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We use a focussed laser beam to control the electronic activity of N- and H-atoms in a dilute

nitride Ga(AsN)/GaAs quantum well. Our approach yields submicron resolution in the spatial

manipulation of the electronic properties and can provide an alternative method to masking

techniques for H-defect engineering and in-plane patterning of the band gap energy. VC 2011
American Institute of Physics. [doi:10.1063/1.3610464]

The controlled incorporation of impurities in a semicon-

ductor crystal during or after the synthesis is routinely used

to tailor electronic properties and has played a key role in the

discovery of physical phenomena and their exploitation in

device applications. Among various elements, nitrogen and

hydrogen in III-V compounds have revealed intriguing

effects of fundamental interest and technological importance.

The incorporation of a small concentration (�1%) of

N-atoms onto the anion sublattice of a III-V crystal induces a

large reduction of the band gap energy1,2 and an unusual

response to external perturbations, such as hydrostatic pres-

sure.1 On the other hand, H-atoms are highly mobile and re-

active elements that passivate both deep and shallow crystal

defects and impurities in semiconductors.3,4 In particular, the

incorporation of hydrogen in III-N-Vs acts to neutralize the

electronic activity of N through the formation of N-H com-

plexes, thus reversing the effect of the N-atoms on the band

structure of the host crystal.5,6

In this letter, we use a focused laser beam to control the

electronic activity of N- and H-atoms in a Ga(AsN)/GaAs

quantum well (QW). Our laser writing technique and micro-

photoluminescence (lPL) studies provide real-time in-situ
characterisation and control of the N-H complex dissociation

and of the band gap energy of Ga(AsN). This technique

yields submicron resolution in the spatial manipulation of

the electronic properties and could provide an alternative

route to masking methods for H-defect engineering and in-

plane patterning of the band gap energy7,8 for nanophoton-

ics9 and photovoltaics.10

In this study, we use a Ga(AsN)/GaAs QW sample

(V-sample) grown by molecular beam epitaxy (MBE) on a

(100)-oriented GaAs substrate. This structure has the follow-

ing layer composition, in order of growth: an undoped GaAs

buffer layer grown at 600 �C, a 6 nm Ga(AsN) (N¼ 0.9%)

QW and a 30 nm undoped GaAs cap layer both grown at

500 �C. The N-content was determined by high resolution

x-ray diffraction (HRXRD) measurements and further sup-

ported by PL studies showing that the Ga(AsN) QW PL

emission is red-shifted by 0.13 eV relative to the GaAs PL

emission (T¼ 300 K). The as-grown sample was hydrogen-

ated by ion beam irradiation using a Kaufman source. The

hydrogenation was performed at 300 �C with an ion-beam

energy of 100 eV and H-doses of 4� 1016, 6� 1016, and

8� 1016 ions/cm2. We refer to these hydrogenated samples

as H1, H2, and H3, respectively.

Our experimental set-up for lPL measurements com-

prises an XY linear positioning stage, an optical confocal

microscope equipped with a nanofocusing system, and a

spectrometer with a 150 g/mm grating equipped with a

liquid-nitrogen cooled (InGa)As array photodetector. The

laser beam was focused to a diameter d< 1 lm using a

100� objective, and the lPL spectra were measured at sev-

eral points by moving the sample with respect to the laser

beam. The lPL intensity maps were obtained by integrating

the local PL intensity in the spectral range of interest. For

the laser exposure experiments, we used laser beams of

wavelength k¼ 515 nm or 633 nm, powers Pa in the range

10-120 mW (k¼ 515 nm) and 0.01-15 mW (k¼ 633 nm),

and exposure times ta up to 180 s.

