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Abstract: The paper is concerned with the analysis of the problem for a concentrated line load moving at a constant speed along the surface 
of a pre-stressed, incompressible, isotropic elastic half-space, within the framework of the plane-strain assumption. The focus is on the near-
critical regimes, when the speed of the load is close to that of the surface wave. Both steady-state and transient regimes are considered. 
Implementation of the hyperbolic-elliptic asymptotic formulation for the surface wave field allows explicit approximate solution for displace-
ment components expressed in terms of the elementary functions, highlighting the resonant nature of the surface wave. Numerical illustra-
tions of the solutions are presented for several material models.  

Key words: Moving load, incompressible, pre-stress, asymptotic 

1. INTRODUCTION 

Moving loads on elastic half-space have been subject of nu-
merous investigations, motivated by important engineering applica-
tions related to ground vibrations caused by moving transport vehi-
cles, see e.g. (Krylov, 1996; Cao et al., 2012). In the classical con-
tribution of (Cole and Huth, 1958) a steady-state solution for an 
elastic half-plane subject to a moving load was obtained. It is worth 
mentioning that in this early paper, the resonant nature of the Ray-
leigh wave may already be noticed, see also (Goldstein, 1965). A 
substantial part of considerations for moving loads are focused on 
steady-state regimes, see e.g. recent results for porous anisotropic 
half-space by (Wang et al., 2021), study for a thermoelastic half-
space with double porosity (Kumar and Vohra, 2020). We also note 
the papers dealing with time-harmonic moving loads, see (Lefeuve-
Mesgouez et al., 2000; Sun et al., 2019) and interesting aspects of 
transition when surface load moves over the interface of two elastic 
materials, see (van Dalen et al., 2015). There are relatively few 
treatments of transient modes in moving load problems, including 
early works (Payton, 1967; Gakenheimer and Miklowitz, 1969) and 
also more recent contributions (de Hoop, 2002; Kaplunov et al., 
2010b). It is known that analysis of transient dynamics is generally 
non-trivial, often requiring numerical approach, see e.g. (Bratov, 
2011; Smirnov et al., 2012). We also mention active studies of mov-
ing loads on elastic structures, see e.g. a textbook (Fryba, 1999) 
and references therein, as well as recent works, see e.g. (Dimi-
trovova, 2017; Wang et al., 2020; Lu et al., 2020).  

This paper relies on a recent approach to near-resonant re-
gimes of the moving load on an elastic half-space, originating from 
the hyperbolic-elliptic models for surface waves, see (Kaplunov and 
Prikazchikov, 2017). The models contain elliptic equations associ-
ated with decay into the interior, along with hyperbolic equations on 

the surface governing wave propagation. This methodology has al-
lowed a number of explicit approximate solutions of the moving load 
problems, see (Kaplunov et al., 2010a; Kaplunov et al., 2013; Erbaş 
et al., 2017; Ege et al., 2017). The advantage of this approach is 
related to the representation of the surface wave field in terms of a 
single harmonic function, providing reduction of the vector problem 
of elastodynamics to a scalar formulation. Recent developments in 
the area include incorporation of effects of anisotropy (Fu et al., 
2020), a refined second-order model (Wootton et al., 2020), explicit 
formulations for seismic meta-surfaces in the form of array of reso-
nators attached to the surface (Ege et al., 2018; Wootton et al., 
2019), as well as formulations for surface wave on a coated half-
space with non-classical boundary conditions (Kaplunov et al., 
2019) 

The hyperbolic-elliptic plane-strain model for surface wave on 
a pre-stressed incompressible elastic half-space has been derived 
in (Khajiyeva et al., 2018), allowing a scalar formulation for the sur-
face wave field induced by prescribed surface stresses. In this 
work, we implement these results to analyze the near-critical re-
gimes for the line force moving at a constant speed along the sur-
face. Both steady-state and transient problems are considered. As 
a result, explicit expressions for the displacement field are obtained 
in terms of elementary functions, confirming the resonant nature of 
surface wave speed. In case of transient displacements, distinction 
between the sub-critical, super-critical and resonant regimes fol-
lows immediately from the analysis on the surface. Then, using 
Poisson’s formula, solution is restored over the interior. Considera-
tion of large time limit allows approximations for the components of 
rigid body motion. The obtained results are illustrated numerically 
for several material models, including the neo-Hookean, Gent, and 
Gent-Gent strain-energy functions. 
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2. STATEMENT OF THE PROBLEM 

