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Abstract 

In the medical literature, hundreds of prediction models are being developed to predict health 

outcomes in individuals. For continuous outcomes, typically a linear regression model is developed 

to predict an individual’s outcome value conditional on values of multiple predictors (covariates). To 

improve model development and reduce the potential for overfitting, a suitable sample size is 

required in terms of the number of subjects (n) relative to the number of predictor parameters (p) 

for potential inclusion. We propose that the minimum value of n should meet four key criteria: (i) 

small optimism in predictor effect estimates as defined by a global shrinkage factor of ≥0.9; (ii) small 

absolute difference of ≤ 0.05 in the apparent and adjusted 𝑅2; (iii) precise estimation (a margin of 

error ≤ 10% of the true value) of the model’s residual standard deviation, and similarly (iv) precise 

estimation of the mean predicted outcome value (model intercept). The criteria require pre-

specification of the user’s chosen p and the model’s anticipated 𝑅2 as informed by previous studies. 

The value of n that meets all four criterion provides the minimum sample size required for model 

development. In an applied example, a new model to predict lung function in African-American 

women using 25 predictor parameters requires at least 918 subjects to meet all criteria, 

corresponding to at least 36.7 subjects per predictor parameter. Even larger sample sizes may be 

needed to additionally ensure precise estimates of key predictor effects, especially when important 

categorical predictors have low prevalence in certain categories. 
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1 Introduction 

Each year in the medical literature, hundreds of prediction models are developed to predict health 

outcomes in individuals.1-3 Such models estimate an individual’s predicted risk (for binary or 

categorical outcomes) or their expected outcome value (for a continuous outcome), conditional on 

the individual’s observed value of multiple predictors. In this article, we focus on multivariable 

prediction models for continuous outcomes (e.g. blood pressure, birth weight, depression score), 

which are typically developed using linear regression. This provides an equation containing an 

intercept term and multiple predictor effects (corresponding to mean differences), which is then 

used in new individuals to predict their expected outcome value. Predictors (also known as variables, 

covariates or prognostic factors4) typically include standard characteristics, such as age and stage of 

disease, or increasingly, biomarkers and genetic information.  

Prediction models for continuous outcomes can potentially inform healthcare decisions and patient 

management, for example to help decide on treatment and monitoring strategies.1 Therefore, when 

developing their model, researchers should strive to use high quality datasets that allow a reliable 

model to be produced. This includes ensuring the dataset has a suitable sample size. In particular, 

the number of subjects should be large enough relative to the number of predictor parameters to be 

estimated; otherwise overfitting may be a serious problem. Overfitting refers to when a model is 

capturing idiosyncrasies in the development data; this leads to optimism in predictive performance 

such that the apparent performance is too high for the underlying population from which the 

development sample is drawn.5 For example, in the development dataset the developed model’s 

apparent proportion of variation explained (𝑅2 ) will often be too high, and the model’s predicted 

outcome values will often be too extreme (i.e. pushed too far from the mean). Therefore, it is good 

practice to ensure sample sizes are large enough to minimise this problem.3  

In this article, we build on previous work by Harrell,3 6 to propose how to calculate a suitable sample 

size for development of a prediction model using linear regression. Specifically, we suggest that the 

minimum sample size required should minimise the potential for overfitting (and therefore 

optimism) and ensure precise estimates of key model parameters. We propose four criteria: (i) small 

optimism in predictor effect estimates; (ii) small absolute difference in the apparent and adjusted 

𝑅2; (iii) precise estimation of the residual standard deviation; and (iv) precise estimation of the mean 

predicted outcome value (model intercept when predictors are mean-centred). The number of 

subjects that meets all four criteria provides the minimum sample size required for model 

development.  
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The paper outline is as follows. In Section 2 we provide formulae to calculate the sample size 

required to meet criterion (i) and (ii) conditional on the user pre-specifying the number of predictor 

parameters (p) and the model’s anticipated proportion of variation explained (𝑅2), as informed by 

previous studies. Criteria (iii) and (iv) are then described in Section 3, and we show how to calculate 

sample sizes that ensure a small margin of error in the estimates, such as within 10% of their true 

values. Section 4 then provides an example to illustrate the approach. Section 5 briefly mentions 

that additional criteria may be important, such as precise estimation of predictor effects, and 

Section 6 concludes with discussion. A subsequent paper extends the ideas to binary and time-to-

event models, such as logistic and Cox regression.7 

2 Sample size required to minimise overfitting and optimism  

To adjust for overfitting during model development, statistical methods for penalisation of predictor 

effect estimates are available, where regression coefficients are shrunk toward zero from their usual 

estimated value (e.g. from traditional maximum likelihood estimation). There are many options for 

shrinkage,8 including a global shrinkage factor (sometimes referred to as a uniform shrinkage factor) 

that is derived and applied post-estimation,9 10 or more holistic options such as ridge regression, 

elastic net and the Lasso, which operate during the estimation process.11 12 However, the 

penalisation factors used within these methods are often estimated with large uncertainty, which 

increases as the magnitude of overfitting increases. Van Houwelingen notes that: “… shrinkage 

works on the average but may fail in the particular unique problem on which the statistician is 

working.” 8 Therefore, it is important to minimise the potential for overfitting. In this section, we 

outline how researchers can target a sample size (n) to minimise the potential for overfitting in 

advance of model development. Our formula is motivated by the concept of a global shrinkage 

factor, and so we begin by introducing this.  

2.1 Global shrinkage factor 

Consider a continuous outcome (𝑌𝑖) for i = 1 to n subjects (participants) in a study, to which we want 

to fit a linear regression model of the form: 

𝑌𝑖 = 𝜇𝑖 + 𝑒𝑖 = 𝛼 + 𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 + 𝛽3𝑋3𝑖 + ⋯ + 𝑒𝑖                                  (1) 

𝑒𝑖~𝑁(0 , 𝜎2)  

Assume that the unknown parameters of the equation (i.e. the 𝛽s and 𝜎2) are estimated using the 

data, usually via ordinary least squares or maximum likelihood estimation. The intercept term, 𝛼, is 
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the true mean outcome value for individuals whose 𝑋 values are all zero, and each 𝑋 term denotes 

values of included predictors. For example, 𝑋1𝑖 could be the age of the subject in years, 𝑋2𝑖 could be 

1 for males and 0 for females, and so on. Each 𝛽 denotes the change in mean outcome value (i.e. the 

mean difference) for each 1-unit increase in the corresponding predictor, after adjusting for other 

predictors. The error term, 𝑒𝑖, represents the residuals, and these are assumed to follow a normal 

distribution with a mean of zero and variance of 𝜎2.   

