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Abstract Traditional linear discriminant analysis (LDA) approach discards
the eigenvalues which are very small or equivalent to zero, but quite often
eigenvectors corresponding to zero eigenvalues are the important dimensions
for discriminant analysis. We propose an objective function which would uti-
lize both the principal as well as nullspace eigenvalues and simultaneously
inherit the class separability information onto its latent space representation.
The idea is to build a convolutional neural network (CNN) and perform the
regularized discriminant analysis on top of this and train it in an end-to-end
fashion. The backpropagation is performed with a suitable optimizer to up-
date the parameters so that the whole CNN approach minimizes the within
class variance and maximizes the total class variance information suitable for
both multi-class and binary class classification problems. Experimental results
on four databases for multiple computer vision classification tasks show the
efficacy of our proposed approach as compared to other popular methods.
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1 Introduction

Linear discriminant analysis (LDA) is a method from multivariate statistics
which attempts to find a linear projection of high-dimensional observations
onto a lower-dimensional space [10]. It finds the optimal decision boundaries
in the resulting lower dimensional subspace. LDA is an efficient way to sepa-
rate the features on the basis of class information, but since it requires inverse
operation it often becomes problematic if the dimension becomes very high
as compared to the number of available training samples. Thereby it ignores
the eigenvectors corresponding to zero eigenvalues so as to have the within
class scatter matrix non-singular. In Sharma et al. [29] an improved regular-
ized LDA is proposed which is carried out by adding a perturbation term α
to the diagonal elements of within class matrix to make it non-singular and
invertible. However, the eigenvectors corresponding to zero eigenvalues also
contain the important class discriminatory information as reported in [27,17,
19,6]. Thus, we aim to utilize both the principal as well as nullspace eigen-
values and extend the beneficial properties of the proposed regularized fisher
method (low intra-class variability, high total-class variability, optimal deci-
sion boundaries). This is done by reformulating its objective to learn linearly
separable representations based on a deep neural network (DNN) for both
binary as well as multi-class problem.

LDA is used widely as a supervised dimensionality reduction method in
computer vision and pattern recognition. Its recent generalization to non-
Euclidean Grassmann manifolds can be found in [33]. This aims to impose
the highest possible variance among classes, by maximizing the between-class
distances, whilst minimizing the within-class scattering. Recently, deep learn-
ing combined with various multivariate statistics methods have achieved great
success [12]. Andrew et al. [4] introduced a deep canonical correlation analysis
(DCCA) which can be viewed as a non-linear extension of CCA . In their evalu-
ations, they argued that DCCA learns representations with significantly higher
correlation than those learned by CCA and Kernel (non-linear) CCA. They
experimented using the MNIST handwritten data and simultaneous recording
of articulatory and acoustic data. Ghassabeh [13]et al. presents new adaptive
algorithms for online feature extraction using principal component analysis
(PCA) and LDA for classification purpose. In Al-Waisy et al. [2], they have
merged the advantages of local handcrafted feature descriptors with the Deep
Belief Networks for the face recognition problem in unconstrained conditions
and have obtained better performances.

PCANet proposed by Chan et al. [5] which includes cascading of PCA,
binary hashing and block histogram computations. This can be seen as an un-
supervised convolutional deep learning approach. Due to computational com-
plexity these multi-stage filter banks are limited to two stages but can be
extended to any number. They also experimented further modifications on
PCANet as RandNet and LDANet. RandNet and LDANet share the same
methodology like PCANet, but their cascaded filters are either selected ran-
domly as in RandNet or learned from LDA in case of LDANet. Lifkooee et
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al.[24] combines regular deep convolutional neural network with the Lapla-
cian of Gaussian filter (LoG) right before fully connected layer and they have
shown that the proposed feature descriptor along with LoG introduced in CNN
further improves the performance of deep learning.