Consider a homogeneous incompressible elastic body with an 
initial state 𝐵0 in the domain 𝑋2 ≥ 0. Under the action of a homo-
geneous static deformation 𝑥𝑖 = 𝑥𝑖(𝑋𝐴), the body transforms to a 
finitely deformed equilibrium state 𝐵𝑒, which corresponds to a half-
space 𝑋2 ≥ 0, and after superimposing infinitesimal time-depend-
ent motion 𝑢𝑖(𝑥𝑗 , 𝑡), it moves to the current state 𝐵𝑡 with the posi-

tion vector 𝑥�̅�(𝑋𝐴, 𝑡) given by 

𝑥�̅�(𝑋𝐴, 𝑡) = 𝑥𝑖(𝑋𝐴) + 𝑢𝑖(𝑥𝑗 , 𝑡). (1) 

Below, the attention is drawn to the plane strain problem, for 
which 𝑢3 = 0 and 𝑢1 = 𝑢1(𝑥1, 𝑥2, 𝑡), 𝑢2 = 𝑢2(𝑥1, 𝑥2, 𝑡), giving the 
following coupled equations of incremental motion 

𝐴1111
𝜕2𝑢1

𝜕𝑥1
2 + (𝐴1122 + 𝐴1221)

𝜕2𝑢2

𝜕𝑥1𝜕𝑥2
+ 𝐴2121

𝜕2𝑢1

𝜕𝑥2
2 −

𝜕𝑝𝑡

𝜕𝑥1
= 𝜌

𝜕2𝑢1

𝜕𝑡2
,

 

𝐴1212
𝜕2𝑢2

𝜕𝑥1
2 + (𝐴1122 + 𝐴1221)

𝜕2𝑢1

𝜕𝑥1𝜕𝑥2
+ 𝐴2222

𝜕2𝑢2

𝜕𝑥2
2 −

𝜕𝑝𝑡

𝜕𝑥2
= 𝜌

𝜕2𝑢2

𝜕𝑡2
,

 (2) 

where 𝐴𝑖𝑗𝑘𝑙 are the components of the fourth order elasticity tensor 

(Ogden, 1984), 𝜌 is mass density, 𝑝𝑡 is the time-dependent incre-
mental component of pressure associated with the incompressibil-
ity constraint whose linearized measure is given by 

𝜕𝑢1

𝜕𝑥1
+
𝜕𝑢2

𝜕𝑥2
= 0. (3) 

In this paper, we focus on studying the effect of a vertical load, 
represented as a concentrated line force moving at a constant 
speed 𝑣, on the pre-stressed elastic half-space (see Fig. 1). Then, 
the boundary conditions on the surface 𝑥2 = 0 are given in the fol-
lowing form 

𝐴2121
𝜕𝑢1

𝜕𝑥2
+ (𝐴1221 + �̅�)

𝜕𝑢2

𝜕𝑥1
= 0,  

𝐴1122
𝜕𝑢1

𝜕𝑥1
+ (𝐴2222 + �̅�)

𝜕𝑢2

𝜕𝑥2
− 𝑝𝑡 = 𝑃0𝛿(𝑥1 − 𝑣𝑡), (4) 

where �̅� = 𝐴2121 − 𝐴1221 − 𝜎2 is static pressure in the equilibrium 
state 𝐵𝑒, 𝜎2 is the normal Cauchy stress component, 𝛿 is the Dirac 
delta function, and 𝑃0 is the amplitude. 

 
Fig. 1. Pre-stressed elastic half-space under the effect of a moving load 

We consider the near-resonant regime, when the speed of the 
moving load is close to surface wave speed, thus the contribution 
of surface wave dominates over that of the bulk waves. 

Introducing the auxiliary harmonic function 𝜓1 (see (Khajiyeva 
et al., 2018) for details), the displacements may be expressed as 

𝑢1(𝑥1, 𝑥2, 𝑡) =
𝜕𝜓1(𝑥1,𝑘1𝑥2,𝑡)

𝜕𝑥2
+ 𝜗

𝜕𝜓1(𝑥1,𝑘2𝑥2,𝑡)

𝜕𝑥2
,  

𝑢2(𝑥1, 𝑥2, 𝑡) = −
𝜕𝜓1(𝑥1,𝑘1𝑥2,𝑡)

𝜕𝑥1
− 𝜗

𝜕𝜓1(𝑥1,𝑘2𝑥2,𝑡)