After fitting this regression model using traditional methods (e.g. ordinary least squares), to adjust 

for overfitting a global (uniform) shrinkage factor (S) can be applied to all estimated predictor effects 

(�̂�1, �̂�2, �̂�3, etc). That is, when making predictions in new individuals we can use the modified 

equation of, 

 𝐸(𝑌𝑖) = 𝛼∗ + 𝑆(�̂�1𝑋1𝑖 + �̂�2𝑋2𝑖 + �̂�3𝑋3𝑖 + ⋯ )                            (2) 

where 𝛼∗is the revised intercept, which is re-estimated to ensure the overall predicted mean agrees 

with the observed mean in the development dataset (for details on how to do this, see Table 1 and 

Harrell3). Compared to the original (non-penalised) model, this will shrink predicted values in new 

individuals away from the extremes, and move them towards the mean.  

Implementation of this global shrinkage approach requires S to be estimated. A popular approach 

post-estimation is bootstrapping.13 An alternative is to utilise the closed-form solution of Copas,10 14  

𝑆𝐶 = 1 −
( 𝑝 − 2) 

LR
 

                                          (3) 

which for linear regression (see equation (8.5) in the Copas paper10) provides an unbiased estimate 

of the shrinkage factor. Here, 𝑝 is the total number of predictor parameters (assumed ≥ 2) and LR is 

the likelihood ratio (chi-squared) statistic for the model, which can be defined as 

LR = −2(ln𝐿𝑛𝑢𝑙𝑙 − ln𝐿𝑚𝑜𝑑𝑒𝑙),                                                          (4) 

where ln𝐿𝑛𝑢𝑙𝑙 is the log-likelihood of a model with no predictors (i.e. intercept-only null model), and 

ln𝐿𝑚𝑜𝑑𝑒𝑙 is the log-likelihood of the final developed model. In Section 2.2 we also show how LR can 

be expressed in terms of 𝑅2 (see equation (5)). 

This shrinkage estimate of 𝑆𝐶  relates to a model developed without any variable selection 

procedure, and thus 𝑝 represents the entire set of predictor parameters in the model. When 
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selection procedures are used during model development, 𝑝 will be closer to the number of 

parameters based on the entire set of candidate predictors (i.e. all those considered for inclusion, 

regardless of whether they were all included in the final model).3 Therefore, we generally define 𝑝 as 

the total number of predictor parameters considered within the model development. Note that if a 

predictor is categorical with three of more categories, or continuous and modelled as a non-linear 

trend, then it will contribute two or more parameters. For these reasons, we refer to subjects per 

predictor parameter, rather than subjects per variable, in this article. 

Example of a global shrinkage factor 

For illustration, we used data from a randomised trial of 262 hypertension patients to develop a 

linear regression model for predicting systolic blood pressure (SBP) at the end of treatment.15 We 

forced inclusion of seven predictors: age, sex, treatment group (treatment/control), smoker 

(yes/no), BMI, baseline SBP, and baseline diastolic blood pressure (DBP). These correspond to seven 

predictor parameters (i.e. 𝑝 = 7). The model parameter estimates are shown in Table 1, and the LR 

statistic was 69.295. The corresponding global shrinkage factor estimate from equation (3) is:  

𝑆𝐶 = 1 −
( 𝑝 − 2) 

LR
= 1 −

( 7 − 2) 

69.295
= 0.928 

 

We also used 5000 bootstrap samples to estimate the global shrinkage factor (as described 

elsewhere5 16), and this gave a very similar value of 0.94. Also the adjusted 𝑅2 was 0.21, which is 

about 0.91 times the apparent 𝑅2 value of 0.23. Therefore, even though there was no automated 

predictor selection based on p-values, there is still some evidence of overfitting (and thus optimism 

in apparent predictive performance). For a more robust prediction of SBP in new individuals, Table 1 

also shows the original beta coefficients multiplied by 0.928, which shrink the model’s predictions 

toward the overall mean. 
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 Table 1 Example of global shrinkage applied to a traditional (non-penalised) linear regression model 

for predicting systolic blood pressure at the end of treatment in hypertension patients 

 Developed 
model 

Final model after 
adjustment for overfitting$ 

Intercept �̂� 
28.096 

𝜶∗ 
39.057 

   
Predictor �̂� 𝑺�̂� = 0.928�̂� 

SBP at baseline 0.462 0.429 
DBP at baseline 0.411 0.381 

BMI 0.013 0.012 
Age 0.450 0.418 
Sex -2.050 -1.902 

Treatment -17.807 -16.525 
Smoker -2.082 -1.932 

 

$ The revised intercept is obtained by 𝛼∗ = (1 − 𝑆𝐶)Y̅ + 𝑆𝐶�̂� where Y̅ is the mean outcome value in 

the development dataset and �̂� is the estimated intercept from a traditional (non-penalised) model. 

For further details see Harrell.3 

 

2.2 Shrinkage expressed in terms of sample size and 𝑹𝟐  

We now propose utilising the Copas shrinkage factor, 𝑆𝐶, to inform sample size calculations at the 

start of a study; i.e. before individual participant data have been obtained. Specifically, we derive an 

expression that allows the researcher to identify the sample size and number of predictor 

parameters that gives an expected value of 𝑆𝐶  close to 1 (e.g. 0.9). Our approach specifically builds 

on Harrell et al.,3 6 who shows how – after the development dataset is obtained and a model fitted 

including all predictors– the shrinkage estimate can inform whether to reduce the number of 

predictors (using so-called data reduction techniques). Our premise is the same, except we focus on 

calculating the expected shrinkage before data collection, to inform sample size calculations for a 

new study. 