Stuhlsatz et al. [31] initially proposed the idea of combining LDA with
neural networks. In their proposed approach they pre-train a stack of restricted
Boltzmann machines and this pre-trained model is finetuned with respect to a
linear discriminant criterion. LDA has the disadvantage that it overemphasizes
large distances at the cost of confusing neighbouring classes. Thus, to tackle
this problem they introduced a heuristic weighing scheme for computing the
within-class scatter matrix required for LDA optimization. The LDA based
objective function proposed by Dorfer et al. [9] is a non-linear extension of
classic LDA where the objective function is obtained from the general LDA
eigenvalue problem while still allowing to train the CNN architecture with
stochastic gradient descent and back-propagation.

In this paper, we propose to modify the LDA based objective function
which would utilize both the principal as well as nullspace eigenvalues onto its
latent space representation for both multi-class as well as binary class problem.
Extensive experimental results on multiple computer vision classification tasks
illustrates the superiority of our proposed approach as compared to other
popular methods. Below we describe our proposed method in details.

2 Proposed Approach

The approaches mentioned so far are based on the study of multi-variate statis-
tics. In our work, we propose to train a CNN architecture in an end-to-end
fashion with a new objective function which would enable the network to in-
herit the property of maximizing the total variation and minimizing the within
class variation.

Deep Learning has become state-of-the-art for many image based appli-
cations of classification, object recognition, segmentation, image captioning
and natural language processing [26,14]. The mathematical model of Con-
volutional Neural Network (CNN) is explained by Kuo et al.[22] where the
fundamental questions about the structure of the convolutional neural net-
works is explained. There are many variations of deep convolutional neural
networks for various vision tasks. The intuition behind our approach is to use
the proposed regularized Fisher method as the objective function on top of
a powerful feature learning model. The optimization of parameters is carried
by back-propagating the error of the proposed objective function through the
entire network. One of our objectives in this work is to come up with a CNN
architecture that can be generically applied to many computer vision classi-
fication tasks. For experimental evaluation, we evaluated our proposed objec-
tive function on various benchmark databases like MNIST (handwritten digit
recognition), CIFAR-10 (natural image classification) and ISBI (skin cancer
detection into melanoma and non-melnoma cases) to show that the objective
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function is effective for both multi-class as well as binary class classification
problems.

2.1 Deep Regularized Discriminative Network over simple ConvNet

Deep learning networks are different from the simple single-hidden-layer neural
networks by their depth. Deep-learning networks effectively learn the features
automatically without human intervention, unlike most traditional machine-
learning algorithms. A neural network with P hidden layers is represented as
a non-linear function f(Θ), where Θ = {Θ1, ...., ΘP }. In supervised learning
for N number of samples, we have x = {x1, ....xN} as training data and y =
{y1, ....yN} ∈ 1, ..., C, where C is the number of classes. In the last layer, we
have softmax as the classifier which gives the normalized probability of the data
that belongs to a particular class. The output, oi = {oi1, ....oiC} is a function
of f(xi, Θ). The network is optimized using stochastic gradient descent or any
other optimizer like Adam with the goal of finding optimal model parameters
Θ by minimizing the objective function li(Θ).

Θ = argmin
Θ

1

N

N∑
i

li(Θ) (1)

where li(Θ) = f((xi, Θ), yi). For categorical cross entropy (CCE), the loss
function is defined as

li(Θ) = −
C∑
i

yi,j log(pi,j) (2)

where pi,j is the network output probability and yi,j is 1 if observation xi
belongs to class yi for (j = yi) and 0 otherwise. Figure 1 shows the deep
regularized network where the objective is different from the CCE in maxi-
mizing the total scatter matrix eigenvalues and minimizing the within class
scatter matrix eigenvalues. In the following subsections, detail description of
the proposed objective function and the related analysis are discussed.