𝜕𝑥1
, (5) 

where 𝜗 =
𝛾(𝑘1

2+1)−𝜎2

𝛾(𝑘2
2+1)−𝜎2

, and 𝑘1, 𝑘2 are related by 

𝑘1
2 + 𝑘2

2 =
2𝛽−𝜌𝑐𝑅

2

𝛾
,    𝑘1

2𝑘2
2 =

𝛼−𝜌𝑐𝑅
2

𝛾
, (6) 

with 

𝛼 = 𝐴1212,    2𝛽 = 𝐴1111 + 𝐴2222 − 2(𝐴1122 + 𝐴1221), 

𝛾 = 𝐴2121,  

and 𝑐𝑅 denoting surface wave speed, being the solution of 

𝛾(𝛼 − 𝜌𝑐𝑅
2) + (2𝛽 + 2𝛾 − 2𝜎2 − 𝜌𝑐𝑅

2)√𝛾(𝛼 − 𝜌𝑐𝑅
2) = (𝛾 − 𝜎2)

2,  

see (Dowaikh and Ogden, 1990). 
The approximate formulation of the original problem in elasticity 

(2)-(4) oriented towards the surface wave field has been developed 
in (Khajiyeva et al., 2018), reducing the vector problem in elasticity 
to a scalar problem for the elliptic equation in respect of the poten-
tial 𝜓1. The methodology of the derivation relies on the slow-time 
perturbation procedure, extending the previous results for isotropic 
elasticity, see (Kaplunov and Prikazchikov, 2017). The resulting hy-
perbolic-elliptic model for surface wave field in a pre-stressed in-
compressible elastic half-space excited by the vertical surface load-
ing 𝑓2 = 𝑓2(𝑥1, 𝑡) is formulated in terms of the potential 𝜓1 as ellip-
tic equation 

𝜕2𝜓1

𝜕𝑥2
2 + 𝑘1

2 𝜕
2𝜓1

𝜕𝑥1
2 = 0, (7) 

subject to the boundary condition on the surface given by a hyper-
bolic equation (cf. formula (39) in (Khajiyeva et al., 2018)) 

𝜕2𝜓1

𝜕𝑥1
2 −

1

𝑐𝑅
2

𝜕2𝜓1

𝜕𝑡2
= −

2𝑎11𝑓2
∗

𝑐𝑅(𝑎21𝑏1−𝑎11𝑏2)
   at 𝑥2 = 0, (8) 

where 

𝑎11 = 𝛾(𝑘1
2 + 1) − 𝜎2,     𝑎21 = 𝑘1(2𝛽 − 𝜌𝑐𝑅

2 − 𝜎2 − 𝛾(𝑘1
2 − 1)), 

𝑓2 = 𝑃0𝛿(𝑥1 − 𝑣𝑡),    𝑏1 =
2𝜌𝑐𝑅

𝑘2
2 − 𝑘1

2 (𝑘1
2 − 1 − 𝜗(𝑘2

2 − 1)), 

𝑏2 = 𝑔1 + 𝜗𝑔2, 

𝑔𝑗 =
𝜌𝑐𝑅(𝑘𝑗

2 − 1)

𝛾𝑘𝑗(𝑘𝑚
2 − 𝑘𝑗

2)
(2𝛽 − 𝜌𝑐𝑅

2 − 𝜎2 + 𝛾(1 − 3𝑘𝑗
2)) − 2𝑘𝑗𝜌𝑐𝑅 , 

𝑗, 𝑚 = 1,2;   𝑗 ≠ 𝑚, 

and the asterisk denotes the Hilbert integral transform. Let us adapt 
this asymptotic formulation (7), (8) to the considered moving load 
problem. 

3. EXPLICIT STEADY-STATE SOLUTION FOR THE NEAR-
RESONANT REGIME 

For the sake of convenience, the asymptotic model (7), (8) can 
be expressed in terms of the harmonic conjugate of 𝜓1. The elliptic 
equation (7) becomes 

𝜕2𝜓1
∗

𝜕𝑥2
2 + 𝑘1

2 𝜕
2𝜓1

∗

𝜕𝑥1
2 = 0, (9) 
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and the hyperbolic equation (8) is rewritten as 

𝜕2𝜓1
∗

𝜕𝑥1
2 −

1

𝑐𝑅
2

𝜕2𝜓1
∗

𝜕𝑡2
= 𝑃1𝛿(𝑥1 − 𝑣𝑡)   at 𝑥2 = 0, (10) 

where 𝑃1 =
2𝑎11𝑃0

𝑐𝑅(𝑎21𝑏1−𝑎11𝑏2)
. 