The incorporation of hydrogen in Ga(AsN) leads to the

formation of several complexes including complexes H-N-H

with C2v and C1h symmetry and higher order clusters. Com-

plexes with C1h symmetry were recently probed by infrared

spectroscopy6 and are responsible for the neutralization of

the electronic activity of nitrogen and its effect on the band

gap energy of GaAs, thus causing a blue shift of the PL emis-

sion.5 This effect is shown in Figure 1(a) for an hydrogen-

ated Ga(AsN) QW (H2-sample). We now consider how this

neutralization effect can be reversed locally using a focussed

laser beam, which acts to dissociate the complex, thus restor-

ing the electronic activity of nitrogen. Figure 1(b) shows the

lPL spectra of the H2-sample measured at low power (1.8

mW) after sample exposure to a focussed laser beam (d � 1

lm) of wavelength k¼ 515 nm and power Pa¼ 10 and 30

mW for a time ta¼ 15 s. It can be seen that the effect of the

laser exposure is to restore the QW emission observed in the

virgin V-sample. A typical laser exposed spot can be

resolved in the lPL map of Figure 1(b). The QW PL inten-

sity distribution inside the spot has an approximately Gaus-

sian form with a full width at half maximum that

corresponds closely to the size of the laser spot diameter (�1

lm). Similar lPL spectra and lPL maps were observed in all

hydrogenated samples under various laser exposure
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conditions, i.e., laser powers, wavelengths (633 and 515

nm), and/or annealing times. We note that powers less than 2

mW do not introduce any permanent change in the electronic

properties of the hydrogenated QW. Also, the PL intensity

tends to decrease for laser exposures at large powers, i.e.,

Pa� 40 mW. These powers lead to a significant heating and

a damage of the sample surface11 due to As-desorption at

high temperatures (>600 �C).12

This laser technique can be used to produce arrays of

emitting regions or shaped emitting areas with submicron

precision, see Figure 2(a). As shown in Figure 2(b), the pho-

ton energy of the emitting regions can be controlled precisely

by the laser exposure conditions. In Figure 2(b), we plot the

dependence of the peak energy, hv, of the QW PL emission

for sample H2 as a function of the exposure time ta at various

laser powers Pa and k¼ 633 nm. It can be seen that with

increasing ta, the QW PL peak energy shifts to lower ener-

gies towards the value of the QW peak energy in the V-sam-

ple. This value is approached faster and the remnant offset

becomes smaller with increasing laser power.

The exposure of the sample to the laser beam induces a

local heating, which we probe by acquiring the lPL spectra

during in-situ laser exposure experiments with a focussed

laser beam. As shown in Figure 3(a), the high energy tail of

the GaAs lPL emission in sample H2 exhibits an exponen-

tial tail described by exp(�hv/kBTe), where Te is the effective

temperature of the photogenerated carriers. The value of Te

increases with increasing Pa (see Figure 3(b)). This increase

is accompanied by an increase of the lattice temperature TL,

which we estimate by modelling the measured shift of the

QW PL peak by the Varshni’s law.13 The carrier and lattice

temperatures reach values of up to TL � Te � 190 �C at Pa �
15 mW and k¼ 633 nm (Figure 3(b)). The measured

increase of the lattice temperature is in qualitative agreement

with that calculated numerically14 by using the temperature

dependent thermal conductivity and absorption coefficient of

GaAs at k¼ 633 nm.15 Laser annealing at powers>40 mW

leads to an abrupt increase of the lattice temperature. This

thermal runaway effect is caused by the low thermal conduc-

tivity of GaAs at high temperatures. Our analysis shows that

the laser powers required to trigger the neutralization of the

effect of hydrogen on the PL emission energy of the

Ga(AsN) QW corresponds to temperatures TL � Te � 100 �C
(Pa � 3 mW), which are significantly lower than those (250-

300 �C) reported before using conventional thermal anneal-

ing methods.16

We evaluate the activation energy for this neutralization

effect from the temperature dependence of the increase, DN,

in the concentration of electrically active N-atoms in the

hydrogenated Ga(AsN) QW following the laser exposure.