2.2 Proposed objective function

Linear discriminant analysis tries to find out the axes which maximize the
between-class scatter matrix Sb, while minimizing the within-class scatter ma-
trix Sw in the projective subspace A ∈ Rl×d. The projective subspace is a lower
dimensional subspace, i.e., l = C − 1 where C is the number of classes. The
resulting projection matrix onto this subspace xiA

T are maximally separated
in this space [10]. Fisher criterion is defined as the ratio of between-class and
within-class variances, given by:

J(W ) =
|WTSbW |
|WTSwW |

. (3)
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Fig. 1: Schematic sketch of deep regularized discriminative network which
learns the linear separability property in the latent representation. Here the
objective is to maximize the eigenvalues so that the class separability also
increases.

Here W is the weight vector. To compute the within class scatter matrix,

Sc =
1

(Nc − 1)

∑
X̄c

T
X̄c (4)

Sw =
1

(C)

∑
Sc (5)

The total scatter matrix is computed using,

St =
1

N − 1
X̄T X̄ (6)

where X is the input data matrix; in our case it would be the output of the
CNN model and Nc is the sample numbers in that particular class. N is the
total samples and X̄c = Xc −mc, mc is the mean of that class, X̄ = X −m
where m is the total mean of the samples. The output predicted values from
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the CNN model (y pred) is used as X values for the computation of Sw, as in
(5). To extract discriminative features, at first we perform eigen decomposition
of the within-class scatter matrix Sw, given by:

Sw = ΦΛΦT . (7)

Here, Φ contains the eigenvectors and Λ are the eigenvalues of Sw. Then the
eigenvectors are sorted according to the eigenvalues in descending order. Ma-
trix Φ is then split into W1 and W2, where W1 is the matrix which contains
the eigenvectors corresponding to those eigenvalues which are greater than a
certain minimum variance. For our experimentation, we took minimum vari-
ance value as 1e − 2. W2 matrix are the eigenvectors corresponding to those
eigenvalues whose variance are less than the minimum variance. W1 matrix is
divided with the square root of the corresponding eigenvalues and W2 matrix
is divided with the square root of the minimum eigenvalues. These two matri-
ces are concatenated to form Ψ as shown in (8) and it is multiplied with the
y pred to form the model output y.

Ψ = [Φi(Λi)
− 1

2 Φi(Λsmallest)
− 1

2 ]. (8)

y = ΨT y_pred (9)

Then, we compute the total scatter matrix St using (6). After computing the
covariance matrix, the projection matrix Ω is selected by eigen decomposition
of St and selecting the eigenvectors in Φwy according to the most significant
eigenvalues Λwy. Eigen decomposition of St is given by:

St = ΦwyΛwyΦ
T
wy. (10)

Using the eigenvalues of St matrix, we formulate the objective as,

argmax
Θ

1

C − 1

C−1∑
i

Λwy (11)

The objective of combining this with the deep neural net is that of maxi-
mization of the individual eigenvalues of St and minimization of the eigenvalues
of Sw. In particular we expect maximization (minimization) of the eigenvalues
of St (Sw) leads to maximizing (minimizing) separation in the respective eigen-
vector direction. Thus we would achieve the target of minimizing the within-
class variation and maximizing the total variation. Deep neural network with
categorical cross entropy (CCE) or binary cross entropy loss function does not
take into account this aspect of discriminatory power. CCE main objective is
to maximize the likelihood of the class labels according to the target labels.

Here the objective function is designed to consider only the k eigenvalues
that do not exceed a certain threshold for variance maximization:
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argmax
Θ

1

k

k∑
i

vi with(vi, ...vk) = {vj |vj < min{vi, ....vn−1} + ε} (12)

where for symbol easiness we have considered Λwy as v and n is the rank of the
covariance matrix which is equal to one less than the number of samples (n−1).
This formulation of objective function allows to train the deep networks with
backpropagation in end-to-end fashion. This is similar to the classic LDA but
it lifts the constraint that generally occurs for binary classification where C
(number of classes) is 2 and the l-dimensional projection matrix with classic
LDA method will be l = C − 1 i.e, 2 − 1 = 1. The above proposed objective
function can be used for both multi-class as well as binary class classification
problems.