Now consider the steady-state regime and introduce a moving 
coordinate 

𝜉 = 𝑥1 − 𝑣𝑡. (11) 

Then, equation (10) takes the form 

(1 −
𝑣2

𝑐𝑅
2)

𝜕2𝜓1
∗

𝜕𝜉2
= 𝑃1𝛿(𝜉). (12) 

On integrating the latter, we have 

𝜕𝜓1
∗

𝜕𝜉
= −

𝑐𝑅
2𝑃1

𝑣−𝑣+
(𝐻(𝜉) −

1

2
), (13) 

where the constant of integration is chosen according to the sym-
metry rule as it cannot be determined by consideration of the 
steady-state regime (Kaplunov and Prikazchikov, 2017), and 𝑣± =

𝑣 ± 𝑐𝑅. 
Hence, restoring the solution into the interior, we obtain 

𝜕𝜓1
∗(𝜉,𝑘1𝑥2)

𝜕𝜉
= −

𝑐𝑅
2𝑃1

𝜋𝑣−𝑣+
tan−1

𝜉

𝑘1𝑥2
, (14) 

from which the harmonic conjugate function can be found as 

𝜕𝜓1(𝜉,𝑘1𝑥2)

𝜕𝜉
=

𝑐𝑅
2𝑃1

2𝜋𝑣−𝑣+
ln(𝜉2 + 𝑘1

2𝑥2
2). (15) 

Thus, on substituting (14) and (15) into (5), the displacements 
𝑢1 and 𝑢2 are given explicitly by 

𝑢1 =
𝑐𝑅
2𝑃1

𝜋𝑣−𝑣+
[𝑘1tan

−1 𝜉

𝑘1𝑥2
+ 𝜗𝑘2tan

−1 𝜉

𝑘2𝑥2
],  

𝑢2 = −
𝑐𝑅
2𝑃1

2𝜋𝑣−𝑣+
[ln(𝜉2 + 𝑘1

2𝑥2
2) + 𝜗ln(𝜉2 + 𝑘2

2𝑥2
2)] (16) 

The resonant nature of surface wave speed is clearly observed 
from solutions (16).  

4. TRANSIENT MOVING LOAD PROBLEM 

Now let us consider a transient problem. Within this paper, we 
rely on the approach presented in (Kaplunov et al., 2010a), with the 
solution of the hyperbolic equation (10) written as a convolution of 
the right-hand side with the fundamental solution, namely 

𝜓1
∗(𝜉, 0, 𝑡) =

𝑐𝑅𝑃1

2
∫ (𝐻(𝜉 + 𝑣−𝑟) − 𝐻(𝜉 + 𝑣+𝑟))𝑑𝑟
𝑡

0
, (17) 

where 𝐻 is the Heaviside function. 
The form of the integral in (17) motivates separate study of 

three regimes, including the sub-Rayleigh (𝑣 < 𝑐𝑅), super-Rayleigh 
(𝑣 > 𝑐𝑅) and the resonant one (𝑣 = 𝑐𝑅). 

Introducing 𝜑 = −
2

𝑐𝑅𝑃1
𝜓1
∗ for convenience, we obtain for 

a) sub-Rayleigh regime (𝑣 < 𝑐𝑅): 

𝜑(𝜉, 0, 𝑡) =

{
 
 

 
 
𝜉

𝑣−
+ 𝑡,   0 ≤ 𝜉 < −𝑣−𝑡,

𝜉

𝑣+
+ 𝑡,   −𝑣+𝑡 < 𝜉 < 0,

0,   otherwise

 (18) 

b) super-Rayleigh regime (𝑣 > 𝑐𝑅): 

𝜑(𝜉, 0, 𝑡) =

{
 
 

 
 𝜉 (

1

𝑣+
−

1

𝑣−
) ,   −𝑣−𝑡 ≤ 𝜉 ≤ 0,

𝜉

𝑣+
+ 𝑡,   −𝑣+𝑡 < 𝜉 < −𝑣−𝑡,

0,   otherwise

 (19) 

c) resonant regime (𝑣 = 𝑐𝑅): 

𝜑(𝜉, 0, 𝑡) = {
𝜉

2𝑐𝑅
+ 𝑡,   − 2𝑐𝑅𝑡 ≤ 𝜉 ≤ 0,

0,   otherwise
 (20) 