We start by re-expressing 𝑆𝐶  in terms of sample size (𝑛), number of predictor parameters (𝑝), and 

𝑅2, the proportion of variability explained. Let 𝑅𝑎𝑝𝑝
2  be the apparent estimate of a prediction 

model’s 𝑅2 in the dataset used to develop the model. That is, 𝑅𝑎𝑝𝑝
2 = 1 − (�̂�𝑚𝑜𝑑𝑒𝑙

2 /�̂�𝑛𝑢𝑙𝑙
2 ), and thus 

0 ≤ 𝑅𝑎𝑝𝑝
2 ≤ 1. As shown elsewhere,17 18 the LR statistic can be expressed in terms of the sample size 

and 𝑅𝑎𝑝𝑝
2 , as follows: 

            LR = −𝑛 ln(1 − 𝑅𝑎𝑝𝑝
2 )                                                               (5) 
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Applying equation (5) within equation (3), the Copas shrinkage formula becomes, 

𝑆𝐶 = 1 +
𝑝 − 2

 𝑛 ln(1 − 𝑅𝑎𝑝𝑝
2 )

  

   (6) 

Equation (6) cannot be used to directly inform the sample size (𝑛) in advance of model fitting, 

because 𝑅𝑎𝑝𝑝
2  is a post-estimation measure of model fit. However, an approximately unbiased 

(optimism-adjusted) estimate of the proportion of variation explained is 𝑅𝑎𝑑𝑗
2 ,10 19  

𝑅𝑎𝑑𝑗
2 = 1 − ((1 − 𝑅𝑎𝑝𝑝

2 )
(𝑛 − 1)

(𝑛 − 𝑝 − 1)
) =

(𝑛 − 1)𝑅𝑎𝑝𝑝
2 − 𝑝

(𝑛 − 𝑝 − 1)
  

(7)  

and rearranging gives, 

𝑅𝑎𝑝𝑝
2 =

𝑅𝑎𝑑𝑗
2 ( 𝑛 − 𝑝 − 1) + 𝑝

(𝑛 − 1)
 

        (8) 

Therefore, applying equation (8) within equation (6) provides: 

𝑆𝐶 = 1 +
𝑝 − 2

 𝑛 ln (1 − (
𝑅𝑎𝑑𝑗

2 ( 𝑛 − 𝑝 − 1) + 𝑝

(𝑛 − 1)
))

  

   (9) 

Hence, we now have an expression for the expected shrinkage factor conditional on a particular 

𝑅𝑎𝑑𝑗
2  and, crucially, the sample size, 𝑛, and number of predictor parameters, 𝑝. When studying 

equation (9), we observe that the expected shrinkage will decrease (i.e. 𝑆𝐶  will move closer to 1) as 

𝑛 increases, as 𝑝 decreases, as 𝑛/𝑝 increases, and as 𝑅𝑎𝑑𝑗
2  increases. Therefore, shrinkage 

(overfitting) will be a larger concern is development datasets with a small number of subjects, a 

large number of predictor parameters (relative to the number of subjects), and when the proportion 

of variance explained by the model is low. 
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2.3 Criterion (i): calculating sample size to ensure a shrinkage factor ≥ 0.9 

Recall, at the start of Section 2 we explained that it is important to minimise the potential for 

overfitting. Therefore, when designing a new model development study, we propose researchers 

should utilise equation (9) to reveal the sample size (𝑛) needed to obtain a targeted value of 𝑆𝐶. We 

suggest using a value of 𝑆𝐶 ≥ 0.9, such that predictor effects would shrink by ≤ 10%, which 

represents small overfitting.  This is in accordance with Harrell,3 who suggests that if the shrinkage 

estimate “falls below 0.9, for example, we may be concerned with the lack of calibration the model 

may experience on new data”. 

Although there is no closed form solution for 𝑛 based on equation (9), an iterative process can be 

used to identify the value of 𝑛 that gives the desired 𝑆𝐶  conditional on a chosen 𝑝 and 𝑅𝑎𝑑𝑗
2 . For 

example, to obtain an expected 𝑆𝐶  of 0.9 for a hypothetical model with up to 30 predictor 

parameters and an anticipated 𝑅𝑎𝑑𝑗
2  of 0.7, a sample size of 206 subjects is required to meet 

criterion (i) as: 

𝑆𝐶 = 1 +
30 − 2

 206 ln (1 − (
0.70( 206 − 30 − 1) + 30

(206 − 1)
))

= 0.90 

This equates to 206/30 = 6.87 subjects per predictor parameter; that is, about 6.87 subjects are 

required for each predictor parameter considered. If it was rather considered that up to 50 predictor 

parameters are needed for an anticipated 𝑅𝑎𝑑𝑗
2  of 0.7, then a sample size of 355 subjects is required 

to obtain an expected 𝑆𝐶  of 0.9, corresponding to 7.10 subjects per predictor parameter. Hence, the 

number of subjects per predictor parameter changes depending on the number of predictor 

parameters considered. 

In situations where the calculated sample size is considered unrealistic (e.g. due to time and cost 

constraints), 𝑝 could be lowered by reducing the number of candidate predictor parameters. For 

example, those predictors known from previous studies (or systematic reviews) to have predictive 

value could be prioritised, or two or more predictors could be combined into one, such as BMI 

instead of weight and height. Alternatively after data collection, unsupervised learning techniques 

such as principal component analysis could be used, which are blind to the outcome values. In the 

above example, reducing the number of predictor parameters to 25 leads to a sample size of 169 

subjects to meet criterion (i): 
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𝑆𝐶 = 1 +
25 − 2

 169 ln (1 − (
0.70( 169 − 25 − 1) + 25

(169 − 1)
))

= 0.90 

Thus, by removing five predictor parameters the required sample size to meet criterion (i) is reduced 

by 37 subjects. 

When using a more stringent shrinkage factor, say of 0.95, then the necessary sample size to meet 

criterion (i) will be increased substantially. For instance, in the previous example with 25 predictor 

parameters and an anticipated 𝑅𝑎𝑑𝑗
2  of 0.7, the sample size required is increased from 169 to 361 

when increasing 𝑆𝐶  from 0.90 to 0.95. Hence, over twice the sample size is needed to reduce the 

expected shrinkage from 10% to 5%. For this reason, we anticipate that an 𝑆𝐶  of 0.90 will often be a 

pragmatic choice for criterion (i).3 

2.4 Criterion (ii): calculating sample size to ensure a small absolute 

difference in 𝑹𝒂𝒅𝒋
𝟐  and 𝑹𝒂𝒑𝒑

𝟐  

Criterion (i) focuses on shrinkage of predictor effects, which is a multiplicative measure of overfitting 

(i.e. on the relative scale), and therefore Harrell also suggests to evaluate overfitting on the absolute 

scale.3 To address this, our second criterion for minimum sample size is to ensure the difference (𝛿) 

between 𝑅𝑎𝑝𝑝
2  and 𝑅𝑎𝑑𝑗

2  is small, say ≤ 0.05, such that the optimism in the developed model’s 

apparent proportion of variance explained is small.  