3 Experimental Results

One of the key objectives of our work is to propose a CNN architecture that can
be generically applied to many vision tasks. For our experimental evaluation
we considered four publicly available databases, namely MNIST (hand written
digits recognition), CIFAR-10 (natural scenes classification), ISBI 2016 (skin
cancer classification) and ISBI 2017 (skin cancer classification). We compare
our results with various other similar approaches available for vision classifi-
cation.

3.1 Databases

– MNIST [23]: The MNIST or handwritten digits database consists of a
60,000 training set examples, and 10,000 testing set examples. The images
have been size-normalized and centered to a defined size of 28 × 28 gray
scale images. The database is freely available to public under a Creative
Commons Attribution-Share Alike 3.0 license.

– CIFAR-10 [21]: The CIFAR-10 database is freely obtained under MIT li-
censing (MIT), used for object recognition application is an established
computer-vision database which consists of 60000 32× 32 colour images in
10 classes, with 6000 images per class. There are a total of 50000 training
images and 10000 test images.

– ISBI 2016 [16]: The ISIC archive, containing training database of 900 im-
ages of dermoscopic lesion and 369 in testing database in JPEG format,
obtained under CC0 licensing. From leading clinical centers internationally,
these images have been collected that are acquired from various devices
used at each center. It has both natural (skin hairs, veins) as well as man-
made artifacts which becomes difficult to classify without pre-processing.

– ISBI 2017 [7]: International skin imaging collaboration (ISIC) is an in-
ternational effort to improve melanoma diagnosis. In 2017 challenge, the
database consists of more images in number as compared to 2016 includ-
ing Seborrheic keratosis, a benign skin tumor derived from keratinocytes
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(non-melanocytic) along with benign nevus (melanocytic) and melanoma
(melanocytic). The training data consists of 2000 images (374 melanoma,
254 seborrheic keratosis and 1626 benign nevus) and testing data consists
of 600 images (117 melanoma images), all obtained under CC0 licensing.
This is the largest among all state-of-the-art melanoma databases.

3.2 Experimental Setup

The general structure of the CNN model is based on VGG model using 3× 3
convolutions [30]. We experimented with and without including the Batch-
Normalization layer after each convolutional layer [18]. This layer helps in
increasing the convergence speed and also the performance of the model.
For non-linearity RELU is used, since it greatly accelerate the convergence
rate of stochastic gradient descent or any other optimizer as compared to the
sigmoid/tanh functions [20]. All the networks are trained using Adam opti-
mizer, but the learning rate is decreased to half after every 200 epochs. The
batch size for MNIST data and CIFAR-10 is 1000 and for ISBI 2016 and ISBI
2017, the batch size is 400, as the training data is quite small in case of ISBI
databases.

Related methods show that mini-batch learning on distribution parameters
(in this case covariance matrices) is feasible if the batch-size is sufficiently large
to be representative for the entire population [32]. Even though a large batch
size is required to have stable estimates, it is limited by the data availability,
image size and memory available on the GPU. Table 1 shows detail CNN model
specifications for the CIFAR-10 and MNIST databases. The total number of
trainable parameters for CIFAR-10 model is 5,752,414 and MNIST is 467,486.
In all our experiments, the proposed method is validated with the existing ones
using the same corresponding datasets and protocols. They are implemented
on a system with Intel Core i7 processor, 16GB RAM, and NVIDIA GeForce
GTX-1050Ti GPU card.

3.3 Results and Discussion

3.3.1 MNIST

The MNIST database consists of 28× 28 gray scale image with labels as 0 to
9. The data structure consists of 60,000 samples of which 50,000 is training
data and 10,000 is validation data. The test sample consists of 10,000 images,
same protocol as that in [9]. Since the proposed method requires large batch
size, thus for MNIST we took 1000 as the batch size. The optimizer is the
Adam optimizer and the initial learning rate is reduced to half for every 200
epochs. For final classification, we use the linear support vector machine (SVM)
classifier.

