) Room temperature PL spectra of an InSe flake before and after laser exposure at

different powers, Pa. (b) Optical image of the flake before (left) and after (right) laser exposure

at powers Pa = 1 mW, 3 mW and 6 mW (λa = 532 nm, ta = 30 mins). The circles indicate the

laser-exposed areas of the flake. The image on the right is an AFM image of the flake after the

laser exposure. The inset shows the AFM z-profiles of a laser-exposed areas.
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Figure 3. XPS spectra of In 3d (a) and Se 3d (b) core levels for freshly exfoliated p-InSe

nanolayers (top), layers exposed to air for 3 days (middle) and layers annealed at Ta = 175 oC

for ta = 1 hr (bottom). Red and blue curves are pseudo-Voigt functions (sum of 80 % -Gaussian

and 20 % -Lorentzian) fitted (green curve) to the measured XPS spectra (black curve). (c) EDX

maps of a p-InSe nanolayer exfoliated on a holey carbon grid thermally annealed at Ta = 175

oC (ta = 1 hr).
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Figure 4. (a) Measured dependence on L of the peak energy, E2D, of the PL emission at T =

300 K. The lines show the calculated dependence of E2D for a quantum well (QW) with infinite

potential barriers (continuous line) and half-infinite QW (dashed line) of width L at T = 300 K.

The inset shows a schematic of infinite (left) and half-infinite (right) QW models. (b) Band

diagrams for isolated InSe and In2O3 layers. Continuous horizontal lines indicate the band

edges of the conduction and valence bands.
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Figure 5. L-dependence of (a) the thickness, L*, of the non-oxidized InSe layer estimated from

a half-infinite quantum well model and the PL data; (b) the thickness, La, of the InSe/In2O3

flake measured by AFM; (c) the thickness of the oxide layer, Lo, calculated from (a) and (b).

Full and empty dots are for Ta = 125 ˚C (ta = 7 hr) and Ta = 175 ˚C (ta = 1 hr), respectively.

The dashed lines represent the thickness of the flake before annealing. (d) AFM image of an

InSe flake before (left) and after (right) annealing at Ta = 125 ˚C (ta = 7 hr). The AFM z-

profiles in the insets were obtained along the dashed line shown in the AFM images. The inset

shows a schematic of an InSe flake before and after oxidation.
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Figure 6. (a) Room temperature normalized PL spectra of p-InSe flakes with and without

encapsulation by hBN (P = 0.1 mW and  = 633 nm). Spectra were measured before (black

line) and following (blue line) thermal annealing steps at increasing temperatures Ta up to 150

C. The inset is an optical image showing the regions of the flake with and without the hBN

film.
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Figure 7. (a) Schematic diagram of the p-InSe/n-In2O3 junction and TEM image. (b) EDX

maps of a cross-sectional area of the junction. The yellow lines show the top surface of In2O3.

(c) HRTEM and CBED images of In2O3. (d) Current-voltage characteristics of the p-InSe/n-

In2O3 junction at T = 300 K. The inset shows the photoconductivity spectrum at T = 300 K and

V = 0 V. (e) Electroluminescence (EL) spectra at T = 300 K and current I = 25 mA and 40 mA.
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