An increase in the value of DN is correlated to a correspond-

ing decrease, DH, in the concentration of N-H complexes in

the QW. To estimate DN, we model the laser-induced red-

shift of the QW PL emission by a two-level band-anticross-

ing model with an interaction parameter VN¼ 2.7 eV and a

N-level located at 0.23 eV above the conduction band mini-

mum of GaAs.2

The values of DN determined under different laser expo-

sure conditions and their dependence on the lattice and elec-

tron temperatures are plotted in Figure 3(c). The thermally

activated behaviour of DN, i.e., DN � exp(�Ea/kBT), is char-

acterized by an activation energy Ea equal to 0.43 eV and

0.86 eV, for T equal to TL and Te, respectively. These ener-

gies and the corresponding temperatures are significantly

smaller than those obtained for out gassing of H from the

sample and the thermal dissociation of N-H related com-

plexes involving one (Ea¼ 1.77 eV) or two H-atoms

(Ea¼ 1.89 eV) using HRXRD measurements of the lattice

parameter during in-situ annealing studies at T¼ 250–

300 �C.16 Thus, we conclude that our laser writing technique

is photon-assisted. Various processes can be envisaged: the

photogenerated electron-hole pairs recombine and release

their energy to the complex; also, they can modify its charge

state, thus reducing the activation energy for the complex

dissociation.17 Similar processes are frequently observed in

FIG. 1. (Color online) (a) lPL spectra of the H2- and V-samples (T¼ 300

K). (b) PL spectra at 300 K of sample H2 following an exposure to a

focussed laser beam with power Pa¼ 10 and 30 mW (ta¼ 15 s and k¼ 515

nm). The inset shows a lPL map obtained by plotting the lPL intensity inte-

grated in the range 1.25–1.35 eV.

FIG. 2. (Color online) (a) Left: lPL intensity maps of sample H2 at 300 K

following a laser exposure with laser power Pa¼ 7 mW, exposure times

ta¼ 150 s, 120 s, and 50 s and k¼ 633 nm. Right: H-shaped emitting area

written by laser (Pa¼ 15 mW, ta¼ 10 s, k¼ 633 nm) and mapped using a

laser power of 0.1 mW at 300 K. (b) Dependence of the peak energy, EQW,

of the Ga(AsN) QW PL emission on ta at 300 K (k¼ 633 nm). Continuous

lines are guides to the eye. The horizontal line corresponds to the value of

EQW in the V-sample.
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photochemistry and can be responsible for the light enhanced

H motion in amorphous Si17 and the photo-induced reactiva-

tion of neutralized donors in Si-doped GaAs.18 Further stud-

ies are now required to model and probe the laser power and

k-dependence of the photodissociation of the N-H complex

and to discriminate possible contributions of thermal effects.

In conclusion, we have shown that a focussed laser

beam can be used to control spatially the photoluminescence

emission energy of an hydrogenated Ga(AsN) quantum well.

This laser writing effect is caused by the photodissociation

of N-H complexes and can be used to manipulate the elec-

tronic activity of the N- and H-atoms with submicron resolu-

tion. Laser writing of the electronic activity of H-atoms in

GaAs and other III-Vs could open up interesting possibilities

for low-cost and high-speed nanofabrication techniques in

nanophotonics. In particular, UV laser writing and/or near-

field laser irradiation19 will help to gain further spatial con-

trol and resolution of the optical properties, which in our

experiment is limited to �0.8 lm for laser wavelengths of k
�600 nm.
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FIG. 3. (a) PL spectrum of sample H2 measured at various laser powers at

300 K (k¼ 633 nm). (b) Dependence of the carrier (Te) and lattice tempera-

ture (TL) on the laser power (ta¼ 120 s). The continuous line is the calcu-

lated dependence of TL on the laser power Pa at k¼ 633 nm. (c) Dependence

on 1/kBTL and 1/kBTe of DN. The continuous lines are fit to the data by the

exponential curve exp(�Ea/kBT), where Ea is the activation energy.
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