Table 2 shows the comparison of our proposed approach as compared to
various relevant methods on MNIST database. From the results it can be seen
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Table 1: Our proposed CNN model specifications for CIFAR-10 and MNIST
databases.

CIFAR-10 MNIST

Input 3 × 32 × 32 Input 1 × 28 × 28

3 × 3 Conv (pad-1)-64-BN-ReLu

3 × 3 Conv (pad-1)-64-BN-ReLu

2 × 2 Max-Pooling + Drop-Out (0.25)

3 × 3 Conv (pad-1)-128-BN-ReLu

3 × 3 Conv (pad-1)-128-BN-ReLu

2 × 2 Max-Pooling + Drop-Out (0.25)

3 × 3 Conv (pad-1)-96-BN-ReLu

3 × 3 Conv (pad-1)-96-BN-ReLu

2 × 2 Max-Pooling + Drop-Out (0.25)

3 × 3 Conv (pad-1)-256-BN-ReLu

3 × 3 Conv (pad-1)-256-BN-ReLu

3 × 3 Conv (pad-1)-256-BN-ReLu

3 × 3 Conv (pad-1)-256-BN-ReLu

2 × 2 Max-Pooling + Drop-Out (0.25)

3 × 3 Conv (pad-0)-1024-BN-ReLu

Drop-Out (0.5)

3 × 3 Conv (pad-0)-256-BN-ReLu

Drop-Out (0.5)

1 × 1 Conv (pad-0)-1024-BN-ReLu

Drop-Out (0.5)

1 × 1 Conv (pad-0)-256-BN-ReLu

Drop-Out (0.5)

1 × 1 Conv (pad-0)-10-BN-ReLu

2 × 2 Global Average Pooling

1 × 1 Conv (pad-0)-10-BN-ReLu

5 × 5 Global Average Pooling

Regularized LDA Layer

BN: Batch Normalization, ReLu: Rectified Linear Activation Function, Conv: Convolutional
layer.

Table 2: Comparison of test errors (%) on MNIST database using our proposed
approach and other relevant methodologies.

Method Test Error (in %)
NIN [25] 0.47
Conv. Maxout + Dropout [15] 0.45
ScatNet-2 [3] 0.43
PCANet-1 [5] 0.62
DeepLDA [9] 0.29
Proposed method 0.35

that our proposed method with new cost function is second best and compara-
ble with the other state of-the-art reported performances. So it is evident that
adding the latent space representation into the cost function, by maximizing
the between-class and minimizing the within-class eigen representation effi-
ciently learns the features required for classification. Thus the training is done
in an unsupervised manner and using linear SVM, we do the final classification
using the testing data.
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Fig. 2: (a) shows the evolution of mean eigenvalues of St with respect to epoch
number, (b) depicts the minimization of within class scatter matrix Sw with
respect to epoch, on MNIST database.

Table 3: Comparison of test accuracy (%) on CIFAR-10 database using our
proposed approach and other relevant methodologies.

Method Accuracy (in %)
NIN+ Dropout [25] 89.59
Conv. Maxout + Dropout [15] 88.32
PCANet-2 [5] 78.67
DeepLDA [9] 92.42
Proposed method 90.04

Figure 2 (a) shows the evolution of mean eigenvalues of the total scatter
matrix with varying epochs during the training. Figure 2 (b) shows the eigen-
values of within class scatter matrix with respect to varying epochs, which
initially increases but later decreases; thus achieving our objective of minimiz-
ing the within class and maximizing the total variation among different classes
as shown in Figures 2 (a) and (b).