Now, once the solution has been found on the surface 𝑥2 = 0 in 
the terms of the function 𝜑, we can conduct the analysis with depth, 
i.e. restore the solution over the interior of the half-space 𝑥2 > 0. 
Using the elliptic equation (9) and applying Poisson’s formula, the 
potential 𝜓1

∗ is expressed as 

𝜓1
∗(𝜉, 𝑘1𝑥2, 𝑡) =

1

𝜋
∫

𝑘1𝑥2
(𝑟−𝜉)2+𝑘1

2𝑥2
2𝜓1

∗(𝑟, 0, 𝑡)𝑑𝑟
+∞

−∞
. (21) 

Let us once again present the results in sequence for all three 
considered regimes. 

4.1. Sub-Rayleigh regime 

On substituting (18) into (21), after integration we get 

𝜓1
∗(𝜉, 𝑘1𝑥2, 𝑡) =

𝑐𝑅𝑃1

2𝜋
[
ℎ(𝜉,𝑘1𝑥2,𝜉2)

𝑣+
−
ℎ(𝜉,𝑘1𝑥2,𝜉1)

𝑣−
], (22) 

where 

ℎ(𝜉, 𝑘1𝑥2, 𝜉𝑖) =
𝑘1𝑥2

2
ln

(𝜉−𝜉𝑖)
2+𝑘1

2𝑥2
2

𝜉2+𝑘1
2𝑥2

2 + 𝜉 tan−1
𝜉

𝑘1𝑥2
−(𝜉 −

𝜉𝑖) tan
−1 𝜉−𝜉𝑖

𝑘1𝑥2
  (𝑖 = 1,2),  

and 

𝜉1 = −𝑣−𝑡,   𝜉2 = −𝑣+𝑡.  

Displacements (5) in terms of 𝜓1
∗ take the following form 

𝑢1 = −𝑘1
𝜕𝜓1

∗(𝜉,𝑘1𝑥2,𝑡)

𝜕𝜉
− 𝜗𝑘2

𝜕𝜓1
∗(𝜉,𝑘2𝑥2,𝑡)

𝜕𝜉
,  

𝑢2 = −
1

𝑘1

𝜕𝜓1
∗(𝜉,𝑘1𝑥2,𝑡)

𝜕𝑥2
−

𝜗

𝑘2

𝜕𝜓1
∗(𝜉,𝑘2𝑥2,𝑡)

𝜕𝑥2
. (23) 

Then, on substituting (22) into (23), the transient displacements are 
written explicitly as 

𝑢1 =
𝑐𝑅
2𝑃1

𝜋𝑣−𝑣+
[𝑘1tan

−1 𝜉

𝑘1𝑥2
+ 𝜗 𝑘2tan

−1 𝜉

𝑘2𝑥2
] +

𝑐𝑅𝑃1

2𝜋𝑣+
[𝑘1tan

−1 𝜉−𝜉2

𝑘1𝑥2
+ 𝜗 𝑘2tan

−1 𝜉−𝜉2

𝑘2𝑥2
] −

𝑐𝑅𝑃1

2𝜋𝑣−
[𝑘1tan

−1 𝜉−𝜉1

𝑘1𝑥2
+

𝜗 𝑘2tan
−1 𝜉−𝜉1

𝑘2𝑥2
], (24) 

𝑢2 = −
𝑐𝑅𝑃1

4𝜋𝑣+
[ln

(𝜉−𝜉2)
2+𝑘1

2𝑥2
2

𝜉2+𝑘1
2𝑥2

2 +𝜗ln
(𝜉−𝜉2)

2+𝑘2
2𝑥2

2

𝜉2+𝑘2
2𝑥2

2 ] +

𝑐𝑅𝑃1

4𝜋𝑣−
[ln

(𝜉−𝜉1)
2+𝑘1

2𝑥2
2

𝜉2+𝑘1
2𝑥2

2 +𝜗ln
(𝜉−𝜉1)

2+𝑘2
2𝑥2

2

𝜉2+𝑘2
2𝑥2

2 ]. (25) 

Represent equation (24) as 

𝑢1 = 𝑢1
𝑠𝑡(𝜉, 𝑥2) + 𝑢1

𝑟0, (26) 

where 𝑢1
𝑠𝑡 corresponds to the steady-state displacement (161), and 

𝑢1
𝑟0 =

𝑐𝑅𝑃1𝑣(𝑘1+𝜗𝑘2)