Utilising equation (8), the difference in 𝑅𝑎𝑝𝑝
2  and 𝑅𝑎𝑑𝑗

2  can be written as: 

𝛿 = 𝑅𝑎𝑝𝑝
2 − 𝑅𝑎𝑑𝑗

2  

=
𝑅𝑎𝑑𝑗

2 ( 𝑛 − 𝑝 − 1) + 𝑝

(𝑛 − 1)
− 𝑅𝑎𝑑𝑗

2  

=
𝑅𝑎𝑑𝑗

2 ( 𝑛 − 𝑝 − 1) + 𝑝 − (𝑛 − 1)𝑅𝑎𝑑𝑗
2

(𝑛 − 1)
 

=
−𝑝𝑅𝑎𝑑𝑗

2 + 𝑝

(𝑛 − 1)
 

=
𝑝(1 − 𝑅𝑎𝑑𝑗

2 )

(𝑛 − 1)
 

After rearranging this solution, we find that to meet criterion (ii) we require the number of subjects 

to be, 
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𝑛 ≥ 1 +
𝑝(1 − 𝑅𝑎𝑑𝑗

2 )

𝛿
 

(10) 

where 𝛿 is a small value, such as ≤ 0.05. For example, returning to our hypothetical model with an 

anticipated 𝑅𝑎𝑑𝑗
2  of 0.7 and up to 30 potential predictor parameters, the sample size required to 

meet criterion (ii) is: 

𝑛 ≥ 1 +
𝑝(1 − 𝑅𝑎𝑑𝑗

2 )

𝛿
= 1 +

30(1 − 0.7)

0.05
= 181 

This is slightly lower than the sample size of 206 identified for criterion (i) in Section 2.3.  

Equation (10) reveals that, similar to the shrinkage approach for criterion (i), the required sample 

size for criterion (ii) will increase as 𝑝 increases and 𝑅𝑎𝑑𝑗
2  decreases. For example, if our hypothetical 

model had an anticipated 𝑅𝑎𝑑𝑗
2  of 0.3 rather than 0.7, then the sample size to meet criterion (ii) 

increases substantially to 421.   

2.5 How to pre-specify 𝑹𝒂𝒅𝒋
𝟐  

To identify a sample size to meet our criteria (i) and (ii), researchers have to pre-specify a value for 

the model’s anticipated 𝑅𝑎𝑑𝑗
2 . How should this be done? We recommend identifying previous 

prediction model studies for the same or similar populations and outcomes of interest, and 

extracting their 𝑅𝑎𝑑𝑗
2  values, which are usually well-reported for linear regression models. Helpful for 

this purpose are systematic reviews of existing models,20 and registries that record the prediction 

models available in a particular field.21 If only an 𝑅𝑎𝑝𝑝
2  value is reported in a model development 

study, then its 𝑅𝑎𝑑𝑗
2  can be derived using equation (7) as long as the study’s 𝑛 and 𝑝 can also be 

obtained. Note that if 𝑅𝑎𝑝𝑝
2  is reported from an external validation study of an existing model, there 

is no need for adjustment (i.e. 𝑅𝑎𝑝𝑝
2 = 𝑅𝑎𝑑𝑗

2 ), as the validation dataset provides a direct estimate of 

the model’s performance in new individuals (free from overfitting concerns as there is no model 

development therein). In other words, deriving 𝑅𝑎𝑑𝑗
2  based on a reported 𝑅𝑎𝑝𝑝

2  is necessary when 

the latter is from a model development study, but not when it is from an appropriate external 

validation study of an existing model.5 Guidance for choosing an 𝑅𝑎𝑑𝑗
2  value in the absence of any 

prior information is given in the Discussion. 
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3 Sample size required for precise estimation of the residual 

standard deviation and mean predicted outcome value 

In addition to reducing the potential for overfitting, Harrell notes that sample sizes should be large 

enough to precisely estimate key model parameters such as the intercept or residual variance.3 We 

now address this. 

3.1 Criterion (iii): precise estimate of the residual standard deviation 

A precise estimate of the residual standard deviation is essential, as it is subsequently used to 

estimate 𝑅2 , and also to derive the standard errors and confidence intervals for the intercept and 

predictor effects (betas). For simplicity, Harrell suggests focusing on the standard deviation, 𝜎𝑛𝑢𝑙𝑙 

say, in a null model (i.e. intercept-only model),3 and ensuring the lower and upper bounds of a 95% 

confidence interval for 𝜎𝑛𝑢𝑙𝑙 have a small multiplicative margin of error (MMOE) around the true 

value of 𝜎𝑛𝑢𝑙𝑙. Assuming residuals are approximately normally distributed, this approach can be 

extended to consider the MMOE for estimating 𝜎𝑚𝑜𝑑𝑒𝑙, the residual standard deviation in the 

developed prediction model, by: 

                  MMOE = √max (
𝜒

1−
𝛼
2,𝑛−𝑝−1

2

𝑛−𝑝−1
,

𝑛−𝑝−1

𝜒𝛼
2,𝑛−𝑝−1

2 )                                                       (11) 

where 𝜒
1−

𝛼

2
,𝑛−𝑝−1

2  and 𝜒𝛼

2
,𝑛−𝑝−1

2  are the critical values of a  𝜒2  distribution with 𝑛 − 𝑝 − 1 degrees 

of freedom for which there is, respectively, a probability of 1 −
𝛼

2
 and 

𝛼

2
 of being less than the critical 

value. The second term within the bracket of equation (11) will typically give the largest MMOE. 

For example, consider that we wish to ensure (with 95% confidence) that the margin of error is 

within 20% of the true value, i.e. 1.0 ≤ MMOE ≤ 1.2. For a null model (i.e. one containing no 

predictors), then equation (11) reveals that a sample size of at least 70 subjects is needed to meet 

this criterion,3 as this gives an MMOE of 1.2. Therefore, in a multivariable model with 𝑝 predictor 

parameters, the minimum sample required to meet a MMOE ≤ 1.2 for criterion (iii) is simply 70 + 𝑝.  