3.3.2 CIFAR-10

The CIFAR-10 database consists of 32× 32 size image containing 10 different
classes. The database structure consists of 50,000 training samples and 10,000
testing samples, same as that in [9]. We normalize the pixel values between
0-1. Table 1 describes the network structure, and similar to MNIST approach
described above the initial learning rate is reduced to half for every 200 epochs.
Table 3 summarizes the comparison of our proposed approach and various rel-
evant methods on this database. It can be seen that our proposed methodology
has achieved second best accuracy for this natural image classification task.
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3.3.3 ISBI 2016 and ISBI 2017

To show the efficacy of the proposed objective function, we have conducted
experimentation on both multi-class (MNIST and CIFAR-10) and binary class
classification databases (ISBI 2016 and 2017). ISBI databases consist of der-
moscopic lesion images for the diagnosis of skin cancer melanoma from the
non-melanoma cases. ISBI 2016 database consists of 900 training set and
379 testing set. The database is unbalanced with 727 benign images and 173
melanoma images. Similarly, ISBI 2017 database consists of 2000 training sam-
ples and 600 testing samples. As stated by Wang et al. [32], minibatch learning
with covariance estimates requires large batch size such that it could repre-
sent the entire population. Thus to overcome the batch size problem due to
limited availability of ISBI training and testing data as well as due to large
size of these images (224 × 224) and limited amount of memory available in
GPU, we first performed fine-tuning of pretrained ResNet-50 model which has
25,636,712 parameters and then extracted the features from the last convo-
lutional layer. We used these 2-dimensional features as inputs to train MLP
(multi-layer perceptron) or fully connected layers. The fully connected layers
used for training with the proposed objective function can be represented as,

ΘMLP = Input(900, 2048)→
Dense(2048)− Sigmoid− l2regularizer →
Dense(1024)− Sigmoid− l2regularizer →
Dense(1024)− Sigmoid− l2regularizer →
Dense(100)− Sigmoid− l2regularizer

(13)

Sigmoid activation function is the most favoured activation function for shal-
low networks. We experimented using RELU and tanh as well, but there was
no significant improvement using them. Activation function adds non-linearity
to the existing nodes of the network. For deeper networks, RELU is the best
activation function since RELU increases the convergence rate. Disadvantage
of RELU is that ReLU units can be fragile during training and can erode
easily [1]. The following performance criteria are used for comparison of the
proposed approach with the existing methodologies:

– Accuracy: The ratio of correct prediction to that of total predictions, math-
ematical formulation as,

ACC =
TP + TN

TP + FP + TN + FN
, (14)

where TP = True Positive, TN = True Negative, FP = False Positive,
FN = Flase Negative.

– Sensitivity: The ability of the algorithm to correctly predict the diseased
cases (i.e. malignant),

SE =
TP

TP + FN
(15)
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(a) (b)

Fig. 3: Loss with respect to number of epochs during training (a) loss vs
epochs on ISBI 2016 database (with training data only as validation database
is unavailable) (b) loss vs epochs on ISBI 2017 database (for both training and
validation datasets).

– Specificity: It is the ability of the algorithm to correctly predict the non-
diseased cases (i.e. benign),

SP =
TN

TN + FP
(16)

– AUC: Area under receiver operating characteristic curve. It is the graph
between true positive rate against the false positive rate.

– Average Precision: Average precision (AP) is the area under the precision-
recall curve. The detailed explanation can be found in [16].

Since DeepLDA approach uses the traditional LDA where we could get
at most, number of classes minus one as the principal eigenvalues which in
this database would be (2 − 1) = 1. Thus, at the end there would be only
one eigenvalue to maximize so as to have maximum inter class separation
and minimum within class separation. In our approach, we use total class
scatter matrix variance information to find the optimal projection among all
the training data samples. This has enabled us to select up to n − 1, where
n is the total number of training samples. The model loss plot with respect
to varying epochs are shown in Figure 3(a) for ISBI 2016 and 3(b) for ISBI
2017 databases respectively. The plot shows that in both the cases the loss
decreases evenly with increase in number of epochs and finally converges.

Tables 4 and 5 show the various comparison of this approach with the
existing ones on ISBI 2016 and 2017 databases, respectively. The results ob-
tained on these databases do not exceed the best accuracy so far obtained
but show a new approach to proceed by inheriting the class separability into
the deep neural net as a result of changing the objective function. We im-
plemented DeepLDA method [9] and experimented on ISBI databases. These
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Table 4: Comparison of the proposed approach with the existing state-of-the-
art methodologies on ISBI 2016 database.