2𝑣−𝑣+
 (27) 

is associated with the rigid body motion of the half-space, deter-
mined from analysis of the limiting behavior of displacements as 
𝑡 → ∞.  
Similarly, equation (25) can be reduced to 
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𝑢2 = 𝑢2
𝑠𝑡(𝜉, 𝑥2) + 𝑢2

𝑟0 + 𝑢2
𝑟1ln𝑡, (28) 

where 𝑢2
𝑠𝑡 corresponds to formula (162), and 

𝑢2
𝑟0 = −

𝑐𝑅𝑃1(1+𝜗)

2𝜋
[
ln𝑣+

𝑣+
−
ln|𝑣−|

𝑣−
],  

𝑢2
𝑟1 =

𝑐𝑅
2𝑃1(1+𝜗)

𝜋𝑣−𝑣+
. (29) 

Thus, explicit expressions for rigid body motion have been ob-
tained. It also follows from (29) that the vertical rigid body motion 
had a logarithmic growth in time, which is consistent with the previ-
ous results for isotropic elasticity in (Kaplunov et al., 2010a). 

4.2. Super-Rayleigh regime 

On substituting (19) into (21) and performing straightforward 
manipulations, we deduce 

𝜓1
∗(𝜉, 𝑘1𝑥2, 𝑡) = −

𝑐𝑅𝑃1

2𝜋
[
2𝑐𝑅

𝑣−𝑣+
(
𝑘1𝑥2

2
ln

(𝜉−𝜉1)
2+𝑘1

2𝑥2
2

𝜉2+𝑘1
2𝑥2

2 +

𝜉 tan−1
𝜉

𝑘1𝑥2
−𝜉 tan−1

𝜉−𝜉1

𝑘1𝑥2
) −

1

𝑐𝑅+𝑣
(
𝑘1𝑥2

2
ln

(𝜉−𝜉2)
2+𝑘1

2𝑥2
2

(𝜉−𝜉1)
2+𝑘1

2𝑥2
2 + (𝜉 −

𝜉2)tan
−1 𝜉−𝜉1

𝑘1𝑥2
− (𝜉 − 𝜉2)tan

−1 𝜉−𝜉2

𝑘1𝑥2
)]. (30) 

Then, from (23), the displacements 𝑢1 and 𝑢2 are obtained, coin-
ciding with those for the sub-Rayleigh regime, namely (24) and (25). 
Study of the limiting behavior of both displacements also gives the 
same structure (26)-(29), except for 𝑢1

𝑟0 that now is determined by 

𝑢1
𝑟0 = −

𝑐𝑅
2𝑃1(𝑘1+𝜗𝑘2)

2𝑣−𝑣+
. (31) 

4.3. Resonant regime 

Here we study the case when the speed of the moving load 
coincides with the surface wave speed. Taking into account (20), 
the potential 𝜓1

∗ is found as 

𝜓1
∗(𝜉, 𝑘1𝑥2, 𝑡) =

𝑃1

4𝜋
[
𝑘1𝑥2

2
ln

(𝜉+2𝑐𝑅𝑡)
2+𝑘1

2𝑥2
2

𝜉2+𝑘1
2𝑥2

2 + (𝜉 +

2𝑐𝑅𝑡) (tan
−1 𝜉

𝑘1𝑥2
− tan−1

𝜉+2𝑐𝑅𝑡

𝑘1𝑥2
)]. (32) 

Substituting (32) into (23), we have 

𝑢1 = −
𝑐𝑅𝑃1𝑥2𝑡

2𝜋
[

𝑘1
2

𝜉2+𝑘1
2𝑥2

2 +
𝜗𝑘2

2

𝜉2+𝑘2
2𝑥2

2] −
𝑃1𝑘1

4𝜋
[tan−1

𝜉

𝑘1𝑥2
−

tan−1
𝜉+2𝑐𝑅𝑡

𝑘1𝑥2
] −

𝑃1𝜗𝑘2

4𝜋
[tan−1

𝜉

𝑘2𝑥2
− tan−1

𝜉+2𝑐𝑅𝑡

𝑘2𝑥2
], (33) 

𝑢2 =
𝑐𝑅𝑃1𝜉𝑡

2𝜋
[

1

𝜉2+𝑘1
2𝑥2

2 +
𝜗

𝜉2+𝑘2
2𝑥2

2] −
𝑃1

8𝜋
[ln

(𝜉+2𝑐𝑅𝑡)
2+𝑘1

2𝑥2
2

𝜉2+𝑘1
2𝑥2

2 +

𝜗ln
(𝜉+2𝑐𝑅𝑡)