However, we recommend a more stringent margin of error of within 10% of the true value, i.e. 1.0 ≤ 

MMOE ≤ 1.1. In a null model, equation (11) reveals that a sample size of at least 234 subjects is 

needed to ensure a MMOE ≤1.1. Therefore, in a multivariable model with 𝑝 predictor parameters, 

the minimum sample required to meet a MMOE of ≤1.1 for criterion (iii) is simply 234 + 𝑝.  
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To illustrate this, let us return to the hypothetical example initially described in Section 2.3, where 

the sample size to meet criterion (i) was 206 and for criterion (ii) was 181. However, these values 

correspond to a MMOE of greater than 1.1 for 𝜎𝑚𝑜𝑑𝑒𝑙. For example, taking the sample size of 206 

subjects and 30 predictor parameters, this corresponds to a 𝜒0.975,206−30−1
2  = 213.52 and 

𝜒0.025,206−30−1
2  = 140.26, and thus (using equation (11)) a MMOE of √(206 − 30 − 1)/140.26 = 

1.12, and 12% potential margin of error in the estimate of 𝜎𝑚𝑜𝑑𝑒𝑙.  

Rather, with 30 predictor parameters, to achieve an expected MMOE of 1.1 we require 234 + 𝑝 =

234 + 30 = 264 subjects, because the maximum value of equation (11) is then exactly 1.10: 

√(264 − 30 − 1)/𝜒0.025,264−30−1
2 = √(264 − 30 − 1)/192.615 = 1.10 

Hence, in this example the minimum sample size of 264 subjects for criterion (iii) (i.e. to ensure a 

MMOE ≤1.1) is more stringent than those identified for criteria (i) and (ii). 

3.2 Criterion (iv): precise estimate of the mean predicted outcome value 

(model intercept) 

It is also important for model predictions to be precise; in particular, it is fundamental that the mean 

predicted outcome value is precisely estimated. If we assume our model will include predictors 

centred at their mean values in the developed dataset, then the fitted model’s intercept (�̂�𝑚𝑜𝑑𝑒𝑙) 

will correspond to the predicted outcome value for an individual with mean predictor values. This 

estimate will be similar (though not identical) to the overall mean outcome in the population of 

interest; such a population mean estimate has variance of �̂�𝑛𝑢𝑙𝑙
2 /𝑛. However, in a linear regression 

model with multiple predictors the residual variance is �̂�𝑚𝑜𝑑𝑒𝑙
2 , and so the fitted model’s intercept 

will have an approximate variance of:Footnote1  

𝑣𝑎𝑟(�̂�𝑚𝑜𝑑𝑒𝑙) = �̂�𝑚𝑜𝑑𝑒𝑙
2 /𝑛 ≈ 𝜎𝑛𝑢𝑙𝑙

2 (1 − 𝑅𝑎𝑑𝑗
2 )/𝑛 

 

(Footnote1: We use 𝑅𝑎𝑑𝑗
2  in this equation rather than 𝑅𝑎𝑝𝑝

2  to be conservative) 

Then, a 95% confidence interval for the model intercept is, 

                              �̂�𝑚𝑜𝑑𝑒𝑙 ± (𝑡
1−

0.05

2
,𝑛−𝑝−1

√
𝜎𝑛𝑢𝑙𝑙

2 (1−𝑅𝑎𝑑𝑗
2 ) 

𝑛
)                    

(12) 
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where 𝑡
1−

0.05

2
,𝑛−𝑝−1

 is the critical value of a 𝑡-distribution with 𝑛 − 𝑝 − 1 degrees of freedom for 

which there is a probability of 1 −
0.05

2
 below the critical value. Therefore, to derive this confidence 

interval in advance of model development, the researcher needs to pre-specify (e.g. from previous 

studies) sensible values for the anticipated mean outcome value (�̂�𝑚𝑜𝑑𝑒𝑙), the population (null 

model) variance (𝜎𝑛𝑢𝑙𝑙
2 ), and 𝑅𝑎𝑑𝑗

2 . Then, the researcher can identify the sample size that ensures a 

sufficiently narrow confidence interval for 𝛼𝑚𝑜𝑑𝑒𝑙, to satisfy criterion (iv). For example, they might 

ensure the lower and upper bounds are within a small multiplicative margin of error (MMOE) of the 

anticipated prediction mean (i.e. 1.0 ≤ MMOE ≤ 1.1). 

However, what constitutes a sufficiently narrow confidence interval will be context specific. A 

sensible start point is to examine the confidence interval width when using the sample sizes 

identified for criterion (i) to (iii). For example, let us return to our hypothetical model with an 

anticipated 𝑅𝑎𝑑𝑗
2  of 0.7 and 𝑝 = 30 predictor parameters, and now assume that the target population 

has an anticipated mean blood pressure (�̂�𝑚𝑜𝑑𝑒𝑙) of 165 and variance (�̂�𝑛𝑢𝑙𝑙
2 ) of 182. Then, using 

equation (12) and a sample size of 264 subjects identified by criterion (iii), the 95% confidence 

interval for the mean predicted outcome value is: 

165 ± (𝑡0.975,(264−30−1)√
182(1 − 0.7) 

264
) = 163.8 to 166.2 

This is reassuringly precise, with the upper bound just 1.2 higher than the true mean of 165; this 

corresponds to a margin of error within 10% of the true mean (indeed, MMOE is 166.2/165 = 1.007, 

and thus margin of error < 1%). 

4 Worked example: Prediction of lung function in African-

Americans 

A step-by-step summary of our sample size proposal is given Figure 1, and we now apply it to a 

worked example. Kumar et al. use linear regression to identify predictors of lung function (i.e. the 

forced expiratory volume in 1 second, FEV1) in African-American participants.22 Let us assume that 

we want to build on this work, by formally developing a linear regression model to predict FEV1 in 

African-American women. The aim could be to flag those individuals with low FEV1 values, as these 

are at risk of chronic obstructive pulmonary disease (COPD). We now go through the sample size 

calculation process. 
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Figure 1: Summary of the steps involved in our sample size calculation for developing a 
multivariable prediction model  

 STEP 1: Choose the number of candidate predictors of interest for inclusion in the model, 

and calculate the corresponding number of predictor parameters (𝒑). Recognise that one 

predictor may require two or more parameters; for example, a k category predictor requires 

k-1 parameters, and a continuous predictor modelled with a non-linear trend requires > 1 

parameter to be estimated. Also include any potential interaction terms toward the total 𝑝. 

 

 STEP 2: Choose a value for the anticipated proportion of variance explained (𝑹𝟐 ) for the 

new model (referred to as 𝑅𝑎𝑑𝑗
2  in our article). For example, the 𝑅𝑎𝑑𝑗

2  value for a previously 

published model in the same setting and population could be used as a lower bound for the 

anticipated 𝑅2  of the new model.  

