Epitaxial growth of γ-InSe and α, β, and γ-In₂Se₃ on ε-GaSe Nilanthy Balakrishnan^{1,2}, Elisabeth D. Steer³, Emily F. Smith³, Zakhar R. Kudrynskyi¹, Zakhar D. Kovalyuk⁴, Laurence Eaves^{1,2}, Amalia Patanè¹, Peter H. Beton¹ ¹School of Physics and Astronomy, The University of Nottingham, Nottingham, UK ²School of Physics and Astronomy, The University of Manchester, Manchester, UK ³Nanoscale and Microscale Research Centre, The University of Nottingham, Nottingham, UK ⁴Institute for Problems of Materials Science, NAS of Ukraine, Chernivtsi, 58001 Ukraine Here we demonstrate the epitaxial growth by physical vapor transport (PVT) of large-area (> $10^3 \, \mu m^2$) uniform layers of $ln_x Se_y$ on ϵ -GaSe vdW crystals with stoichiometry and phase that can be controlled by the temperature within (a) the PVT furnace, see Fig. 1a. The uniform cleaved surface of ε-GaSe enables the epitaxial growth of the In_xSe_y layers, which are aligned (b) over large areas (Fig. 1b-c). The weak vdW interaction between ε-GaSe and In_xSe_y results in a negligible lattice-mismatch distortion in the grown layers even though they have significantly different lattice constants and an in-plane lattice mismatch ranging between 6% and 47%. Each In_xSe_v phase and stoichiometry exhibits distinct optical and vibrational properties. The optical spectra and the temperature dependence indicate distinct electronic properties phases different In_xSe_v demonstrate wide spectral а range of photoluminescence from the visible (γ -In₂Se₃) to the near-infrared (γ -InSe, β -In₂Se₃ and α -In₂Se₃), see Fig. 1d. The successful growth of γ -InSe, α -In₂Se₃, β -In₂Se₃ and γ -In₂Se₃ on exfoliated ϵ -GaSe nanolayers offers the prospect for largearea device fabrication and junction devices that exploit the distinctive optical absorption and luminescent emission of the component layers. Fig.1: (a) Image and schematic diagram of the quartz tube for the PVT growth of In_xSe_y on ϵ -GaSe. The temperature gradient in the quartz tube enables the growth of different stochiometries and phases of In_xSe_y . (b) AFM images and z-profile, (c) SEM image and EDX elemental maps of In_2Se_3 layers grown on a ϵ -GaSe substrate. (d) Room temperature (T = 300 K) and low temperature (T = 10 K) μ PL spectra of γ -InSe, α -In $_2Se_3$, β -In $_2Se_3$ and γ -In $_2Se_3$ layers grown on exfoliated ϵ -GaSe flakes.