2+𝑘2
2𝑥2

2

𝜉2+𝑘2
2𝑥2

2 ]. (34) 

The limiting behavior of displacements as 𝑡 → ∞ for resonant 
case gives 

𝑢1 = −
𝑐𝑅𝑃1𝑥2𝑡

2𝜋
[

𝑘1
2

𝜉2+𝑘1
2𝑥2

2 +
𝜗𝑘2

2

𝜉2+𝑘2
2𝑥2

2], (35) 

and 

𝑢2 =
𝑐𝑅𝑃1𝜉𝑡

2𝜋
[

1

𝜉2+𝑘1
2𝑥2

2 +
𝜗

𝜉2+𝑘2
2𝑥2

2] −
𝑃1(1+𝜗)

4𝜋
ln(2𝑐𝑅𝑡). (36) 

 

 

5. NUMERICAL ILLUSTRATIONS 

First, let us illustrate the obtained steady-state solution (16). 
Three forms of the strain-energy function are considered below, 
namely the neo-Hookean, Gent, and Gent-Gent models, which are 
typically used for modelling rubber-like materials. 

The well-known neo-Hookean strain-energy function is written 
as 

𝑊 =
𝜇

2
(𝐼1 − 3), (37) 

where 𝜇 is the ground-state shear modulus, and 𝐼1 is given by 

𝐼1 = 𝜆1
2 + 𝜆2

2 + 𝜆3
2, (38) 

where 𝜆𝑖  (𝑖 = 1,3) are the principal stretches of the underlying de-

formation, related by an incompressibility condition 𝜆1𝜆2𝜆3 = 1 
(see (Dowaikh and Ogden, 1990) for more details). 

Consider also extensions of the neo-Hookean model, including 
the Gent strain-energy function (Gent, 1996) 

𝑊 = −
𝜇

2
𝐽𝑚ln (1 −

𝐼1−3

𝐽𝑚
), (39) 

where 𝐽𝑚 is a material constant characterizing material extensibility 

and the shear modulus 𝜇 = 𝜇0 +
2𝐶2

3
 with 𝐶2 denoting the material 

constant, along with its more advanced version usually referred to 
as the Gent-Gent material model (Pucci and Saccomandi, 2002) 
defined by 

𝑊 = −
𝜇0

2
𝐽𝑚ln (1 −

𝐼1−3

𝐽𝑚
) + 𝐶2ln (

𝐼2

3
), (40) 

where 𝐼1 is given by (38), and 𝐼2 = 𝜆1
−2 + 𝜆2

−2 + 𝜆3
−2, see also a 

recent contribution by (Zhou et al., 2018). 
Figs. 2, 3 demonstrate the computation results for different 

forms of the strain-energy function at the depth 𝑥2 = 0.5. The sys-
tem parameters are chosen as follows: 𝜇0 = 0.2853  MPa, 𝐶2 =
0.1898  MPa, 𝐽𝑚 = 88.43 (according to (Zhou et al., 2018)), 𝜌 =
1522 kg m3,⁄  𝑣 = 0.8 𝑐𝑅 , 𝑃0 = 1, 𝜆1 = 1.25, 𝜆2 = 𝜆1

−1, 𝜆3 = 1. It 
is also assumed that a parameter 𝑍 = 0, which is used for calculat-
ing the normal Cauchy stress 𝜎2 (Dowaikh and Ogden, 1990), 

𝜎2 = 𝛾 − √𝛾𝛼 + 𝑍√2√𝛾𝛼(𝛽 + √𝛾𝛼),    − 1 ≤ 𝑍 ≤ 1, (41) 

so the surface wave has a non-zero velocity and is localized. 

 

Fig. 2. Horizontal displacement 𝑢1 for the neo-Hookean, Gent and Gent-
Gent material models 
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Fig. 3. Vertical displacement 𝑢2 for the neo-Hookean, Gent and Gent-Gent 
material models 

As can be seen from Figs. 2, 3, the neo-Hookean and Gent 
material models give almost identical results for both displacements 
𝑢1 and 𝑢2, whereas using the Gent-Gent model results in higher 
values of the displacement amplitudes with increasing 𝜉. In what 
follows, we use the Gent-Gent model since it seemingly provides a 
better agreement with experimental data, as demonstrated in (Zhou 
et al., 2018). 