   

 STEP 3: Criterion (i) – use equation (9) to calculate the minimum sample size required to 

ensure Copas’ global shrinkage factor (𝑆𝐶) is close to 1. We generally recommend a value of 

𝑆𝐶 ≥ 0.90, which reflects a small amount of overfitting during model development.  

   

 STEP 4: Criterion (ii) – use equation (10) to calculate the minimum sample size required to 

ensure a small absolute difference of ≤ 0.05 in the developed model’s 𝑅𝑎𝑑𝑗
2  and 𝑅𝑎𝑝𝑝

2 . 

 

 STEP 5: Criterion (iii) – based on equation (11), calculate the minimum sample size required 

to ensure a precise estimate of the residual standard deviation (𝜎𝑚𝑜𝑑𝑒𝑙). We generally 

recommend at least 234 + 𝑝 subjects, which ensures the 𝜎𝑚𝑜𝑑𝑒𝑙 estimate has no more than 

a 10% margin of error from the true value. 

 

 STEP 6: Criterion (iv) – based on equation (12), calculate the minimum sample size required 

to ensure a precise estimate of the mean predicted outcome value in the developed model 

(precise model intercept in a model with mean-centred predictors). This requires the 

researcher to pre-specify (e.g. from previous studies) sensible values for the anticipated 

mean outcome value (�̂�𝑚𝑜𝑑𝑒𝑙) and the population (null model) variance (𝜎𝑛𝑢𝑙𝑙
2 ), in addition 

to 𝑅2 . What constitutes a precise estimate is context specific, but a broad suggestion is to 

at least ensure a confidence interval with lower and upper values within a 10% 

multiplicative margin of error from the true mean. 

 

 STEP 7:  Final sample size - the required minimum sample size is the maximum value from 

steps 3 to 6, to ensure that each of criteria (i) to (iv) are met. Researchers might also 

examine whether the sample size would give precise estimates of key predictor effects (see 

Section 5). 

 

If the calculated sample size is not considered achievable due to criteria (i), (ii) or (iv), 

consider reducing the number of candidate predictors (and thus p) to reduce the required 

sample size (whilst still meeting criterion (iii)). For example, prioritise those predictors 

identified as important from existing systematic reviews, or consider data reduction 

techniques such as principal component analysis (blinded to predictor-outcome associations 

in the development dataset). We do not recommend reducing the size of 𝑆𝐶  or increasing 

𝑅𝑎𝑑𝑗
2 .   
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4.1 Step-by-step application 

Steps 1 and 2: Identifying a value (lower bound) for the model’s anticipated 𝑹𝒂𝒅𝒋
𝟐  and choosing 𝒑 

Kumar et al. (see their supplementary material22) report the performance of a model for prediction 

of FEV1 in women, with the model containing three predictors (age, height, African ancestry) and 

four predictor parameters. The 𝑅𝑎𝑑𝑗
2  was on average about 0.2 across three different datasets. 

Therefore, we could use this value as a lower bound for the anticipated 𝑅𝑎𝑑𝑗
2  in the new model. Also, 

let us assume that there will be up to 25 predictor parameters in this new model (including the four 

used in the original model), and thus 𝑝 = 25. 

 
Step 3: Criterion (i) – ensuring 𝑺𝑪 is close to 1 

Based on the chosen 𝑅𝑎𝑑𝑗
2  = 0.2 and 𝑝 = 25, to ensure an expected 𝑆𝐶  of 0.9, a sample size of 918 

subjects is needed because (using equation (9)):  

𝑆𝐶 = 1 +
𝑝 − 2

 𝑛 ln (1 − (
𝑅𝑎𝑑𝑗

2 ( 𝑛 − 𝑝 − 1) + 𝑝

(𝑛 − 1)
))

 

= 1 +
25 − 2

 918 ln (1 − (
0.2(918 − 25 − 1) + 25

(918 − 1)
))

 

= 0.90 

This corresponds to requiring 36.7 subjects per predictor parameter to meet criterion (i). 

Figure 2 shows how the expected shrinkage, 𝑆𝐶, derived from equation (9) changes according to 𝑛 

and 𝑝, conditional on an 𝑅𝑎𝑑𝑗
2  of 0.2. As 𝑛 increases and 𝑝 decreases, the expected 𝑆𝐶  becomes 

closer to 1. Furthermore, for an 𝑆𝐶  above 0.9, very large increases in the sample size are needed to 

improve the expected 𝑆𝐶. For example, if we wanted to use a more stringent criteria for low 

overfitting of 𝑆𝐶  = 0.95 then a sample size of 1949 subjects is required (78 subjects per predictor 

parameter), which is over double the number when 𝑆𝐶  is 0.9.  

Step 4: Criterion (ii) – ensuring small absolute difference between 𝑹𝒂𝒅𝒋
𝟐  and 𝑹𝒂𝒑𝒑

𝟐  

Using equation (10), we can calculate the minimum sample size needed to ensure the absolute 

difference between 𝑅𝑎𝑑𝑗
2  and 𝑅𝑎𝑝𝑝

2  is 0.05 or less: 

𝑛 ≥ 1 +
𝑝(1 − 𝑅𝑎𝑑𝑗

2 )

𝛿
= 1 +

25(1 − 0.2)

0.05
= 401 
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Therefore, at least 401 subjects are required to ensure a small absolute magnitude of overfitting 

based on the difference between 𝑅𝑎𝑑𝑗
2  and 𝑅𝑎𝑝𝑝

2 .  

 
Step 5: Criterion (iii) – ensuring a precise estimate of the residual standard deviation  

When 𝑝 = 25, then equation (11) reveals that we need at least 259 subjects (= 234 + 𝑝) to ensure a 

margin of error of ≤ 10% in the estimate of the model’s residual standard deviation, 𝜎𝑚𝑜𝑑𝑒𝑙. This is 

because the maximum value of equation (11) is: 

√(259 − 25 − 1)/𝜒0.025,259−25−1
2 = √(259 − 25 − 1)/192.615 = 1.10 

 
Step 6: Criterion (iv) – ensure a precise estimate of the mean predicted outcome (model intercept) 

Based on the results in Kumar et al.22 the population mean and variance of FEV1 are about 1.90 litres 

and 0.62, respectively. Based on these values and using equation (12) with an assumed sample size 

of 918 subjects (as needed for criterion (i)), we obtain a 95% confidence interval for the predicted 

mean outcome value (model intercept when predictors are mean-centered) of: 

1.90 ± (𝑡0.975,(918−25−1)√
0.62(1 − 0.2) 

918
) = 1.87 to 1.93 

This is reassuringly precise, and the upper bound indicates a multiplicative margin of error <1.1 (i.e. 

within 10%) of the true mean outcome value. 