Methods Accuracy AUC AP SE SP
LDF-FV (fusion)[35] 0.868 0.852 0.684 0.426 0.977
CNN-FV (fusion)[36] 0.831 0.796 0.535 - -
FCRN+deep ResNet[34] 0.855 0.804 0.637 0.507 0.941
Ensemble model [8] 0.805 0.838 0.645 0.693 0.832
Deep Bayesian Active Learning [11] - 0.750 - - -
ResNet features+SVM 0.738 0.620 0.313 0.347 0.835
DeepLDA [9] 0.839 0.807 0.595 0.546 0.911
Proposed method 0.849 0.818 0.629 0.640 0.901

Table 5: Comparison of the proposed approach with the existing state-of-the-
art methodologies on ISBI 2017 database.

Methods Accuracy AUC AP SE SP
RECOD-TITANS [28] 0.872 0.874 0.715 0.547 0.950
ResNet features+SVM 0.783 0.689 0.379 0.350 0.888
DeepLDA [9] 0.831 0.791 0.544 0.470 0.919
Proposed method 0.833 0.793 0.566 0.555 0.901

tables show that our proposed approach achieves third best in its accuracy and
AUC on ISBI 2016 database and second best for these metrics on ISBI 2017
database. Fisher vector based methods [35] and [36] use 32,768 (even after
dimensionality reduction using principal component analysis) and 12,800 fea-
ture dimensions, respectively, for final feature matching, which are very high
as compared to ours that uses only 2048 feature dimensions and 899 (number
of samples −1) for final classification purpose. For ISBI 2017 [28], the authors
used two pretrained CNN models ResNet-101 and Inception-v4. Experimen-
tation using large number of data requires huge computational resources such
as large memory CUDA-compatible GPUs. The training time and complexity
are huge as compared to our approach, which uses only 2048 features and still
achieve competitive accuracy performances. Our method is simple, efficient,
requires less computing time and complexity that can be generically applied
to many computer vision classification tasks.

4 Conclusions

In this paper, we have proposed an objective function which would work for
both binary as well as multi-class classification problems. The proposed loss
function minimizes the within class variance and maximizes the total class
variance. We experimented our method on popular databases for various ap-
plications like MNIST (hand written digit recognition) and CIFAR-10 (nat-
ural image classification), and we have shown that the proposed approach
achieves competitive performances on these databases as compared to other
methods. For the application of melanoma detection (skin cancer detection
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into melanoma and non-melanoma cases), since the number of images are few
we trained the network using multi-layer perceptron and are able to achieve
an accuracy of 84.9% on ISBI 2016 and 83.3% on ISBI 2017 databases. These
experimental results show the efficacy of our proposed approach as compared
to other methods for many computer vision classification tasks.
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33. Yu, H., Xia, K., Jiang, Y., Qian, P.: Fréchet mean-based grassmann discriminant anal-
ysis. Multimedia Systems (2019)

34. Yu, L., Chen, H., Dou, Q., Qin, J., Heng, P.A.: Automated melanoma recognition in
dermoscopy images via very deep residual networks. IEEE transactions on medical
imaging 36(4), 994–1004 (2017)

35. Yu, Z., Jiang, X., Wang, T., Lei, B.: Aggregating deep convolutional features for
melanoma recognition in dermoscopy images. In: International Workshop on Machine
Learning in Medical Imaging, pp. 238–246. Springer (2017)

36. Yu, Z., Ni, D., Chen, S., Qin, J., Li, S., Wang, T., Lei, B.: Hybrid dermoscopy image
classification framework based on deep convolutional neural network and fisher vector.
In: Biomedical Imaging (ISBI 2017), 2017 IEEE 14th International Symposium on, pp.
301–304. IEEE (2017)


	Introduction
	Proposed Approach
	Experimental Results
	Conclusions
	Declarations