Variation of the amplitude of the surface displacements 𝑢1 and 
𝑢2 on the moving coordinate is illustrated in Figs. 4, 5 for several 
values of the transverse variable 𝑥2. 

 
Fig. 4. Dependence of displacement 𝑢1 on the moving coordinate 𝜉 for 

different values of 𝑥2 

 
Fig. 5. Dependence of displacement 𝑢2 on the moving coordinate 𝜉 for 

different values of 𝑥2 

Predictably, the obtained graphs (Figs. 4, 5) indicate smooth-
ening of displacements profiles under the moving load with in-
crease in depth. 

To present the numerical results for the transient moving load 
problem, the Gent-Gent model (40) is utilized, for the same material 
parameters as before. The speed of the moving load for various 
regimes is taken as 𝑣 = 0.8 𝑐𝑅, 𝑣 = 1.2 𝑐𝑅 and 𝑣 = 𝑐𝑅 for the sub-
Rayleigh, super-Rayleigh, and resonant regimes, respectively 
(Figs. 6-11). 

 
Fig. 6. The sub-Rayleigh transient displacement 𝑢1 for different val-

ues of 𝑥2 

 
Fig. 7. The sub-Rayleigh transient displacement 𝑢2 for different val-

ues of 𝑥2 

 

Fig. 8. The super-Rayleigh transient displacement 𝑢1 for different val-

ues of 𝑥2 
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Fig. 9. The super-Rayleigh transient displacement 𝑢2 for different val-

ues of 𝑥2 

 
Fig. 10. The resonant transient displacement 𝑢1 for different values of 𝑥2 

 

Fig. 11. The resonant transient displacement 𝑢2 for different values of 𝑥2 

Figs. 6, 7 demonstrate the sub-Rayleigh transient displace-
ments 𝑢1 and 𝑢2, Figs. 8, 9 – the super-Rayleigh transient displace-
ments, see (24), (25), and Figs. 10, 11 correspond to the resonant 
transient displacements (33), (34), depending on the values of the 
vertical coordinate 𝑥2. 

It is emphasized that the obtained shapes of displacements are 
typical for a broad range of deformations, with qualitatively similar 
behaviour occurring for the non-deformed linear isotropic case as 
well, when  𝜆1 = 𝜆2 = 𝜆3 = 1. 

It should be noted that the accuracy of the approximate results 
within the model has been discussed in (Kaplunov and Pri-
kazchikov, 2017; Sect. 4.3.1), where it was shown that for a wide 
class of loads the asymptotic formulation captures the contribution 
of the Rayleigh poles. Moreover, in case of transient problem, as 
shown in (Kaplunov et al., 2010a), the near-resonant solution is 
valid for large times when the effect of the body waves becomes 
negligible. Moreover, comparison of exact and approximate solu-
tions revealed a wide range of speeds in which the approximation 
performs at a reasonable accuracy (Fig. 8 of the cited paper).  

6. CONCLUSION 

The near-resonant regimes of the steady-state moving load 
problem on a pre-stressed, incompressible elastic half-space have 
been studied. Implementation of the hyperbolic-elliptic model for 
surface wave allowed explicit solutions for the displacement com-
ponents. Illustrations in Figs. 2 and 3 are revealing some possible 
similarities between the neo-Hookean, Gent, and Gent-Gent mate-
rial models. The consideration has then been extended to transient 
problem, allowing an elegant approximate solution in terms of ele-
mentary functions, which makes it convenient for further analysis, 
including the limiting behavior for large time, providing explicit re-
sults for the components of rigid body motion. 

Various extensions of the approach include derivation of 3D as-
ymptotic models in pre-stressed media. Although straightforward 
explicit approach could be cumbersome algebraically, there is a 
chance of more elegant representation though Stroh formalism, in 
line with results reported recently in (Fu et al., 2020). It is worth 
noting that adding vertical inhomogeneity will lead to smoothing of 
surface discontinuities, for more details see (Erbaş et al., 2017).  
Finally, we note that it is also possible to extend the methodology 
to composite models for elastic layers (Erbaş et al., 2018; Erbaş et 
al., 2019), as well as to consider the dynamics of pre-stressed half-
space with cavities (Alekseeva and Ukrainets, 2009) and crack 
propagation (Mishuris et al., 2012; Gourgiotis and Piccolroaz, 
2014). 
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