Step 7: Identify sample size that ensures all criteria are met 

Based on the largest sample size calculations identified in steps 3 to 6, the final minimum sample 

size required is 918 subjects. This is driven by criterion (i), to ensure an expected shrinkage factor ≥ 

0.9. 

4.2 What if the sample size is not considered achievable? 

If the sample size of 918 subjects was not considered achievable (e.g. due to time or cost 

constraints), then what should be done? For criterion (i), we do not recommend reducing 𝑆𝐶  below 

0.9, as our main premise is to minimise overfitting. That leaves two other potential options: use a 

larger 𝑅𝑎𝑑𝑗
2  value or reduce 𝑝. We do not recommend the first option. The 𝑅𝑎𝑑𝑗

2  values reported in 

previous articles are themselves only estimates, and it is hard to judge how much 𝑅𝑎𝑑𝑗
2  will be 

improved in a new model. It is far better to be conservative in the choice of 𝑅𝑎𝑑𝑗
2  and adopt larger 
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sample sizes, rather than naively aiming for smaller sample sizes that ultimately may not be fit for 

purpose.  

Therefore, the best approach is to reduce the number of candidate predictor parameters, 𝑝. 

Returning to the hypothetical example where the assumed 𝑅𝑎𝑑𝑗
2  is 0.2, a reduced set of 15 predictor 

parameters would lower the sample size required for criterion (i) to 515 subjects (Figure 2). Thus, 

after sacrificing 10 parameters by removing some predictors, the researchers requires 403 fewer 

subjects to target an 𝑆𝐶  of 0.9. The choice of which predictors to prioritise could be based on 

external evidence (e.g. from systematic reviews) and, after data collection, data reduction 

techniques such as principal components analysis (which are based on observed correlation amongst 

predictors only, and not observed predictor-outcome associations). All those predictors within the 

existing Kumar et al. model are best retained in the model, to justify the assumption that 𝑅𝑎𝑑𝑗
2  is at 

least 0.2. A sample size of 515 subjects still ensures criteria (ii) to (iv) are met. For example, for 

criterion (iv), the width of the 95% confidence interval for the prediction mean would still be very 

narrow (1.85 to 1.95).  

Figure 2: Expected shrinkage (𝑺𝑪) from equation (9) for a prediction model of lung function in 
African-Americans, conditional on a particular sample size (𝒏), number of predictor parameters 

(𝒑), and an assumed 𝑹𝒂𝒅𝒋
𝟐  of 0.2 
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4.3 Comparison to other suggested sample size proposals 

We now contrast our derived sample size of 918 subjects to those from two other suggested sample 

size approaches for linear regression models. Though not intended for informing prediction model 

development, a recent recommendation suggests two subjects per predictor parameter for 

adequate estimation of predictor effects in linear regression.23 In our example, two subjects for each 

of the 25 predictor parameters leads to a substantially smaller sample size of 50 subjects. However, 

using equation (9), this corresponds to an expected shrinkage of 𝑆𝐶  = 0.51, which reflects substantial 

overfitting and does not meet criterion (i) (Figure 2).  

Alternatively, Harrell suggests there are at least 15 subjects per predictor parameter (see Chapter 4 

in his book3), which in this example implies a sample size of at least 375. However, using equation 

(9), a sample size of 375 subjects corresponds to an expected shrinkage of 𝑆𝐶  = 0.79, which still 

suggests large overfitting.  

5 Potential additional criteria 

Criteria (i) to (iv) form our main proposal for the minimum sample size required when developing a 

prediction model for continuous outcomes. However, we now briefly mention two additional criteria 

that may also be important to consider.  

5.1 Ensuring precise estimation of 𝐑𝒂𝒅𝒋
𝟐  and the mean-square error 

Criterion (ii) ensures that there is a small absolute difference between 𝑅𝑎𝑑𝑗
2  and 𝑅𝑎𝑝𝑝

2 , to reflect low 

overfitting. A related concept is to ensure a precise confidence interval for 𝑅𝑎𝑑𝑗
2 . 24  Tan gives an 

excellent overview of various exact and approximate approaches to calculate a confidence interval 

for 𝑅𝑎𝑑𝑗
2 ,25 given a developed model’s 𝑅𝑎𝑝𝑝

2 , 𝑛 and 𝑝. For example, Lee proposes a confidence 

interval based on a scaled non-central F distribution approximation to the distribution of 𝑅2 .26 This 

can be implemented in SAS,27 or in R using the ci.R2 function of the MBESS package by Kelley.28-30  

Furthermore, the ss.aipe.R2 function within MBESS identifies the sample size required to ensure 

Lee’s confidence interval is sufficiently narrow. 

We applied the ss.aipe.R2 function to the lung function model described in Section 4. This identified 

that 835 subjects are required to ensure the expected width of the confidence interval for 𝑅𝑎𝑑𝑗
2  is 

exactly 0.10, assuming 𝑅𝑎𝑑𝑗
2  is 0.20 and 𝑝 = 25. This sample size is lower than the 918 subjects 

required to meet criterion (i), and hence 918 subjects is still the minimum sample size 

required.Footnote2 
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Footnote2: With 918 subjects, and assuming 𝑅𝑎𝑑𝑗
2  is 0.20 and p = 25, Lee’s 95% confidence interval for 𝑅𝑎𝑑𝑗

2  is 

0.154 to 0.250. 

Ensuring precise estimates of 𝑅𝑎𝑑𝑗
2  and the residual standard deviation (criteria (iii)) also 

helps ensure a precise estimate of the mean-square error (MSE) of the model’s predicted 

outcome values, as MSE = 𝜎𝑛𝑢𝑙𝑙
2 (1 − 𝑅𝑎𝑑𝑗

2 ). 

5.2 Ensuring precise estimation of key predictor effects 

Criterion (iv) ensures a precise estimate of the mean predicted outcome value in the entire target 

population. Ideally, predictions should also be precise across the entire spectrum of predicted 

values, not just at the mean. This is challenging, but is helped by ensuring the effects of key 

predictors are estimated precisely. The precision of a particular predictor effect in a fitted linear 

regression model depends on the sample size, the estimated residual variance, the correlation of the 

predictor with other included predictors, and the variance of the predictor values.31 For brevity, we 

do not consider this in detail here, and refer the reader to other articles that focus on this.31-35 In 

particular, the ss.aipe.rc function with the MBESS package identifies the sample size required to 

ensure the confidence interval around a predictor’s effect is sufficiently narrow.30 33 35  

Returning to the lung function example, let us consider that our new model will potentially include 

smoking as a predictor, defined as a binary variable (current/previous smokers versus non-smokers). 

Furthermore, assume that the mean difference in FEV1 for smokers and non-smokers is -0.5, and 

that (based on Kumar et al.22) 50% of subjects will be current/previous smokers.  Also, assume 

(conservatively) that the final model will have 𝑅𝑎𝑑𝑗
2  of 0.2 and that the correlation is 0.5 between 

smoking and other included predictors. Using the the ss.aipe.rc function in R, we identify that 619 

subjects are required to ensure a confidence interval width of 0.2 (and thus the lower and upper 

bounds are within 0.1 of the true value of -0.5). This is reassuring, and again less than the 918 

subjects required to satisfy criterion (i). 

Precise estimation of predictor effects will be especially difficult for those predictors with smallest 

variance in their values, as their confidence intervals are likely to be widest.31 In particular, 

categorical predictors with low prevalence in certain categories have small variances.36 In our 

example had the percentage of smokers been assumed to be, say, 10% rather than 50%, then 

repeating the calculation identifies that 1668 subjects are needed for a confidence interval width of 

0.2. In this situation, we would need to increase the sample size beyond 918 subjects previously 

identified to meet criteria (i) to (iv), or justify relaxing the magnitude of precision desired. For 
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example if we were willing to widen the expected confidence interval width to 0.3, then this 

considerably reduces the number of required subjects to 757, but the interval is still fairly precise 

and all well below zero (-0.65 to -0.35).   

 

6 Discussion 

Sample size calculations are a fundamental part of designing a study to develop a new prediction 

model. In this article, we proposed four criteria to identify the minimum sample size needed to 

minimise overfitting whilst ensuring precise estimates of key model parameters. Criterion (i) forms 

the most novel aspect of our sample size proposal, as it allows researchers to identify 𝑛 and 𝑝 that 

correspond to an expected shrinkage factor close to 1, such as 0.9, which reflects low overfitting. 

Furthermore, it allows the sample size to be tailored to each model of interest, through the pre-

specification of the anticipated percentage of variation explained, 𝑅𝑎𝑑𝑗
2 , which is a measure of 

overall model fit. The chosen value of 𝑅𝑎𝑑𝑗
2  strongly influences the amount of shrinkage required, 

with larger values requiring less shrinkage (with other things, such as 𝑝, being equal).37 This issue is 

currently ignored when using blanket rules of thumb for sample size.  

Researchers should use previous evidence from other prediction model’s in the same setting to 

ascertain a (conservative) value for the new model’s potential 𝑅𝑎𝑑𝑗
2  value. If no relevant prediction 

models exist, then information from predictor finding studies (e.g. studies aiming to estimate the 

prognostic effect of a particular predictor adjusted for other existing factors4) might be relevant. 

Even though such studies are primarily focused on the estimation of the effect of a particular 

predictor, they typically involve multivariable modelling and therefore often also report 𝑅𝑎𝑝𝑝
2  and 

𝑅𝑎𝑑𝑗
2  values. Where truly no prior information exists about the potential 𝑅𝑎𝑑𝑗

2  value, researchers 

should recognise that medical diagnosis and prediction of health-related outcomes are, generally 

speaking, low signal:noise ratio situations. It is not uncommon in these situations to see 𝑅𝑎𝑑𝑗
2  values 

in the 0.1 to 0.2 range.  Therefore, in the absence of other information, we suggest that sample sizes 

be derived assuming 𝑅𝑎𝑑𝑗
2 = 0.15. An exception is when predictors include ‘direct’ (mechanistic) 

measurements, such as the baseline version of the continuous outcome (e.g. when predicting lung 

function one year after measuring baseline lung function). Then, in this special situation, an 𝑅𝑎𝑑𝑗
2 =

0.5 may be a more appropriate default choice. 

In practice, after a model development dataset is obtained, a better approach for estimating the 

shrinkage factor is to use a resampling approach such as bootstrapping.10 16 However, as our sample 
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size calculations are focused on situations before any data collection, it is not possible to incorporate 

such a resampling approach. In situations where a development dataset is already available, 

containing a specific number of subjects and predictors, our approach could be used to identify 

whether a reduction in the number of predictors is needed (prior to beginning the modelling). 

Indeed, Harrell previously illustrated this concept by using the shrinkage estimate from the full 

model (including all predictors) to gauge whether the number of predictors should be reduced.3 This 

could then incorporate bootstrapping (rather than the Copas formula) to estimate the shrinkage. 

However, this should be done blind to the estimated predictor effects, as otherwise the decisions 

about inclusion are already being made based on the full set of predictors. Similarly, when planning 

to use a predictor selection method (such as backwards selection) during model development, 

researchers should define 𝑝 as the total number of parameters due to all predictors considered 

(screened), and not just the subset that are included in the final model.5 As Harrell notes,3 the value 

of 𝑝 should be honest. 

A potential limitation of our work is that multiple sample size calculations are required, to address 

each of the criteria considered. However, this reflects the different elements that require 

consideration when developing a prediction model. Criteria (iii) and (iv) are needed to ensure that 

there will be a small margin of error in the estimates of the residual standard deviation and the 

mean predicted outcome value (model intercept). This is often overlooked when considering the 

sample size. In particular, at least 234 + 𝑝 subjects are always required to ensure a multiplicative 

margin of error (MMOE) of ≤ 1.1 for estimating the model’s residual standard deviation, 𝜎𝑚𝑜𝑑𝑒𝑙.  

Section 5 emphasised that further criteria may also be needed in some settings. In particular, 

ensuring precise estimates of predictor effects may be important, especially in settings where key 

predictors have low variance (e.g. categorical predictors with few subjects in certain categories).  

In summary, we have proposed how to ascertain the minimum sample size needed to develop a 

prediction model using linear regression. We hope this encourages researchers to move away from 

rules of thumb, and to rather focus on attaining sample sizes that ensure precise estimates and 

reduce the potential for overfitting, in order to develop more robust prediction models. We are 

currently writing software modules to implement the approach. Our accompanying paper extends 

the work to binary and time-to-event outcomes.7  
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